1
|
Rupp B, Nagpal N, Thanasiu B, Tuck K, Herman K, Brenner DE, Colacino J, Wicha M, Nagrath S. Multiplex characterization of circulating tumor cells from ductal carcinoma in situ patients suggests early tumor dissemination. Cancer Lett 2025; 623:217703. [PMID: 40250790 PMCID: PMC12068956 DOI: 10.1016/j.canlet.2025.217703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
While ducal carcinoma in situ (DCIS) is considered to be pre-invasive, some patients will develop metastatic disease after a long disease-free interval. The prevailing dogma posits that invasive local recurrence is the source of subsequent metastasis, and thus the goal of DCIS therapy is the prevention of local recurrence. Recently, this paradigm has been called into question by the observation that some women develop metastatic disease in the absence of local recurrence or even following bilateral mastectomies, suggesting early cancer dissemination in some patients. If the presence of circulating tumor cells (CTCs) can be verified on some patients with pure DCIS, then dissemination may be occurring earlier than previously thought, suggesting that these patients might require additional monitoring or treatment. Here, we present a workflow to isolate and characterize CTCs from DCIS patients. Using a high throughput size based inertial focusing microfluidic device, the Labyrinth, we isolated and identified CTCs in 66.6 % (12/18) of DCIS patients with an average of 1.337 CTCs per five mL. Immunofluorescence staining and single cell qPCR of CTCs reveal mesenchymal characteristics of the cells that may contribute to their ability to migrate and metastasize. Preliminary targeted DNA sequencing revealed single nucleotide variations previously found in DCIS samples. Overall, this data supports the hypothesis that cancer dissemination is occurring in a subset of DCIS patients earlier than previously thought. Additionally, the molecular characterization of CTC in DCIS patients may provide important information on their biological characteristics and associated clinical behavior.
Collapse
Affiliation(s)
- Brittany Rupp
- Department of Chemical Engineering, University of Michigan, USA; BioInterfaces Institute, University of Michigan, USA
| | - Neha Nagpal
- Department of Chemical Engineering, University of Michigan, USA; BioInterfaces Institute, University of Michigan, USA
| | - Brooke Thanasiu
- Department of Chemical Engineering, University of Michigan, USA
| | - Kristen Tuck
- Rogel Cancer Center, University of Michigan, USA
| | - Kirk Herman
- Rogel Cancer Center, University of Michigan, USA
| | - Dean E Brenner
- Rogel Cancer Center, University of Michigan, USA; Department of Pharmacology, University of Michigan, USA; Department of Internal Medicine, University of Michigan, USA
| | - Justin Colacino
- Rogel Cancer Center, University of Michigan, USA; Department of Environmental Health Sciences, University of Michigan, USA
| | - Max Wicha
- Rogel Cancer Center, University of Michigan, USA; Department of Internal Medicine, University of Michigan, USA.
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, USA; BioInterfaces Institute, University of Michigan, USA; Rogel Cancer Center, University of Michigan, USA.
