1
|
Forró B, Kajtár B, Lacza Á, Kereskai L, Vida L, Kőszegi B, Urbán P, Kun J, Gyenesei A, Kosztolányi S, Kehl D, Jáksó P. Multiparameter flow cytometric and transcriptional analyis of CD20 positive T-cells in bone marrow in patients of multiple myeloma and monoclonal gammopathy of undetermined significance. Front Immunol 2025; 16:1464940. [PMID: 40079005 PMCID: PMC11896981 DOI: 10.3389/fimmu.2025.1464940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction CD20+ T-cells were described firstly in peripheral blood and later in bone marrow in patients with hematological tumors, and certain immune-mediated diseases. During our hematological diagnostic work, this peculiar subgroup of lymphocytes has been consistently observed associated with untreated monoclonal gammopathy of undetermined significance (MGUS) and myeloma (MM). Despite the expanding literature data, the exact function of CD20+ T cells remains unclear. Methods We investigated the incidence of CD20+ T-cells in MGUS (n=27), and MM using a larger cohort (n=125) and compared it with control bone marrow samples (n=39). We examined their presence before and after treatment in 32 cases with flow cytometry. Comprehensive flow cytometric analysis included the examination of functional (T-cell activation, cytotoxic molecules and T-cell exhaustion) and maturation markers in a large number of cases. In addition RNA sequencing and subsequent bioinformatics analyses were carried out to detect differentially expressed (DE) genes of FACS sorted CD20+ T-cells versus CD20- T-cells. Results and discussion We found that CD20+ T-cells are phenotypically and transcriptionally different from CD20- T-cells. Elevated incidence of CD20+ T-cells in MGUS and MM and the expression of CD8, NKG2D, and CD28 suggests anti-tumor functionality. Increased PD-1 expression indicates T-cell exhaustion which was mostly detected in the samples of patients with a higher tumor percentage. The majority of CD20+ T-cells are effector or effector memory T-cells. Some of the differentially expressed genes suggest antitumor function via regulating T-cell activation pathways, while other genes involved in tumor escape from immune surveillance by suppressing T-cells or by reprogramming T-cells toward T-cell exhaustion. Our findings suggest that CD20+ T-cells may play a vital role both in immune surveillance and immune escape contributing to progression of multiple myeloma.
Collapse
Affiliation(s)
- Barbara Forró
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Ágnes Lacza
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Livia Vida
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Balázs Kőszegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Péter Urbán
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - József Kun
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Attila Gyenesei
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Szabolcs Kosztolányi
- 1st Department of Internal Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Dániel Kehl
- Faculty of Business and Economics, University of Pécs, Pécs, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| |
Collapse
|
2
|
Sun Y, Sen S, Parmar R, Arakawa-Hoyt J, Cappelletti M, Rossetti M, Gjertson DW, Sigdel TK, Sarwal MM, Schaenman JM, Bunnapradist S, Lanier LL, Pickering H, Reed EF. Cytotoxic KLRG1+ IL-7R- effector CD8+ T cells distinguish kidney transplant recipients controlling cytomegalovirus reactivation. Front Immunol 2025; 16:1542531. [PMID: 40028342 PMCID: PMC11868092 DOI: 10.3389/fimmu.2025.1542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Cytomegalovirus (CMV) viremia remains a major contributor to clinical complications in solid organ transplant (SOT) patients, including organ injury, morbidity and mortality. Given their critical role in antiviral defense, CD8+ T cells are essential for protective immunity against CMV. Methods Using single-cell RNA sequencing, we investigated the transcriptional signatures and developmental lineages of CD8+ T cells in eight immunosuppressed kidney transplant recipients (KTRs) who received organs from CMV-seropositive donors. Results were validated in a cohort of 62 KTRs using immunophenotyping. Results Our data revealed a significant influence of CMV serostatus on transcriptional variance of CD8+ memory T cells, associating with the first principal component from a global analysis of CD8+ T cells (p =0.0406), forming a continuum with five principal differentiation trajectories driven by CMV primary infection or reactivation. Following CMV primary infection, CD8+ T cells were hallmarked by restrained effector-memory differentiation. CD8+ T cells during CMV reactivation diverged non-linearly into senescent-like cells with signatures of arrested cell cycle, diminished translational activity and downregulated ZNF683 and longitudinally expanding effector cells with robust cytotoxic potential and upregulated ZNF683, acting as a reservoir for long-lived effector cells supporting long-term protection. Notably, CD28lo KLRG1hi IL-7R (CD127)lo HLA-DRhi CD8+ T cells present prior to the detection of viremia in CMV-seropositive patients emerged as a key feature distinguishing patients who did or did not undergo CMV reactivation after prophylaxis discontinuation (p =0.0163). Frequencies of these cells were also positively correlated with CMV-stimulated secretion of IFN-γ (p =0.0494), TNF-α (p =0.0358), MIP-1α (p =0.0262), MIP-1β (p =0.0043). Discussion These results provide insights into the transcriptional regulation that influences the generation of CD8+ T cell immunity to CMV and may inform strategics for monitoring host immune response to CMV to better identify and introduce therapeutic intervention to patients at risk of developing clinically significant CMV viremia.
