1
|
Wu J, Zhang F, Li Z, Gan L, Cao H, Cao H, Hao C, Sun Z, Wang W. Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes. Comput Biol Chem 2025; 117:108421. [PMID: 40086342 DOI: 10.1016/j.compbiolchem.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival. METHOD We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC. RESULT This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI. CONCLUSION This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Lijian Gan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Peking University International Hospital, Beijing, China.
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhu C, Wu J, Chen Y, Ma T, Pan H, Zhai C, Tai Z, Chen Z, Zhu Q. The alleviating effect of Bai-Ju essence on atopic dermatitis through anti-inflammatory and skin barrier repair mechanisms. Mol Cell Biochem 2025:10.1007/s11010-025-05270-7. [PMID: 40394445 DOI: 10.1007/s11010-025-05270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/22/2025] [Indexed: 05/22/2025]
Abstract
Bai-Ju essence (BJE) is a bioactive formulation composed of medicinal plant extracts, utilized in skincare products for its therapeutic potential. Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by epidermal barrier dysfunction and immune dysregulation. This study aimed to evaluate BJE anti-inflammatory and skin-protective effects, and its potential mechanisms in treating AD. The ability of BJE to restore the epidermal barrier was assessed in HaCaT cells. In LPS-induced RAW264.7 cells, the anti-inflammatory potential of BJE was evaluated by measuring NO, IL-6, PGE2, and TNF-α. Western blot analysis was used to assess the regulation of the MAPK pathway. An in vivo AD-like mouse model was established using MC903, and measurements of body weight, ear thickness, and AD symptoms were recorded. Histological analysis quantified mast cell infiltration, while western blot determined FLG, LOR, and ELOVL6 expression. ELISA was used to measure TNF-α, IgE, IL-4, and IL-13 levels. Flow cytometry assessed the effect of BJE on Th cell phenotypes. BJE significantly enhanced skin barrier protein expression (CERS2, LOR, HAS-1, HAS-2, FLG) in HaCaT cells. It significantly reduced the levels of NO, IL-6, PGE2, and TNF-α in LPS-treated RAW264.7, demonstrating its anti-inflammatory potential. Mechanistically, BJE inhibited MAPK activation. BJE decreased ear thickness, improved skin lesions, and relieved AD symptoms in AD-like mice. In addition, BJE effectively suppressed mast cell infiltration and hyperkeratosis. BJE also decreased levels of TNF-α, IgE, IL-4, and IL-13 while increasing LOR, ELOVL6, and FLG expressions. Furthermore, BJE modulated Th1, Th2, and Th17 cell proportions. BJE promoted epidermal barrier repair in HaCaT, suppressed the LPS-induced inflammation in RAW264.7, enhanced the skin barrier integrity in AD-like mice, and exhibited immunomodulatory effects by restoring Th cell balance. These findings highlighted the therapeutic potential of BJE in AD through its dual action of anti-inflammation and skin barrier restoration.