| |
Collapse
|
2
|
Yang J, Zhang X, Tang J, Fu X, Wu Q, Li H, Chen R, Yang J. Human malignant ovarian germ cell tumor cell lines derived from peritoneal cytology retrieving from circulating tumor cell system. Cancer Treat Res Commun 2025; 43:100934. [PMID: 40344740 DOI: 10.1016/j.ctarc.2025.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Malignant ovarian germ cell tumor (MOGCT) is a rare neoplasm predominantly affecting adolescent and young adult females. Establishing personalized permanent tumor cell lines is crucial for understanding tumor behavior and optimizing precision treatment for these patients. METHODS We developed a novel procedure for isolating and culturing human MOGCT cells from peritoneal wash cytology using the circulating cell extraction technique (Labyrinthbiotech Co. LLC, LABYRINTHCE01, China). RESULT Peripheral blood and peritoneal washings were collected from 15 patients, including those with yolk sac tumor (n = 6), dysgerminoma (n = 2), immature teratoma (n = 5), and mixed germ cell tumor (n = 2). After washing and centrifugation, samples were processed using the labyrinth technique to achieve high-purity cell cultures. The isolated tumor cells were characterized by immunofluorescence microscopy and flow cytometry. Immunohistochemical analysis enabled specific discrimination from primary peritoneal human fibroblasts. Cultures were established from peritoneal cytology with cell densities ranging from 10² to 10⁵ cells per well, with 5 samples showing over 10⁵ cell growth, 3 samples over 10⁴ cell growth, and others at 10³ cell growth. The longest cell culture has been maintained for 18 generations. Short tandem repeat (STR) analysis of cultured cells confirmed their germ cell tumor origin. Preliminary assessments of chemosensitivity in cultured cells have been found to reflect similar clinical responses in the corresponding patients. CONCLUSION The MOGCT cell lines derived from peritoneal washings using the circulating tumor cell chip represent the tumor characteristics. This method holds promise for functional studies on rare ovarian tumors and for evaluating chemo-sensitivity for potential therapeutic applications.
Collapse
Affiliation(s)
- Jie Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jie Tang
- Suzhou Labyrinth Biotech Co., Ltd, Suzhou, Jiangsu, China
| | - Xiaolei Fu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Hong Li
- Suzhou Labyrinth Biotech Co., Ltd, Suzhou, Jiangsu, China
| | - Rui Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| |
Collapse
|
3
|
Hou Y, Lin J, Yao H, Wu Z, Lin Y, Lin J. Linking Metastatic Behavior and Metabolic Heterogeneity of Circulating Tumor Cells at Single-Cell Level Using an Integrative Microfluidic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413978. [PMID: 39960842 PMCID: PMC11984876 DOI: 10.1002/advs.202413978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Indexed: 04/12/2025]
Abstract
Circulating tumor cells (CTCs) are pivotal biomarkers in tumor metastasis, however, the underlying molecular mechanism of CTCs behavioral heterogeneity during metastasis remains unexplored. Here, an integrative workflow is developed to link behavior characteristics to metabolic profiling within individual CTCs, which simulates the metastatic process on a microfluidic system and combined with single-cell mass spectrometry (MS) detection. Spheroid-derived HCT116 cells are tracked and extracted via a temporary vascular system, revealing various arrest patterns under biomimetic vascular shear flow. Downstream MS analysis characterizes 17 cellular metabolites and associates metabolic profiles with de-adhesion behaviors of the same CTCs, identifying a potential high-metastatic subpopulation with enhanced arrest ability and evaluating critical metabolites involved in metastasis pathways. Additionally, the metastasis-inhibiting effect of anti-tumor drug 5-fluorouracil by reducing high-metastatic cells in spheroids is elucidated. This approach offers a valuable opportunity to dissect the interplay of the metastatic behavior and metabolic profiles of CTCs and foster insights into the molecular mechanisms underlying behavioral phenotypes in the tumor metastasis process.
