1
|
McKenzie CI, Dvorscek AR, Ding Z, Robinson MJ, O'Donnell K, Pitt C, Ferguson DT, Mulder J, Herold MJ, Tarlinton DM, Quast I. Syndecans and glycosaminoglycans influence B-cell development and activation. EMBO Rep 2025; 26:2435-2458. [PMID: 40155751 PMCID: PMC12069707 DOI: 10.1038/s44319-025-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Syndecans (SDCs) are glycosaminoglycan-containing cell surface proteins with diverse functions in the immune system with SDC1 (CD138) and SDC4 expressed in B-lineage cells. Here, we show that stem cells lacking either molecule generate fewer B-cell progenitors but give rise to mature B cells in vivo. Deletion of the plasma cell "marker" CD138 has no effect on homeostatic or antigen-induced plasma cell formation. Naive B cells express high SDC4 and encounter with cognate antigen results in transient CD138 upregulation and SDC4 loss, both further modulated by IL-4, IL-21, and CD40 ligation. SDC4 is downregulated on germinal center B cells and absent on most memory B cells. Glycosaminoglycans such as those attached to SDCs, and heparin, a commonly used therapeutic, regulate survival and activation of naive B cells by limiting responsiveness to cognate antigen. Conversely, ablation of SDC4 results in increased baseline and antigen-induced B-cell activation. Collectively, our data reveal B-cell activation- and subset-dependent SDC expression and show that SDC4 and GAGs can limit antigen-induced activation to promote B-cell survival and expansion.
Collapse
Affiliation(s)
- Craig I McKenzie
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Alexandra R Dvorscek
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Daniel T Ferguson
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Marco J Herold
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
- Olivia Newton-John Cancer Research Centre, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Pérez-Pérez L, Laidlaw BJ. Polarization of the memory B-cell response. J Leukoc Biol 2025; 117:qiae228. [PMID: 39401326 PMCID: PMC11953070 DOI: 10.1093/jleuko/qiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
Memory B cells are long-lived cells that are induced following infection or vaccination. Upon antigen re-encounter, memory B cells rapidly differentiate into antibody-secreting or germinal center B cells. While memory B cells are an important component of long-term protective immunity following vaccination, they also contribute to the progression of diseases such as autoimmunity and allergy. Numerous subsets of memory B cells have been identified in mice and humans that possess important phenotypic and functional differences. Here, we review the transcriptional circuitry governing memory B-cell differentiation and function. We then summarize emerging evidence that the inflammatory environment in which memory B cells develop has an important role in shaping their phenotype and examine the pathways regulating the development of memory B cells during a type 1-skewed and type 2-skewed immune response.
Collapse
Affiliation(s)
- Lizzette Pérez-Pérez
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Gaballa JM, Valdez C, Mack DG, Minhajuddin F, Raza M, Mohammad TA, Martin AK, Getahun A, Dinarello CA, Fontenot AP, Atif SM. Interleukin-1 signaling and CD4 + T cells control B cell recruitment to the lungs in chronic beryllium disease. Front Immunol 2025; 16:1479348. [PMID: 39935485 PMCID: PMC11810750 DOI: 10.3389/fimmu.2025.1479348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Chronic beryllium disease (CBD) is a debilitating pulmonary disorder that occurs due to persistent exposure to beryllium (Be) particles in the workplace. Be-exposure causes activation of the innate immune system, resulting in the secretion of interleukins and chemokines that drive the accumulation of B and T cells in the lungs. However, the mechanisms by which innate molecules influence the recruitment of B cells and B cell-mediated protection in CBD are poorly understood. In this study, we employed multiple approaches to examine the role of innate immune signaling and CD4+ T cells in B cell recruitment and function in the lungs. We show that the absence or blocking of IL-1R1 signaling prevents the recruitment of B cells to the lungs of BeO-exposed mice. Additionally, we show that B cell recruitment to the lungs depends on the chemokine receptor, CXCR5, and CD4+ T cells. In BeO-exposed mice, lung B cells down-regulate IgM but showed an increased IgD and CD44 surface expression. Further, RNA sequencing of pulmonary tissue-specific B cells in CBD revealed distinct gene signatures compared to splenic B cells, with increased expression of pathways involved in antigen presentation, tight junction interactions, and interferon signaling. Overall, our study shows that B cell recruitment and aggregate formation during CBD depend on sequential activation of innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Mice
- Signal Transduction/immunology
- Lung/immunology
- Lung/pathology
- Lung/metabolism
- Berylliosis/immunology
- Berylliosis/metabolism
- Berylliosis/pathology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Chronic Disease