Collapse
Affiliation(s)
- Congcong Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Ya Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Chuntao Zhai
- Shanghai Zhina Biotechnology Technology Co.,Ltd, 666 Jinbi Road, Shanghai, 201404, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
3
|
Zhan X, Bai Y, Zhu Q, Gao Y, Li F, Bu Q, Zhu Z, Rao Z, Zhou H. Macrophage ATG16L1 promotes liver regeneration after partial hepatectomy. JHEP Rep 2025; 7:101330. [PMID: 40290519 PMCID: PMC12023798 DOI: 10.1016/j.jhepr.2025.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background & Aims Autophagy plays an important role in liver regeneration. However, most studies are limited to hepatocytes, and the function and mechanism of macrophage autophagy in liver regeneration remain unclear. This study investigated the role of the essential autophagy gene encoding autophagy-related 16-like 1 (ATG16L1), which regulates the macrophage phenotype in liver regeneration. Methods We generated FloxP-Atg16l1 (Atg16l1 FL/FL ), Lyz2-Cre Atg16l1 knockout (KO) (Atg16l1 M-KO ), and myeloid-specific Atg16l1-overexpression-knock-in (Atg16l1 OE ) mice. These mice were subjected to 70% partial hepatectomy to demonstrate the role of ATG16L1 in macrophages during liver regeneration. Results ATG16L1 expression was significantly upregulated in macrophages during the early stages of liver regeneration. ATG16L1 deletion in macrophages substantially delayed liver regeneration in mice and caused a marked imbalance in Ly6Chi and Ly6Clo macrophage proportions in the liver. RNA-sequencing analysis revealed that, compared with macrophages isolated from Atg16l1 FL/FL mice, those from Atg16l1 M-KO mice exhibited significant downregulation of genes associated with oxidative phosphorylation and upregulation of proinflammatory gene expression. Mechanistically, ATG16L1 loss impaired mitophagy in macrophages, leading to the accumulation of mitochondrial damage and a metabolic shift that promoted proinflammatory macrophage polarization. ATG16L1 deficiency not only promoted macrophage mitochondrial (mt)DNA release and cyclic GMP-AMP synthase-stimulator of interferon genes (STING) activation, but also suppressed STING degradation. Sustained STING hyperactivation and subsequent increased release of downstream interferons further contributed to the inhibition of liver regeneration. Notably, pharmacological activation or genetic overexpression of ATG16L1 significantly enhanced liver regeneration in mice. Conclusions ATG16L1 has a pivotal role in liver regeneration by affecting the phenotype and function of macrophages. Thus, targeting ATG16L1 in macrophages could present a novel strategy for promoting liver regeneration. Impact and implications The autophagy-related gene ATG16L1 mediates mitophagy, facilitating the clearance of damaged mitochondria in macrophages following partial hepatectomy and maintaining a reparative macrophage phenotype. ATG16L1 deficiency triggers excessive STING activation and inhibits its degradation, thereby suppressing liver regeneration. Thus, targeting ATG16L1 in macrophages could represent a novel strategy to promote liver regeneration.
Collapse
Affiliation(s)
- Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Yan Bai
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Qing Zhu
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Fan Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Qingfa Bu
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zeyu Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Zhuqing Rao
- Department of Anesthesiology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| |
Collapse
|
4
|
Gu S, Xu L, Huang B, Xiong K, Yang X, Ye J. Decoding Macrophage Dynamics: A Pathway to Understanding and Treating Inflammatory Skin Diseases. Int J Mol Sci 2025; 26:4287. [PMID: 40362523 PMCID: PMC12071885 DOI: 10.3390/ijms26094287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Psoriasis and atopic dermatitis (AD) are both chronic inflammatory skin diseases. Their pathogenesis remains incompletely understood. The polarization states of macrophages, as a crucial part of the innate immune system, are influenced by various factors such as cytokines, inflammatory mediators, and epigenetics. Research has demonstrated that macrophages play a "double-edged sword" role in the pathological process of inflammatory skin diseases: they both drive inflammation progression and participate in tissue repair. This article summarizes the roles of macrophages in the inflammatory development and tissue homeostasis of psoriasis and atopic dermatitis. It explores the impact of different factors on macrophages and inflammatory skin diseases. In conclusion, understanding the classification and plasticity of macrophages is crucial for a deeper understanding of the pathogenesis of psoriasis and AD and the development of personalized treatments.