Collapse
Affiliation(s)
- Ying Hou
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| | - Jiaxu Lin
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| | - Hongren Yao
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| | - Zengnan Wu
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| | - Yongning Lin
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| | - Jin‐Ming Lin
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijing100084China
| |
Collapse
|
4
|
Wu W, Zhang Y, Tan X, Chen Y, Cao Y, Sahai V, Peterson N, Goo L, Fry S, Kathawate V, Merrill N, Qin A, Merajver SD, Nagrath S, Fan X. Antigen-independent single-cell circulating tumor cell detection using deep-learning-assisted biolasers. Biosens Bioelectron 2025; 271:116984. [PMID: 39615221 DOI: 10.1016/j.bios.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/06/2025]
Abstract
Circulating tumor cells (CTCs) in the bloodstream are important biomarkers for clinical prognosis of cancers. Current CTC identification methods are based on immuno-labeling, which depends on the differential expression of specific antigens between the cancer cells and white blood cells. Here we present an antigen-independent CTC detection method utilizing a deep-learning-assisted single-cell biolaser. Single-cell lasers were measured from nucleic-acid-stained cells inside optical cavities. A Deep Cell-Laser Classifier (DCLC) was developed to detect tumor cells from a patient CTC-derived pancreatic cell line using their unique single-cell lasing mode patterns. We further showed that the knowledge learned from one type of pancreatic cancer cell line can be transferred to detect other pancreatic cancer cell lines by the DCLC in zero-shot. A sensitivity of 94.3% and a specificity of 99.9% were achieved. Finally, enumeration was performed on CTCs obtained from pancreatic cancer patients. We further demonstrated the DCLC's ability in zero-shot generalization of enumeration on lung cancer patients' CTCs. The counting trends were consistent with those observed using conventional immunofluorescence imaging techniques. Employing our DCLC model, single-cell lasers open new avenues for both future biological studies and clinical applications, including classification of cell types and identification of rare cells.
Collapse
Affiliation(s)
- Weishu Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI, 48109, USA; Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaotian Tan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518071, PR China
| | - Yuru Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuhang Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI, 48109, USA; Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vaibhav Sahai
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicole Peterson
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura Goo
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stacy Fry
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Varun Kathawate
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan Merrill
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angel Qin
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI, 48109, USA; Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
6
|
Thomas DE, Kinskie KS, Brown KM, Flanagan LA, Davalos RV, Hyler AR. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood. MICROMACHINES 2025; 16:236. [PMID: 40047707 PMCID: PMC11857104 DOI: 10.3390/mi16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Conducting detailed cellular analysis of complex biological samples poses challenges in cell sorting and recovery for downstream analysis. Label-free microfluidics provide a promising solution for these complex applications. In this work, we investigate particle manipulation on two label-free microdevice designs using cDEP to enrich E. coli from whole human blood to mimic infection workflows. E. coli is still a growing source of bacteremia, sepsis, and other infections in modern countries, affecting millions of patients globally. The two microfluidic designs were evaluated for throughput, scaling, precision targeting, and high-viability recovery. While CytoChip D had the potential for higher throughput, given its continuous method of DEP-based sorting to accommodate larger clinical samples like a 10 mL blood draw, it could not effectively recover the bacteria. CytoChip B achieved a high-purity recovery of over 98% of bacteria from whole human blood, even in concentrations on the order of <100 CFU/mL, demonstrating the feasibility of processing and recovering ultra-low concentrations of bacteria for downstream analysis, culture, and drug testing. Future work will aim to scale CytoChip B for larger volume throughput while still achieving high bacteria recovery.
Collapse
Affiliation(s)
- Dean E. Thomas
- CytoRecovery, Inc., Blacksburg, VA 24060, USA; (D.E.T.); (K.S.K.); (K.M.B.)
| | - Kyle S. Kinskie
- CytoRecovery, Inc., Blacksburg, VA 24060, USA; (D.E.T.); (K.S.K.); (K.M.B.)
| | - Kyle M. Brown
- CytoRecovery, Inc., Blacksburg, VA 24060, USA; (D.E.T.); (K.S.K.); (K.M.B.)
| | - Lisa A. Flanagan
- Departments of Neurology, Biomedical Engineering, and Anatomy & Neurobiology, University of California Irvine, Irvine, CA 92697, USA;
| | - Rafael V. Davalos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech-Emory University, Atlanta, GA 30318, USA;
| | - Alexandra R. Hyler
- CytoRecovery, Inc., Blacksburg, VA 24060, USA; (D.E.T.); (K.S.K.); (K.M.B.)
| |
Collapse
|
7
|
Wang Z, Kelley SO. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat Biomed Eng 2025:10.1038/s41551-024-01315-2. [PMID: 39953325 DOI: 10.1038/s41551-024-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
The development and wider adoption of adoptive cell therapies is constrained by complex and costly manufacturing processes and by inconsistent efficacy across patients. Here we discuss how microfluidic and other fluidic devices can be implemented at each stage of cell manufacturing for adoptive cell therapies, from the harvesting and isolation of the cells to their editing, culturing and functional selection. We suggest that precise and controllable microfluidic systems can streamline the development of these therapies by offering scalability in cell production, bolstering the efficacy and predictability of the therapies and improving their cost-effectiveness and accessibility for broader populations of patients with cancer.
