1
|
Cui S, Yang Q, Zhang Y, Liu Q, Yang D, Wang Z. Characterization of type 2 interleukin-1 receptor (IL-1R2) as an inhibitory regulator of trained immunity in teleost. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110429. [PMID: 40398502 DOI: 10.1016/j.fsi.2025.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Trained immunity refers to the immune memory of innate immune cells, which is driven by metabolic rewiring and epigenetic reprogramming after initial stimulation. Several endogenous inducers of trained immunity have been reported, such as oxidized low-density lipoprotein (oxLDL), interleukin, and interferon. However, the negative regulatory molecules of trained immunity remain largely elusive. In this study, we identify a member of IL-1 family receptors, interleukin-1 receptor 2 (IL-1R2), as a potential inhibitory regulator of trained immunity in turbot. Pre-incubating recombinant IL-1R2 protein (rIL-1R2) with turbot neutrophils could inhibit β-glucan-induced training phenotypes. Specifically, rIL-1R2 incubation significantly decreases the expression of genes involved in the TLR/IL-1R and downstream MAPK/NF-κB signaling pathway in trained neutrophils, and further reversing the elevated expression of pro-inflammatory cytokines such as IL-6 and TNF-α in response to bacterial reinfection. Moreover, rIL-1R2 inhibits the increasing production of intracellular reactive oxygen (ROS), myeloperoxidase (MPO) activity and neutrophil extracellular traps (NETs) in trained neutrophils, ultimately impairing the bacterial killing ability. Taken together, our work demonstrates that the decoy receptor IL-1R2 could negatively regulate trained immunity activation in turbot neutrophils. These findings enrich the theory of trained immunity in teleost fish and provide a potential target for disease prevention and treatment in aquaculture.
Collapse
Affiliation(s)
- Shu Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiuxi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
2
|
Hajishengallis G, Netea MG, Chavakis T. Trained immunity in chronic inflammatory diseases and cancer. Nat Rev Immunol 2025:10.1038/s41577-025-01132-x. [PMID: 39891000 DOI: 10.1038/s41577-025-01132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
A decade after the term 'trained immunity' (TRIM) was coined to reflect the long-lasting hyper-responsiveness of innate immune cells with an epigenetically imprinted 'memory' of earlier stimuli, our understanding has broadened to include the potential implications of TRIM in health and disease. Here, after summarizing the well-documented beneficial effects of TRIM against infections, we discuss emerging evidence that TRIM is also a major underlying mechanism in chronic inflammation-related disorders such as periodontitis, rheumatoid arthritis and cardiovascular disease. Furthermore, mounting evidence indicates that the induction of TRIM by certain agonists confers protective antitumour responses. Although the mechanisms underlying TRIM require further study, the current knowledge enables the experimental development of innovative therapeutic approaches to stimulate or inhibit TRIM in a context-appropriate manner, such as the stimulation of TRIM in cancer or its inhibition in inflammatory disorders.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department of Immunology and Metabolism, LIMES, University of Bonn, Bonn, Germany.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Velho TR, Raquel H, Figueiredo N, Neves-Costa A, Pedroso D, Santos I, Willmann K, Moita LF. Immunomodulatory Effects and Protection in Sepsis by the Antibiotic Moxifloxacin. Antibiotics (Basel) 2024; 13:742. [PMID: 39200042 PMCID: PMC11350752 DOI: 10.3390/antibiotics13080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is a leading cause of death in Intensive Care Units. Despite its prevalence, sepsis remains insufficiently understood, with no substantial qualitative improvements in its treatment in the past decades. Immunomodulatory agents may hold promise, given the significance of TNF-α and IL-1β as sepsis mediators. This study examines the immunomodulatory effects of moxifloxacin, a fluoroquinolone utilized in clinical practice. THP1 cells were treated in vitro with either PBS or moxifloxacin and subsequently challenged with lipopolysaccharide (LPS) or E. coli. C57BL/6 mice received intraperitoneal injections of LPS or underwent cecal ligation and puncture (CLP), followed by treatment with PBS, moxifloxacin, meropenem or epirubicin. Atm-/- mice underwent CLP and were treated with either PBS or moxifloxacin. Cytokine and organ lesion markers were quantified via ELISA, colony-forming units were assessed from mouse blood samples, and DNA damage was evaluated using a comet assay. Moxifloxacin inhibits the secretion of TNF-α and IL-1β in THP1 cells stimulated with LPS or E. coli. Intraperitoneal administration of moxifloxacin significantly increased the survival rate of mice with severe sepsis by 80% (p < 0.001), significantly reducing the plasma levels of cytokines and organ lesion markers. Notably, moxifloxacin exhibited no DNA damage in the comet assay, and Atm-/- mice were similarly protected following CLP, boasting an overall survival rate of 60% compared to their PBS-treated counterparts (p = 0.003). Moxifloxacin is an immunomodulatory agent, reducing TNF-α and IL-1β levels in immune cells stimulated with LPS and E. coli. Furthermore, moxifloxacin is also protective in an animal model of sepsis, leading to a significant reduction in cytokines and organ lesion markers. These effects appear unrelated to its antimicrobial activity or induction of DNA damage.