Collapse
Affiliation(s)
- Shengliang Gu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| | - Lei Xu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
| | - Bin Huang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
| | - Kai Xiong
- The First School of Clinical Medicine, Guizhou University of Chinese Medicine, Guiyang 550025, China;
| | - Xuesong Yang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| | - Jianzhou Ye
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| |
Collapse
|
5
|
Viana-Mattioli S, Fonseca-Alaniz MH, Pinheiro-de-Sousa I, Junior RR, Mastella MH, de Carvalho Cavalli R, Sandrim VC. Plasma from hypertensive pregnancy patients induce endothelial dysfunction even under atheroprotective shear stress. Sci Rep 2025; 15:4675. [PMID: 39920219 PMCID: PMC11805971 DOI: 10.1038/s41598-025-88902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Preeclampsia (PE) is a challenge in maternal healthcare due to its complex nature, characterized by high blood pressure, protein in the urine, and damage to various organs. There is evidence linking PE to endothelial dysfunction (ED), triggered by substances released from an oxygen-deprived placenta. Previous in vitro studies have not considered the impact of in vivo elements, such as the different patterns of blood flow, and laminar (LSS) vs. oscillatory (OSS) shear stress, on the development of ED. We investigated the impact of plasma from healthy pregnant women (HP), subjects with gestational hypertension (GH), and PE patients on global gene expression of human coronary endothelial cells (HCAECs) under LSS and OSS. Our findings revealed a unique transcriptional profile of endothelial cells induced by plasma incubation in LSS. Notably, OSS resulted in similar transcriptomes irrespective of plasma treatment. Under LSS, GH plasma resulted in a proliferative profile, whereas PE plasma was linked to pro-inflammatory and antioxidant profiles compared to HP plasma. Our findings demonstrate that shear stress levels influence the endothelial cell transcriptome in response to plasma from hypertensive pregnancy patients. Both PE and GH can induce endothelial dysfunction under atheroprotective LSS, with a more significant effect observed with PE-derived plasma.
Collapse
Affiliation(s)
- Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Miriam Helena Fonseca-Alaniz
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iguaracy Pinheiro-de-Sousa
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ricardo Rosa Junior
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Moises Henrique Mastella
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Hospital das Clínicas, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Gohara Y, Kinoshita R, Tomonobu N, Jiang F, Matsunaga Y, Hashimoto Y, Honjo T, Yamamoto KI, Murata H, Ochi T, Komalasari NLGY, Yamauchi A, Kuribayashi F, Sakaguchi Y, Futami J, Inoue Y, Kondo E, Toyooka S, Morizane S, Ishiko A, Morita S, Sagayama K, Nakao K, Sakaguchi M. An S100A8/A9 Neutralizing Antibody Potently Ameliorates Contact Hypersensitivity and Atopic Dermatitis Symptoms. J Invest Dermatol 2025:S0022-202X(25)00029-6. [PMID: 39848567 DOI: 10.1016/j.jid.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
Contact hypersensitivity and atopic dermatitis are pervasive inflammatory skin diseases with similar symptoms, and their global prevalence is steadily increasing. Many compounds and biotics have been developed to target molecules critical to the etiology or pathogenesis of contact hypersensitivity and atopic dermatitis. However, these molecules are sometimes ineffective or lose their potency during the therapeutic course. Therefore, innovative medicines are still needed for the treatment of intractable cases. We focused on S100A8/A9, a heterodimer complex of S100A8 and S100A9 that is abundant in the extracellular milieu of inflammatory skin lesions. Although S100A8/A9 is primarily recognized as a diagnostic marker protein, we have previously shown that it also plays a crucial role in contact hypersensitivity and atopic dermatitis progression. This insight inspired us to develop its inhibitory antibody, leading to the ground-breaking Ab45. In this study, we demonstrated that Ab45 effectively prevented disease symptoms in various models and that its disease-ameliorating activity likely involved the downregulation of several disease-relevant molecules, including Il-23a, Il-36g, S100a8, and S100a9. We also created a humanized version of Ab45, HuAb45, which exhibited similar effectiveness. These antibodies show great promise for the treatment of contact hypersensitivity and atopic dermatitis and possibly for other inflammatory skin diseases.