Collapse
Affiliation(s)
- Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
9
|
Guo Z, Li F, Li H, Zhao M, Liu H, Wang H, Hu H, Fu R, Lu Y, Hu S, Xie H, Ma H, Zhang S. Deep Learning-Assisted Label-Free Parallel Cell Sorting with Digital Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408353. [PMID: 39497614 PMCID: PMC11906218 DOI: 10.1002/advs.202408353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Indexed: 01/11/2025]
Abstract
Sorting specific cells from heterogeneous samples is important for research and clinical applications. In this work, a novel label-free cell sorting method is presented that integrates deep learning image recognition with microfluidic manipulation to differentiate cells based on morphology. Using an Active-Matrix Digital Microfluidics (AM-DMF) platform, the YOLOv8 object detection model ensures precise droplet classification, and the Safe Interval Path Planning algorithm manages multi-target, collision-free droplet path planning. Simulations and experiments revealed that detection model precision, concentration ratios, and sorting cycles significantly affect recovery rates and purity. With HeLa cells and polystyrene beads as samples, the method achieved 98.5% sorting precision, 96.49% purity, and an 80% recovery over three cycles. After a series of experimental validations, this method can also be used to sort HeLa cells from red blood cells, cancer cells from white blood cells (represented by HeLa and Jurkat cells), and differentiate white blood cell subtypes (represented by HL-60 cells and Jurkat cells). Cells sorted using this method can be lysed directly on chip within their hosting droplets, ensuring minimal sample loss and suitability for downstream bioanalysis. This innovative AM-DMF cell sorting technique holds significant potential to advance diagnostics, therapeutics, and fundamental research in cell biology.
Collapse
Affiliation(s)
- Zongliang Guo
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fenggang Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Menglei Zhao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haobing Liu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haopu Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Opto-Electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China
| | - Hanqi Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lu
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Opto-Electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- ACX Instruments Ltd, St John's Innovation Centre, Cambridge, CB40WS, UK
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Opto-Electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- ACX Instruments Ltd, St John's Innovation Centre, Cambridge, CB40WS, UK
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Opto-Electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
10
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
11
|
Pirrello A, Killingsworth M, Spring K, Rasko JE, Yeo D. Cancer-associated macrophage-like cells as a prognostic biomarker in solid tumors. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100275. [PMID: 40027315 PMCID: PMC11863711 DOI: 10.1016/j.jlb.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 03/05/2025]
Abstract
Cancer-associated macrophage-like cells (CAMLs) are myeloid-lineage cells associated with cancer-derived material that are detectable in the blood. In addition to circulating tumor cells, CAMLs are a promising liquid biopsy biomarker which may assist with prognostication for patient stratification and monitoring response to chemotherapy and radiotherapy in solid tumors. CAMLs have been detected in blood samples from patients with various tumors including lung, pancreas, breast, oesophageal, and colorectal cancers, and to date have not been detected in healthy individuals. However, the optimal method of detection, their origin, function in the circulation, and ultimate utility have not been fully elucidated. This review provides an overview of CAML-related studies and explores their future potential to guide clinical decision-making.