Collapse
Affiliation(s)
- Tiago R. Velho
- Department of Cardiothoracic Surgery, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Av. Prof. Egas Moniz, 1649-035 Lisbon, Portugal;
- Cardiothoracic Surgery Research Unit, Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Helena Raquel
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Nuno Figueiredo
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Department of General Surgery, Hospital Lusíadas Lisboa, 1500-458 Lisbon, Portugal
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Department of General Surgery, Hospital de São Bernardo, Unidade Local de Saúde da Arrábida, 2910-446 Setúbal, Portugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
5
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
6
|
Hao Y, Zhang C, Li F, Fan Y, Chi K, Zeng H, Zhang J. Protocol for identifying stressed granulocytes from septic mice. STAR Protoc 2024; 5:102958. [PMID: 38568818 PMCID: PMC10999655 DOI: 10.1016/j.xpro.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Sepsis trains stressed granulocytes to boost nonspecific response and trigger a new wave of inflammation when facing secondary infection. Here, we present a protocol for a murine model of sepsis with secondary infection. We describe steps for cecal ligation and puncture operation and rechallenging with lipopolysaccharide or Pseudomonas aeruginosa during the recovery phase. We also detail steps to characterize the stressed granulocytes by assessing their functional phenotypes and effect on the mortality of rechallenged mice. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Yu Hao
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Can Zhang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Fangyuan Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Yang Fan
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Kexin Chi
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China
| | - Ju Zhang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing 100038, China.
| |
Collapse
|
7
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Bhargavi G, Subbian S. The causes and consequences of trained immunity in myeloid cells. Front Immunol 2024; 15:1365127. [PMID: 38665915 PMCID: PMC11043514 DOI: 10.3389/fimmu.2024.1365127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.
Collapse
Affiliation(s)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
9
|
Noronha NY, Noma IHY, Fernandes Ferreira R, Rodrigues GDS, Martins LDS, Watanabe LM, Pinhel MADS, Mello Schineider I, Diani LM, Carlos D, Nonino CB. Association between the relative abundance of phyla actinobacteria, vitamin C consumption, and DNA methylation of genes linked to immune response pathways. Front Nutr 2024; 11:1373499. [PMID: 38638293 PMCID: PMC11024951 DOI: 10.3389/fnut.2024.1373499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction There is an emerging body of evidence that vitamin C consumption can modulate microbiota abundance and can also impact DNA methylation in the host, and this could be a link between diet, microbiota, and immune response. The objective of this study was to evaluate common CpG sites associated with both vitamin C and microbiota phyla abundance. Methods Six healthy women participated in this cohort study. They were divided into two groups, according to the amount of vitamin C they ingested. Ingestion was evaluated using the 24-h recall method. The Illumina 450 k BeadChip was used to evaluate DNA methylation. Singular value decomposition analyses were used to evaluate the principal components of this dataset. Associations were evaluated using the differentially methylated position function from the Champ package for R Studio. Results and discussion The group with higher vitamin C (HVC) ingestion also had a higher relative abundance of Actinobacteria. There was a positive correlation between those variables (r = 0.84, p = 0.01). The HVC group also had higher granulocytes, and regarding DNA methylation, there were 207 CpG sites commonly related to vitamin C ingestion and the relative abundance of Actinobacteria. From these sites, there were 13 sites hypomethylated and 103 hypermethylated. The hypomethylated targets involved the respective processes: immune function, glucose homeostasis, and general cellular metabolism. The hypermethylated sites were also enriched in immune function-related processes, and interestingly, more immune responses against pathogens were detected. These findings contribute to understanding the interaction between nutrients, microbiota, DNA methylation, and the immune response.
Collapse
Affiliation(s)
- Natália Yumi Noronha
- Department of Gynecology and Obstetrics, University Medical Center Groningen, Groningen, Netherlands
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Fernandes Ferreira
- Department of Molecular Biology, Sao Jose do Rio Preto Medical School, São José do Rio Preto, Brazil
| | - Guilherme da Silva Rodrigues
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luzania dos Santos Martins
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Lígia Moriguchi Watanabe
- Faculty of Medicine of Ribeirao Preto, Department of Health Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
- Department of Molecular Biology, Sao Jose do Rio Preto Medical School, São José do Rio Preto, Brazil
| | - Isabelle Mello Schineider
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luísa Maria Diani
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Faculty of Medicine of Ribeirão Preto, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla Barbosa Nonino
- Faculty of Medicine of Ribeirao Preto, Department of Health Sciences, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|