Collapse
Affiliation(s)
- Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukiko Matsunaga
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Hashimoto
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan
| | | | | | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Japan
| | - Eisaku Kondo
- Division of Tumor Pathology, Near-Infrared Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Shigeru Morita
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazumi Sagayama
- Organization for Research and Innovation Strategy, Okayama University, Okayama, Japan
| | | | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
7
|
Wang Z, Jia S, Kang X, Chen S, Zhang L, Tian Z, Liang X, Meng C. Isoliquiritigenin alleviates neuropathic pain by reducing microglia inflammation through inhibition of the ERK signaling pathway and decreasing CEBPB transcription expression. Int Immunopharmacol 2024; 143:113536. [PMID: 39488922 DOI: 10.1016/j.intimp.2024.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Natural compounds are invaluable for their therapeutic effects in treating various diseases. Isoliquiritigenin (ISL) stands out due to its potent anti-inflammatory and antioxidative properties, offering significant therapeutic effects in many diseases. However, there is currently no existing literature on the role of ISL in neuropathic pain treatment. METHODS We used lipopolysaccharide to stimulate BV-2 microglia in order to evaluate the inhibitory effects of ISL on neuroinflammation. Proteomics data and protein-protein interaction network analysis were used to identify differential proteins expressed in BV-2 microglia treated with ISL. This allowed for the identification of targets impacted by ISL action. Additionally, we assessed the analgesic efficacy of ISL in a mouse model of chronic constriction injury of the sciatic nerve (CCI) and investigated its inhibitory influence on pro-inflammatory cytokine production and spinal microglia activation. RESULTS Our results indicate that ISL efficiently inhibits BV-2 microglia activation and pro-inflammatory cytokine expression. Furthermore, CEBPB has been recognized as a possible target for ISL activity. Crucially, microglia activation was successfully reduced by CEBPB knockdown. Functional recovery tests carried out later on validated that ISL works by specifically inhibiting the ERK/CEBPB signaling pathway. In vivo studies showed that giving mice ISL reduces the mechanical and thermal pain caused on by chronic contraction injuries. CONCLUSION The analgesic effect of ISL on neuropathic pain primarily stems from its ability to inhibit the activation of spinal microglia and neuroinflammation. This mechanism may be attributed to the capacity of ISL to suppress microglial activation, reduce the expression of pro-inflammatory cytokines by inhibiting the ERK signaling pathway, and decrease transcriptional expression of CEBPB.
Collapse
Affiliation(s)
- Zikun Wang
- Department of Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117, China
| | - Shu Jia
- Department of Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, China
| | - Xizhi Kang
- Department of Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117, China
| | - Shang Chen
- Department of Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, China
| | - Lu Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China
| | - ZhiKang Tian
- Department of Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China.
| |
Collapse
|
8
|
Kim KC, Jeong GH, Bang CH, Lee JH. Cannabichromene as a Novel Inhibitor of Th2 Cytokine and JAK/STAT Pathway Activation in Atopic Dermatitis Models. Int J Mol Sci 2024; 25:13539. [PMID: 39769302 PMCID: PMC11677870 DOI: 10.3390/ijms252413539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis. We used a 2,4-Dinitrochlorobenzene (DNCB)-induced BALB/c mouse model to topically administer CBC (0.1 mg/kg or 1 mg/kg). The results showed that skin lesion severity, ear thickness, epithelial thickness of dorsal and ear skin, and mast cell infiltration were significantly reduced in the 0.1 mg/kg CBC-treated group compared with the DNCB-treated group (p < 0.001). In addition, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed a significant decrease in the mRNA expression of Th2 cytokines (TSLP, IL-4, IL-13) and inflammatory mediators (IFN-γ, IL-1β, IL-6, IL-17, IL-18, and IL-33) (p < 0.05). Western blot analysis also revealed a significant decrease in JAK1, JAK2, STAT1, STAT2, STAT3, and STAT6 protein expression (p < 0.05). These results suggest that CBC is a promising candidate for the treatment of AD and demonstrates the potential to alleviate AD symptoms by suppressing the Th2 immune response.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