Collapse
Affiliation(s)
- Anthony Pirrello
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Precision Oncology Laboratory, Centenary Institute, Camperdown, 2050, NSW, Australia
| | - Murray Killingsworth
- Department of Anatomical Pathology, NSW Health Pathology, Liverpool, 2170, NSW, Australia
| | - Kevin Spring
- Medical Oncology Group, Liverpool Clinical School, Western Sydney University and Ingham Institute for Applied Medical Research, Liverpool, 2170, NSW, Australia
| | - John E.J. Rasko
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, NSW, Australia
| | - Dannel Yeo
- Li Ka Shing Cell and Gene Therapy Program, The University of Sydney, Camperdown, 2050, NSW, Australia
- Precision Oncology Laboratory, Centenary Institute, Camperdown, 2050, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
| |
Collapse
|
12
|
Jin P, Li H, Xie M, Tang J, Zou S, Wang R, Yu B, Chen T, Zhang J. The capture of circulating tumor cells by Labyrinth system as a tool for early stage lung cancer detection. Front Oncol 2024; 14:1474015. [PMID: 39540154 PMCID: PMC11557529 DOI: 10.3389/fonc.2024.1474015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives We focus on utilizing the Labyrinth system for the detection of circulating tumor cells (CTCs) in patients with lung nodules. Our aim is to evaluate CTCs isolated through the Labyrinth system as a biomarker for early-stage lung cancer (LC) detection. Methods 167 patients with low dose computed tomography (LDCT) diagnostic results for lung nodules and 31 healthy volunteers (HV) were enrolled. Blood samples were processed for CTC detection. LDCT positive (LDCT+) patients underwent surgery and were categorized into those with LC and those with benign lung diseases (BLD) based on their biopsy results. BLD Patients, LDCT negative (LDCT-) patients and HV served as controls. The correlation of CTC counts with LC, BLD, LDCT- and HV was investigated. Receiver operating characteristic (ROC) curves were used to assess the Labyrinth system's diagnostic potential for early-stage LC. Results Median CTC counts for LC, BLD, LDCT- and HV were 2.7 CTC/mL, 0.6 CTC/mL, 0.4 CTC/mL, 0 CTC/mL, respectively. Statistical analysis indicated CTC counts could distinguish LC from BLD, LDCT- and HV (p-Values < 0.001). Using a cut-off of 1 CTC/mL, the study showed 84.4% sensitivity and 82.4% specificity for LDCT+ patients. Specificity increased to 85.9% for patients with lung nodules and 88.2% for all participants. In conclusion, CTCs detected by the Labyrinth system can serve as a biomarker for early-stage LC detection for patients with lung nodules. Conclusions CTCs identified by the Labyrinth system are a promising biomarker for early-stage LC detection in clinical practice.
Collapse
Affiliation(s)
- Peipei Jin
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Hong Li
- Department of Research and Discovery, Suzhou Labyrinth Biotech Co., Ltd, Suzhou, China
| | - Mingran Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Tang
- Department of Research and Discovery, Suzhou Labyrinth Biotech Co., Ltd, Suzhou, China
| | - Siming Zou
- Department of Research and Discovery, Suzhou Labyrinth Biotech Co., Ltd, Suzhou, China
| | - Ruiting Wang
- Department of Research and Discovery, Suzhou Labyrinth Biotech Co., Ltd, Suzhou, China
| | - Bin Yu
- Analytical General Department, Coherus BioSciences, Camarillo, CA, United States
| | - Tao Chen
- Department of Research and Discovery, Suzhou Labyrinth Biotech Co., Ltd, Suzhou, China
| | - Ju Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| |
Collapse
|
13
|
Park C, Lim W, Song R, Han J, You D, Kim S, Lee JE, van Noort D, Mandenius CF, Lee J, Hyun KA, Jung HI, Park S. Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. Analyst 2024; 149:4496-4505. [PMID: 39049608 DOI: 10.1039/d4an00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Collapse
Affiliation(s)
- Chanyong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jeonghun Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medi-cine, Seoul 06351, Korea
| | - Danny van Noort
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Carl-Fredrik Mandenius
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
14
|
Rotatori S, Zhang Y, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Shrestha P, Pettinelli J, Wang D, Liu X, Zhao Q. Live cell pool and rare cell isolation using Enrich TROVO system. N Biotechnol 2024; 80:12-20. [PMID: 38176452 DOI: 10.1016/j.nbt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Although several technologies have been developed to isolate cells of interest from a heterogenous sample, clogging and impaired cell viability limit such isolation. We have developed the Enrich TROVO system as a novel, nonfluidic technology to sort live cells. The TROVO system combines imaging-based cell selection and photo-crosslinking of (gelatin methacrylate) gelMA-hydrogel to capture cells. After capture, cells are released by enzymatic digestion of the hydrogel and then retrieved for downstream analysis or further cell culturing. The system can capture cells with a recovery rate of 48% while maintaining 90% viability. Moreover, TROVO can enrich rare cells 506-fold with 93% efficiency using single step isolation from a 1:104 cell mixture, and can also capture one target cell from 1 million cells, reaching an enrichment ratio of 9128. In addition, 100% purity and 49% recovery rate can be achieved by a following negative isolation process. Compared to existing technologies, the TROVO system is clog-resistant, highly biocompatible, and can process a wide range of sample sizes.
