1
|
Pan M, Ye J, Yan Y, Chen A, Li X, Jiang X, Wang W, Meng X, Chen S, Gu Y, Shi X. Experience-dependent plasticity of multiple receptive field properties in lateral geniculate binocular neurons during the critical period. Front Cell Neurosci 2025; 19:1574505. [PMID: 40357170 PMCID: PMC12066550 DOI: 10.3389/fncel.2025.1574505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The visual thalamus serves as a critical hub for feature preprocessing in visual processing pathways. Emerging evidence demonstrates that experience-dependent plasticity can be revealed by monocular deprivation (MD) in the dorsolateral geniculate nucleus (dLGN) of the thalamus. However, whether and how this thalamic plasticity induces changes in multiple receptive field properties and the potential mechanisms remain unclear. Using in vivo electrophysiology, here we show that binocular neurons in the dLGN of 4-day MD mice starting at P28 undergo a significant ocular dominance (OD) shift during the critical period. This OD plasticity could be attributed to the potentiation of ipsilateral eye responses but not to the depression of deprived eye responses, contrasting with conventional observations in the primary visual cortex (V1). The direction and orientation selectivity of ipsilateral eye responses, but not of contralateral eye responses in these neurons, were dramatically reduced. Developmental analysis revealed pre-critical and critical period-associated changes in densities of both GABA positive neurons and GABAA receptor α1 subunit (GABRA1) positive neurons. However, early compensatory inhibition from V1 feedback in P18 MD mice maintained network stability with no changes in OD and feature selectivity. Mechanistically, pharmacological activation of GABAA receptors rescued the MD-induced OD shifts and feature selectivity impairments in critical period MD mice, operating independently of the V1 feedback. Furthermore, under different contrast levels and spatial frequencies, these critical period-associated changes in receptive field properties still indicate alterations in ipsilateral eye responses alone. Together, these findings provide novel insights into the developmental mechanisms of thalamic sensory processing, highlighting the thalamus as an active participant in experience-dependent visual plasticity rather than merely a passive relay station. The identified GABA-mediated plasticity mechanisms offer potential therapeutic targets for visual system disorders.
Collapse
Affiliation(s)
- Meng Pan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Ye
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yijing Yan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ailin Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xinyu Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xin Jiang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xin Meng
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Shujian Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xuefeng Shi
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Gil R, Valente M, Fernandes FF, Shemesh N. Evidence for a push-pull interaction between superior colliculi in monocular dynamic vision mode. Commun Biol 2025; 8:642. [PMID: 40263386 PMCID: PMC12015290 DOI: 10.1038/s42003-025-08081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Visual perception can operate in two distinct vision modes-static and dynamic-that have been associated with different neural activity regimes in the superior colliculus (SC). However, the associated pathway-wide mechanisms remain poorly understood, especially in terms of corticotectal and tectotectal feedback upon encoding the continuity illusion during the dynamic vision mode. Here, we harness functional MRI combined with rat brain lesions to investigate whole-pathway neural interactions in the dynamic vision mode. We find a push-pull mechanism embodying contralateral suppression of SC activity opposing positive ipsilateral neural activation upon monocular visual stimulation. Cortical amplification is confirmed through cortical lesions, while further lesioning the ipsilateral SC leads to a boost in the contralateral SC negative signals, suggesting a tectal origin for the push-pull interaction. These results highlight hitherto unreported frequency-dependent modulations in the tectotectal pathway and further challenge the notion that intertectal connections solely serve as reciprocal inhibitory mechanisms for avoiding visual blur during saccades.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
3
|
Broersen R, Thompson G, Thomas F, Stuart GJ. Binocular processing facilitates escape behavior through multiple pathways to the superior colliculus. Curr Biol 2025; 35:1242-1257.e9. [PMID: 39983730 DOI: 10.1016/j.cub.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
The superior colliculus (SC) is the main brain region regulating defensive behaviors to visual threats. Yet, how the SC integrates binocular visual information and to what extent binocular vision drives defensive behaviors remains unknown. Here, we show that SC neurons respond to binocular visual input with diverse synaptic and spiking responses, summating visual inputs largely sublinearly. Using pathway-specific optogenetic silencing, we find that contralateral and ipsilateral visual information is carried to binocular SC neurons through retinal, interhemispheric, and corticotectal pathways. These pathways carry binocular visual input to the SC in a layer-specific manner, with superficial layers receiving visual information through retinal input, whereas intermediate and deep layers rely on interhemispheric and corticotectal pathways. We further show that binocular vision facilitates visually evoked escape behavior. Together, our data shed light on the cellular and circuit mechanisms underlying binocular visual processing in the SC and its role in defensive behaviors to visual threats.
Collapse
Affiliation(s)
- Robin Broersen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Genevieve Thompson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Felix Thomas
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Physiology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|