| | - Ga Hee Jeong
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
| | - Chul Hwan Bang
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Ji Hyun Lee
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
11
|
Zhang W, Wei S, Li Q, Yin L, Zhu J, Yang S, Zhu S, Lai K. Evaluating the Causal Association between Circulating Plasma Proteins, 731 Immune Cell Phenotypes, and Atopic Dermatitis: A Mediation Mendelian Randomization Study. Int Arch Allergy Immunol 2024:1-13. [PMID: 39536725 DOI: 10.1159/000542527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczematous lesions and severe itching. However, its pathogenesis has not yet been fully elucidated. The aim of this study was to investigate the causal relationship between plasma proteins and AD, as well as to identify and quantify the potential roles of immune cell phenotypes as mediators. METHODS We utilized summary-level data from genome-wide association studies and conducted a two-sample Mendelian randomization (MR) analysis involving 4,907 circulating plasma proteins, 731 immune cell phenotypes, and AD. Initially, we conducted bidirectional univariate MR analyses to forecast causal effects linking circulating plasma proteins and AD. Subsequently, we employed a two-step MR analysis to scrutinize the immune cell phenotypes that could mediate these effects. The inverse variance weighted was the main method employed for MR analysis, while the Cochran's Q test and MR-Egger intercept test were used to assess the presence of heterogeneity and pleiotropy, respectively. We then determined whether our results could be influenced by individual single-nucleotide polymorphisms using the "leave-one-out" test. RESULTS Positive correlations were observed between KRT1, IL18R1, and SEMA6A and the risk of AD, whereas BDH2, ADAMTS3, ANKRD1, TIAM1, MID2, and IFNA16 all showed negative correlations with the risk of AD. Mediation analysis indicated that CD8 on CM CD8br cells acted as a mediator between IFNA16 and AD, with a mediation effect proportion of 11.2%. In addition, sensitivity analyses did not reveal significant heterogeneity or level pleiotropy. CONCLUSION Our findings indicated the presence of a one-way causal relationship between the circulating plasma protein IFNA16 and AD. This study also explored immune cell phenotypes that may serve as mediators, offering novel insights into the etiology, pathogenesis, and potential clinical interventions in AD. Nevertheless, these findings need to be validated by clinical and laboratory studies.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Allergy, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yin
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhao Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Yang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Silang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuan Lai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
13
|
Vitaliti A, Reggio A, Palma A. Macrophages and autophagy: partners in crime. FEBS J 2024. [PMID: 39439196 DOI: 10.1111/febs.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Macrophages and autophagy are intricately linked, both playing vital roles in maintaining homeostasis and responding to disease. Macrophages, known for their 'eating' function, rely on a sophisticated digestion system to process a variety of targets, from apoptotic cells to pathogens. The connection between macrophages and autophagy is established early in their development, influencing both differentiation and mature functions. Autophagy regulates essential immune functions, such as inflammation control, pathogen clearance, and antigen presentation, linking innate and adaptive immunity. Moreover, it modulates cytokine production, ensuring a balanced inflammatory response that prevents excessive tissue damage. Autophagy also plays a critical role in macrophage polarization, influencing their shift between pro-inflammatory and anti-inflammatory states. This review explores the role of autophagy in macrophages, emphasizing its impact across various tissues and pathological conditions, and detailing the cellular and molecular mechanisms by which autophagy shapes macrophage function.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- Department of Chemical Science and Technologies, "Tor Vergata" University of Rome, Italy
| | - Alessio Reggio
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Italy
| |
Collapse
|
14
|