Collapse
Affiliation(s)
- Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Yichong Zhang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Chi-Han Yang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Dong Wang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| |
Collapse
|
15
|
McEwen DP, Ray P, Nancarrow DJ, Wang Z, Kasturirangan S, Abdullah S, Balan A, Hoskeri R, Thomas D, Lawrence TS, Beer DG, Lagisetty KH, Ray D. ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma. JCI Insight 2024; 9:e179315. [PMID: 38781019 PMCID: PMC11383178 DOI: 10.1172/jci.insight.179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David G Beer
- Department of Surgery, Section of Thoracic Surgery
| | | | | |
Collapse
|
16
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
17
|
Pore AA, Kamyabi N, Bithi SS, Ahmmed SM, Vanapalli SA. Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells. Cell Mol Bioeng 2023; 16:443-457. [PMID: 38099214 PMCID: PMC10716102 DOI: 10.1007/s12195-023-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/10/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cell proliferation represents a major hallmark of cancer biology, and manifests itself in the assessment of tumor growth, drug resistance and metastasis. Tracking cell proliferation or cell fate at the single-cell level can reveal phenotypic heterogeneity. However, characterization of cell proliferation is typically done in bulk assays which does not inform on cells that can proliferate under given environmental perturbations. Thus, there is a need for single-cell approaches that allow longitudinal tracking of the fate of a large number of individual cells to reveal diverse phenotypes. Methods We fabricated a new microfluidic architecture for high efficiency capture of single tumor cells, with the capacity to monitor cell divisions across multiple daughter cells. This single-cell proliferation (SCP) device enabled the quantification of the fate of more than 1000 individual cancer cells longitudinally, allowing comprehensive profiling of the phenotypic heterogeneity that would be otherwise masked in standard cell proliferation assays. We characterized the efficiency of single cell capture and demonstrated the utility of the SCP device by exposing MCF-7 breast tumor cells to different doses of the chemotherapeutic agent doxorubicin. Results The single cell trapping efficiency of the SCP device was found to be ~ 85%. At the low doses of doxorubicin (0.01 µM, 0.001 µM, 0.0001 µM), we observed that 50-80% of the drug-treated cells had undergone proliferation, and less than 10% of the cells do not proliferate. Additionally, we demonstrated the potential of the SCP device in circulating tumor cell applications where minimizing target cell loss is critical. We showed selective capture of breast tumor cells from a binary mixture of cells (tumor cells and white blood cells) that was isolated from blood processing. We successfully characterized the proliferation statistics of these captured cells despite their extremely low counts in the original binary suspension. Conclusions The SCP device has significant potential for cancer research with the ability to quantify proliferation statistics of individual tumor cells, opening new avenues of investigation ranging from evaluating drug resistance of anti-cancer compounds to monitoring the replicative potential of patient-derived cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00773-z.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| | - Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: 10x Genomics, Pleasanton, CA USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: College of Engineering, West Texas A&M University, Canyon, TX USA
| | - Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: Manufacturing Integration Engineer, Intel Corporation, Hillsboro, OR USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| |
Collapse
|
18
|
Ogut MG, Ma P, Gupta R, Hoerner CR, Fan AC, El-Kaffas AN, Durmus NG. Automated Image Analysis for Characterization of Circulating Tumor Cells and Clusters Sorted by Magnetic Levitation. Adv Biol (Weinh) 2023; 7:e2300109. [PMID: 37462226 DOI: 10.1002/adbi.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Indexed: 10/24/2023]
Abstract