Collapse
Affiliation(s)
- Yumeng Sun
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Subha Sen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Monica Cappelletti
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David W. Gjertson
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tara K. Sigdel
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M. Sarwal
- Department of Surgery, Division of Multi Organ Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Joanna M. Schaenman
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Suphamai Bunnapradist
- Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Shawky H, Fayed DB, Abd El-Karim SS, Rezk H, Esawy MA, Farrag EK. Immunotherapeutic effects of de novo benzimidazole derivative and prebiotic bacterial levan against triple-negative breast tumors by harnessing the immune landscape to intercept the oncogenic transcriptome. Int J Biol Macromol 2025; 289:138844. [PMID: 39701264 DOI: 10.1016/j.ijbiomac.2024.138844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The current study aimed to investigate the therapeutic potential of a novel benzimidazole derivative (BMPE) and a prebiotic bacterial levan (LevAE) against triple-negative breast cancer (TNBC) in a 4T1-cell syngeneic mouse model and to elucidate the immunological and molecular mechanisms underlying the phenotypic changes observed in treated tumors. The metastatic TNBC model was successfully established by subcutaneous inoculation of 100 μL of 4T1 cell suspension (~6000 cells) in the mammary glands of adult female BALB/c mice after brief immunosuppression one day before cell implantation. The therapeutic efficacy of BMPE and LevAE was biochemically, immunologically, and immunohistochemically evaluated. Both compounds exhibited significant antitumor and antimetastatic effects through modulating the tumoral and systemic immune milieus and restoring the TME redox status, which ultimately suppressed the oncogenic transcriptome in the treated breast tumors. Compared to the reference drug (Doxorubicin), BMPE treatment resulted in nearly complete remission within 21 days of treatment, whereas LevAE was less convenient but produced a significant curative outcome. In light of these findings, BMPE and LevAE provide new paradigms for cancer immunotherapy.
Collapse
Affiliation(s)
- Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Dalia B Fayed
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Somaia S Abd El-Karim
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hamdy Rezk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ebtehal K Farrag
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
4
|
Wu S, Cao Z, Lu R, Zhang Z, Sethi G, You Y. Interleukin-6 (IL-6)-associated tumor microenvironment remodelling and cancer immunotherapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00001-2. [PMID: 39828476 DOI: 10.1016/j.cytogfr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine playing a pivotal role during inflammation and immune responses. In the recent years, the function of IL-6 in the tumor microenvironment (TME) for affecting tumorigenesis and immunotherapy response has been investigated. The genetic mutations are mainly responsible for the development of cancer, while interactions in TME are also important, involving both cancers and non-cancerous cells. IL-6 plays a significant role in these interactions, enhancing the proliferation, survival and metastasis of tumor cells through inflammatory pathways, highlighting its carcinogenic function. Multiple immune cells including macrophages, T cells, myeloid-derived suppressor cells, dendritic cells and natural killer cells can be affected by IL-6 to develop immunosuppressive TME. IL-6 can also participate in the immune evasion through increasing levels of PD-L1, compromising the efficacy of therapeutics. Notably, IL-6 exerts a double-edge sword function and it can dually increase or decrease cancer immunotherapy, providing a challenge for targeting this cytokine in cancer therapy. Highlighting the complicated function of IL-6 in TME can lead to the development of effective therapeutics for cancer immunity.
Collapse
Affiliation(s)
- Songsong Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhumin Cao
- Department of Interventional and Vascular Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Rongying Lu
- Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province 437100, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Yulai You
- Department of Hepatobiliary surgery, Chongqing University Affiliated Jiangjin Central Hospital, Chongqing, China.
| |
Collapse
|
5
|
Hirata Y, Brems H, Van der Auweraer S, Ohyagi M, Iizuka M, Mise-Omata S, Ito M, Messiaen L, Mizuno S, Takahashi S, Legius E, Yoshimura A. Legius Syndrome mutations in the Ras-regulator SPRED1 abolish its membrane localization and potentially cause neurodegeneration. J Biol Chem 2024:107969. [PMID: 39510187 DOI: 10.1016/j.jbc.2024.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
The SPRED family proteins act as negative regulators of the Ras-ERK pathway: the N-terminal EVH1 domain interacts with the Ras-GAP domain (GRD) of the NF1 protein, while the C-terminal Sprouty-related (SPR) domain promotes membrane localization of SPRED, thereby recruiting NF-1 to Ras. Loss-of-function mutations in the hSPRED1 cause Legius syndrome in an autosomal dominant manner. In this study, we investigated the effects of missense mutations in the SPR domain identified in patients with Legius syndrome. Among 18 mutations we examined, six (C368S, M369L, V408E, P415A, P415L and P422R) have defects in the palmitoylation of the SPRED1 protein, losing plasma membrane localization and forming cytoplasmic granular aggregates. To evaluate the in vivo effects of SPR mutations, knock-in (KI) mice with P415A and P415V substitutions or M417Afs*4, a C-terminal 28 amino acid deletion, were generated. All these KI mice exhibited cranial malformations, a characteristic feature of Legius syndrome. However, both P415A and P415V mutants formed granular aggregates, whereas M417Afs*4 showed a diffuse cytoplasmic distribution, and Spred1P415A and Spred1P415V mice, but not Spred1M417Afs∗4 mice, developed cerebellar ataxia and Purkinje cell loss with age. These data suggest that in addition to loss of palmitoylation, the C-terminal region is required for the granular aggregate formation and Purkinje cell loss. The autophagy inducer spermidine rescued the ataxia phenotypes and Purkinje cell loss in Spred1P415A mice. These results suggest that some, but not all, SPR mutations that lose lipid modification induce abnormal cytoplasmic aggregation, which could be a target for autophagic clearance, and potentially cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Yasuko Hirata
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582.