Thylur Puttalingaiah R, Dean MJ, Zheng L, Philbrook P, Wyczechowska D, Kayes T, Del Valle L, Danos D, Sanchez-Pino MD. Excess Potassium Promotes Autophagy to Maintain the Immunosuppressive Capacity of Myeloid-Derived Suppressor Cells Independent of Arginase 1. Cells 2024; 13:1736. [PMID: 39451254 PMCID: PMC11505641 DOI: 10.3390/cells13201736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Potassium ions (K+) are critical electrolytes that regulate multiple functions in immune cells. Recent studies have shown that the elevated concentration of extracellular potassium in the tumor interstitial fluid limits T cell effector function and suppresses the anti-tumor capacity of tumor-associated macrophages (TAMs). The effect of excess potassium on the biology of myeloid-derived suppressor cells (MDSCs), another important immune cell component of the tumor microenvironment (TME), is unknown. Here, we present data showing that increased concentrations of potassium chloride (KCl), as the source of K+ ions, facilitate autophagy by increasing the expression of the autophagosome marker LC3β. Simultaneously, excess potassium ions significantly decrease the expression of arginase I (Arg I) and inducible nitric oxide synthase (iNOS) without reducing the ability of MDSCs to suppress T cell proliferation. Further investigation reveals that excess K+ ions decrease the expression of the transcription factor C/EBP-β and alter the expression of phosphorylated kinases. While excess K+ ions downregulated the expression levels of phospho-AMPKα (pAMPKα), it increased the levels of pAKT and pERK. Additionally, potassium increased mitochondrial respiration as measured by the oxygen consumption rate (OCR). Interestingly, all these alterations induced by K+ ions were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Our results suggest that hyperosmotic stress caused by excess K+ ions regulate the mitochondrial respiration and signaling pathways in MDSCs to trigger the process of autophagy to support MDSCs' immunosuppressive function by mechanisms independent of Arg I and iNOS. Overall, our in vitro and ex vivo findings offer valuable insights into the adaptations of MDSCs within the K+ ion-rich TME, which has important implications for MDSCs-targeted therapies.
Collapse
Affiliation(s)
- Ramesh Thylur Puttalingaiah
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Matthew J. Dean
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Liqin Zheng
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Phaethon Philbrook
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Timothy Kayes
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
| | - Denise Danos
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Maria Dulfary Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (M.J.D.); (L.Z.); (P.P.); (D.W.); (T.K.); (L.D.V.); (D.D.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Jo H, Jeoung J, Shim K, Jeoung D. Nur77 Mediates Anaphylaxis by Regulating miR-21a. Curr Issues Mol Biol 2024; 46:3175-3192. [PMID: 38666929 PMCID: PMC11048962 DOI: 10.3390/cimb46040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Nur77 belongs to the NR4A subfamily of orphan nuclear hormone receptors. It has been shown to play important roles in metabolism, cancer progression, cellular differentiation, and the regulation of immune process. However, there has yet to be research reporting on the role of Nur77 in allergic inflammations such as anaphylaxis. This study aimed to identify molecules that could mediate allergic inflammations. To this end, we performed RNA sequencing analysis employing bone marrow-derived mast cells (BMMCs). Antigen (DNP-HSA) stimulation increased the expression levels of transcription factors such as Nr4a3 (NOR1), Nr4a1 (Nur77), and Nr4a2 (Nurr1). We focused our study on Nur77. Antigen stimulation increased the expression of Nur77 in a time- and dose-dependent manner in rat basophilic leukemia cells (RBL2H3). The downregulation of Nur77 prevented both antigen-induced increase in β-hexosaminidase activity as well as hallmarks of allergic reactions such as HDAC3, COX2, and MCP1 in RBL2H3 cells. Nur77 was necessary for both passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). TargetScan analysis predicted that miR-21a would be a negative regulator of Nur77. miR-21a mimic negatively regulated PCA and PSA by inhibiting the hallmarks of allergic reactions. ChIP assays showed that c-JUN could bind to the promoter sequences of Nur77. Antigen stimulation increased the expression of c-JUN in RBL2H3 cells. Altogether, our findings demonstrate the regulatory role played by Nur77-miR-21a loop in allergic inflammations such as anaphylaxis, making this the first report to present the role played by Nur77 in an allergic inflammation. Our results suggest that Nur77 and miR-21 might serve as targets for developing anti-allergy drugs.
Collapse
Affiliation(s)
| | | | | | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.); (J.J.); (K.S.)
| |
Collapse
|