Magnetic levitation-based sorting technologies have revolutionized the detection and isolation of rare cells, including circulating tumor cells (CTCs) and circulating tumor cell clusters (CTCCs). Manual counting and quantification of these cells are prone to time-consuming processes, human error, and inter-observer variability, particularly challenging when heterogeneous cell types in 3D clusters are present. To overcome these challenges, we developed "Fastcount," an in-house MATLAB-based algorithm for precise, automated quantification and phenotypic characterization of CTCs and CTCCs, in both 2D and 3D. Fastcount is 120 times faster than manual counting and produces reliable results with a ±7.3% deviation compared to a trained laboratory technician. By analyzing 400 GB of fluorescence imaging data, we showed that Fastcount outperforms manual counting and commercial software when cells are aggregated in 3D or staining artifacts are present, delivering more accurate results. We further employed Fastcount for automated analysis of 3D image stacks obtained from CTCCs isolated from colorectal adenocarcinoma and renal cell carcinoma blood samples. Interestingly, we observed a highly heterogeneous spatial cellular composition within CTCCs, even among clusters from the same patient. Overall, Fastcount can be employed for various applications with lab-chip devices, such as CTC detection, CTCC analysis in 3D and cell detection in biosensors.
Collapse
Affiliation(s)
- Mehmet Giray Ogut
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- School of Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peng Ma
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rakhi Gupta
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Christian R Hoerner
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alice C Fan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ahmed Nagy El-Kaffas
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| |
Collapse
|
19
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
20
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
21
|
Zhao J, Han Z, Xu C, Li L, Pei H, Song Y, Wang Z, Tang B. Separation and single-cell analysis for free gastric cancer cells in ascites and peritoneal lavages based on microfluidic chips. EBioMedicine 2023; 90:104522. [PMID: 36933411 PMCID: PMC10034419 DOI: 10.1016/j.ebiom.2023.104522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUNDS Detecting free cancer cells from ascites and peritoneal lavages is crucial for diagnosing gastric cancer (GC). However, traditional methods are limited for early-stage diagnosis due to their low sensitivity. METHODS A label-free, rapid, and high-throughput technique was developed for separating cancer cells from ascites and peritoneal lavages using an integrated microfluidic device, taking advantage of dean flow fractionation and deterministic lateral displacement. Afterward, separated cells were analyzed using a microfluidic single-cell trapping array chip (SCTA-chip). In situ immunofluorescence for EpCAM, YAP-1, HER-2, CD45 molecular expressions, and Wright-Giemsa staining were performed for cells in SCTA-chips. At last, YAP1 and HER-2 expression in tissues was analyzed by immunohistochemistry. FINDINGS Through integrated microfluidic device, cancer cells were successfully separated from simulated peritoneal lavages containing 1/10,000 cancer cells with recovery rate of 84.8% and purity of 72.4%. Afterward, cancer cells were isolated from 12 patients' ascites samples. Cytological examinations showed cancer cells were efficiently enriched with background cells excluded. Afterwards, separated cells from ascites were analyzed by SCTA-chips, and recognized as cancer cells through EpCAM+/CD45- expression and Wright-Giemsa staining. Interestingly, 8 out of 12 ascites samples showed HER-2+ cancer cells. At last, the results through a serial expression analysis showed that YAP1 and HER-2 have discordant expression during metastasis. INTERPRETATION Microfluidic Chips developed in our study could not only rapidly detect label-free free GC cells in ascites and peritoneal lavages with high-throughput, they could also analyze ascites cancer cells at the single-cell level, improving peritoneal metastasis diagnosis and investigation of therapeutic targets. FUNDING This research was supported by National Natural Science Foundation of China (22134004, U1908207, 91859111); Natural Science Foundation of Shandong Province of China (ZR2019JQ06); Taishan Scholars Program of Shandong Province tsqn (201909077); Local Science and Technology Development Fund Guided by the Central Government (YDZX20203700002568); Applied Basic Research Program of Liaoning Province (2022020284-JH2/1013).