- Mice, Inbred C57BL
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Interleukin-1 Type I/immunology
- Mice, Knockout
- Receptors, CXCR5/metabolism
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- Beryllium
- Immunity, Innate
- Disease Models, Animal
Collapse
Affiliation(s)
- Joseph M. Gaballa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caley Valdez
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faiz Minhajuddin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Masoom Raza
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tabrez A. Mohammad
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Deng Y, Song L, Huang J, Zhou W, Liu Y, Lu X, Zhao H, Liu D. Astragalus polysaccharides ameliorates experimental colitis by regulating memory B cells metabolism. Chem Biol Interact 2024; 394:110969. [PMID: 38522565 DOI: 10.1016/j.cbi.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
It is well-established that the reduced Memory B cells (MBCs) play an important role in the pathogenesis of ulcerative colitis (UC), rendering them a potential therapeutic target for UC intervention. Astragalus polysaccharide (APS), a primary active constituent derived from the classic traditional Chinese medicine Astragalus membranaceus (AM), has been used for centuries in the treatment of UC in both human and animal subjects due to its renowned immunomodulatory properties. However, it is unknown whether APS can regulate MBCs to alleviate experimental colitis. In the present investigation, the murine colitis was successfully induced using dextran sulphate sodium (DSS) and subsequently treated with APS for a duration of 7 days. APS exhibited significant efficacy in reducing the disease activity index (DAI), colonic weight index, the index of colonic weight/colonic length. Furthermore, APS mitigated colonic pathological injuries, restored the colonic length, elevated the immunoglobulin A (IgA), transforming growth factor-β1 (TGF-β1) and interleukin (IL)-10 levels, while concurrently suppressing IgG, IgM, IL-6, tumor necrosis factor alpha (TNF-α) levels. Crucially, the quantities of MBCs, IgA+MBCs and forkhead box P3 (Foxp3+) MBCs were notably increased along with a concurrent decrease in IgG1+MBCs, IG2a+MBCs, IgG2b+MBCs after APS administration in colitis mice. Additionally, the Mitotracker red expressions of MBCs and their subgroups demonstrated a significantly up-regulation. Meanwhile, the transcriptomics analysis identified mitochondrial metabolism as the predominant and pivotal mechanism underlying APS-mediated mitigation of DSS-induced colitis. Key differentially expressed genes, including B-cell linker (BLNK), aldehyde dehydrogenase 1A1 (ALDH1A1), B-cell lymphoma 6 (BCL-6), B-lymphocyte-induced maturation protein 1 (Blimp-1), paired box gene 5 (PAX5), purinergic 2 × 7 receptor (P2X7R), B Cell activation factor (BAFF), B Cell activation factor receptor (BAFFR), CD40, nuclear factor kappa-B (NF-κB), IL-6 and so on were implicated in this process. These mRNA expressions were validated through quantitative polymerase chain reaction (qPCR) and immunohistochemistry. These findings revealed that APS effectively restored MBCs and their balance to ameliorate DSS-induced colitis, which was potentially realized via promoting mitochondrial metabolism to maintain MBCs activation.
Collapse
Affiliation(s)
- Yifei Deng
- Clinical Medical School, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Wen Zhou
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Yali Liu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Xiuyun Lu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China.
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
5
|
Anupam K, Laidlaw BJ. In Vivo CRISPR/Cas9-Mediated Gene Ablation in Murine B Cells. Methods Mol Biol 2024; 2826:79-91. [PMID: 39017887 PMCID: PMC11706329 DOI: 10.1007/978-1-0716-3950-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
CRISPR-Cas9 genome editing is a powerful tool for assessing the functional role of candidate genes. In vitro CRISPR/Cas9 screens have been used to rapidly assess the role of thousands of genes in the differentiation and function of immune populations. However, the physiological relevance of a gene is often dependent on signals received in the tissue microenvironment, such as exposure to growth factors, chemokines, cytokines, and cell contact-dependent signals, which may not be recapitulated in an in vitro setting. Additionally, in vitro approaches are not sufficient to induce the differentiation of all cell populations limiting the cell types that can be screened. This has posed a major barrier to understanding the genes regulating the differentiation of germinal center B cells. Here, we describe an approach to perform an in vivo Crispr-Cas9 screen to specifically ablate genes in activated B cells. Using this approach, we have been able to reveal novel transcriptional regulators of germinal center B cell differentiation following viral infection.
Collapse
Affiliation(s)
- Kumari Anupam
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J Laidlaw
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|