1
|
Sequeira V, Theisen J, Ermer KJ, Oertel M, Xu A, Weissman D, Ecker K, Dudek J, Fassnacht M, Nickel A, Kohlhaas M, Maack C, Dischinger U. Semaglutide normalizes increased cardiomyocyte calcium transients in a rat model of high fat diet-induced obesity. ESC Heart Fail 2025; 12:1386-1397. [PMID: 39482267 PMCID: PMC11911617 DOI: 10.1002/ehf2.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
AIMS Obesity increases the risk of heart failure with preserved (HFpEF), but not reduced ejection fraction (HFrEF). The glucagon-like peptide-1 receptor agonist (GLP-1-RA) semaglutide improves outcome of patients with obesity with or without HFpEF, while GLP-1-RAs were associated with adverse outcome in patients with HFrEF. Here, we investigate the effect of in vivo treatment with semaglutide on excitation-contraction coupling in a rat model of obesity. METHODS AND RESULTS Rats received high-fat/high-fructose diet for 8 weeks and were then randomized to semaglutide (HFD/Sema) or vehicle (HFD/Veh) for another 8 weeks, during which they could choose between HFD and a low-fat/high-fructose diet (LFD). Control rats received either standard chow (CON), HFD or LFD only, without treatment. After 16 weeks, sarcomere shortening and cytosolic Ca2+ concentrations ([Ca2+]c) were determined in isolated cardiomyocytes. Compared with CON, HFD/Veh increased the amplitude of [Ca2+]c transients and systolic sarcomere shortening in absence or presence of β-adrenergic stimulation, which was reversed by HFD/Sema. Caffeine-induced sarcoplasmic reticulum (SR) Ca2+ release and L-type Ca2+ channel (LTCC) currents were reduced by HFD/Sema versus HFD/Veh, while SR Ca2+ ATPase activity remained unaffected. Compared with HFD, LFD increased [Ca2+]c transients and sarcomere shortening further despite similar effects on body weight. CONCLUSIONS While HFD increased cardiomyocyte [Ca2+]c transients and systolic sarcomere shortening, semaglutide normalized these alterations, mediated by reduced SR Ca2+ load and LTCC currents. Because increased LTCC currents were previously traced to cardiac hypertrophy, these effects may explain why GLP-1-RAs provide benefits for patients with obesity with or without HFpEF, but rather adverse outcome in HFrEF.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Julia Theisen
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Katharina J. Ermer
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Marie Oertel
- Department of Internal Medicine, Division of Endocrinology and DiabetesUniversity Hospital WürzburgWürzburgGermany
| | - Anton Xu
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - David Weissman
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Katharina Ecker
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Jan Dudek
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and DiabetesUniversity Hospital WürzburgWürzburgGermany
| | - Alexander Nickel
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Michael Kohlhaas
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Christoph Maack
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
| | - Ulrich Dischinger
- Department of Translational Science UniversitätsklinikumDZHIWürzburgGermany
- Department of Internal Medicine, Division of Endocrinology and DiabetesUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
2
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
3
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 PMCID: PMC12010433 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
5
|
Speck SL, Wei X, Semenkovich CF. Depalmitoylation and cell physiology: APT1 as a mediator of metabolic signals. Am J Physiol Cell Physiol 2024; 326:C1034-C1041. [PMID: 38344800 PMCID: PMC11193526 DOI: 10.1152/ajpcell.00542.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
More than half of the global population is obese or overweight, especially in Western countries, and this excess adiposity disrupts normal physiology to cause chronic diseases. Diabetes, an adiposity-associated epidemic disease, affects >500 million people, and cases are projected to exceed 1 billion before 2050. Lipid excess can impact physiology through the posttranslational modification of proteins, including the reversible process of S-palmitoylation. Dynamic palmitoylation cycling requires the S-acylation of proteins by acyltransferases and the depalmitoylation of these proteins mediated in part by acyl-protein thioesterases (APTs) such as APT1. Emerging evidence points to tissue-specific roles for the depalmitoylase APT1 in maintaining homeostasis in the vasculature, pancreatic islets, and liver. These recent findings raise the possibility that APT1 substrates can be therapeutically targeted to treat the complications of metabolic diseases.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|