| | - Hilde Brems
- Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | | | - Masaki Ohyagi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Mana Iizuka
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Seiya Mizuno
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eric Legius
- Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
6
|
de Kanter J, Steemers A, Gonzalez D, van Ineveld RL, Blijleven C, Groenen N, Trabut L, Scheijde‐Vermeulen M, Westera L, Beishuizen A, Rios AC, Holstege FP, Brandsma A, Margaritis T, van Boxtel R, Meyer‐Wentrup F. Single-cell RNA sequencing of pediatric Hodgkin lymphoma to study the inhibition of T cell subtypes. Hemasphere 2024; 8:e149. [PMID: 39233904 PMCID: PMC11369206 DOI: 10.1002/hem3.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 09/06/2024] Open
Abstract
Pediatric classic Hodgkin lymphoma (cHL) patients have a high survival rate but suffer from severe long-term side effects induced by chemo- and radiotherapy. cHL tumors are characterized by the low fraction (0.1%-10%) of malignant Hodgkin and Reed-Sternberg (HRS) cells in the tumor. The HRS cells depend on the surrounding immune cells for survival and growth. This dependence is leveraged by current treatments that target the PD-1/PD-L1 axis in cHL tumors. The development of more targeted therapies that are specific for the tumor and are therefore less toxic for healthy tissue compared with conventional chemotherapy could improve the quality of life of pediatric cHL survivors. Here, we applied single-cell RNA sequencing (scRNA-seq) on isolated HRS cells and the immune cells from the same cHL tumors. Besides TNFRSF8 (CD30), we identified other genes of cell surface proteins that are consistently overexpressed in HRS cells, such as NRXN3 and LRP8, which can potentially be used as alternative targets for antibody-drug conjugates or CAR T cells. Finally, we identified potential interactions by which HRS cells inhibit T cells, among which are the galectin-1/CD69 and HLA-II/LAG3 interactions. RNAscope was used to validate the enrichment of CD69 and LAG3 expression on T cells near HRS cells and indicated large variability of the interaction strength with the corresponding ligands between patients and between tumor tissue regions. In conclusion, this study identifies new potential therapeutic targets for cHL and highlights the importance of studying heterogeneity when identifying therapy targets, specifically those that target tumor-immune cell interactions.
Collapse
Affiliation(s)
- Jurrian K. de Kanter
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Alexander S. Steemers
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Daniel Montiel Gonzalez
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Ravian L. van Ineveld
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Catharina Blijleven
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
- Present address:
University of CopenhagenCopenhagenDenmark
| | - Niels Groenen
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Laurianne Trabut
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | | | - Liset Westera
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | | | - Arianne M. Brandsma
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
- Present address:
Sanquin Blood BankAmsterdamthe Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | | |
Collapse
|
7
|
Srirat T, Hayakawa T, Mise-Omata S, Nakagawara K, Ando M, Shichino S, Ito M, Yoshimura A. NR4a1/2 deletion promotes accumulation of TCF1 + stem-like precursors of exhausted CD8 + T cells in the tumor microenvironment. Cell Rep 2024; 43:113898. [PMID: 38451819 DOI: 10.1016/j.celrep.2024.113898] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
T cell exhaustion impairs tumor immunity and contributes to resistance against immune checkpoint inhibitors. The nuclear receptor subfamily 4 group A (NR4a) family of nuclear receptors plays a crucial role in driving T cell exhaustion. In this study, we observe that NR4a1 and NR4a2 deficiency in CD8+ tumor-infiltrating lymphocytes (TILs) results in potent tumor eradication and exhibits not only reduced exhaustion characteristics but also an increase in the precursors/progenitors of exhausted T (Pre-Tex) cell fraction. Serial transfers of NR4a1-/-NR4a2-/-CD8+ TILs into tumor-bearing mice result in the expansion of TCF1+ (Tcf7+) stem-like Pre-Tex cells, whereas wild-type TILs are depleted upon secondary transfer. NR4a1/2-deficient CD8+ T cells express higher levels of stemness/memory-related genes and illustrate potent mitochondrial oxidative phosphorylation. Collectively, these findings suggest that inhibiting NR4a in tumors represents a potent immuno-oncotherapy strategy by increasing stem-like Pre-Tex cells and reducing exhaustion of CD8+ T cells.
Collapse
Affiliation(s)
- Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Nakagawara
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|