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
22
|
High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity. Sci Rep 2023; 13:3213. [PMID: 36828913 PMCID: PMC9958115 DOI: 10.1038/s41598-023-30275-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are scarce cancer cells that rarely spread from primary or metastatic tumors inside the patient's bloodstream. Determining the genetic characteristics of these paranormal cells provides significant data to guide cancer staging and treatment. Cell focusing using microfluidic chips has been implemented as an effective method for enriching CTCs. The distinct equilibrium positions of particles with different diameters across the microchannel width in the simulation showed that it was possible to isolate and concentrate breast cancer cells (BCCs) from WBCs at a moderate Reynolds number. Therefore we demonstrate high throughput isolation of BCCs using a passive, size-based, label-free microfluidic method based on hydrodynamic forces by an unconventional (combination of long loops and U-turn) spiral microfluidic device for isolating both CTCs and WBCs with high efficiency and purity (more than 90%) at a flow rate about 1.7 mL/min, which has a high throughput compared to similar ones. At this golden flow rate, up to 92% of CTCs were separated from the cell suspension. Its rapid processing time, simplicity, and potential ability to collect CTCs from large volumes of patient blood allow the practical use of this method in many applications.
Collapse
|
23
|
Shi J, Xu J, Yu Y, Wu C, Chen J, Li S, Ouyang Q, Yang W, Luo C. A Parallelable 3D Microfluidic Chip for Circulating‐Tumor‐Cell Capture at Ultra‐High Throughput and Wide Flow Rate Range. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Jialin Shi
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
| | - Jian Xu
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Yaojun Yu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Chengyuan Wu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Jiangnan Chen
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Shuangshuang Li
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
- Peking-Tsinghua Center for Life Sciences Peking University 5 Summer Palace Road Beijing 100817 China
| | - Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| |
Collapse
|
24
|
Gangadhar A, Sari-Sarraf H, Vanapalli SA. Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv 2023; 13:4222-4235. [PMID: 36760296 PMCID: PMC9892890 DOI: 10.1039/d2ra07972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Currently, detection of circulating tumor cells (CTCs) in cancer patient blood samples relies on immunostaining, which does not provide access to live CTCs, limiting the breadth of CTC-based applications. Here, we take the first steps to address this limitation, by demonstrating staining-free enumeration of tumor cells spiked into lysed blood samples using digital holographic microscopy (DHM), microfluidics and machine learning (ML). A 3D-printed module for laser assembly was developed to simplify the optical set up for holographic imaging of cells flowing through a sheath-based microfluidic device. Computational reconstruction of the holograms was performed to localize the cells in 3D and obtain the plane of best focus images to train deep learning models. We developed a custom-designed light-weight shallow Network dubbed s-Net and compared its performance against off-the-shelf CNN models including ResNet-50. The accuracy, sensitivity and specificity of the s-Net model was found to be higher than the off-the-shelf ML models. By applying an optimized decision threshold to mixed samples prepared in silico, the false positive rate was reduced from 1 × 10-2 to 2.77 × 10-4. Finally, the developed DHM-ML framework was successfully applied to enumerate spiked MCF-7 breast cancer cells and SkOV3 ovarian cancer cells from lysed blood samples containing white blood cells (WBCs) at concentrations typical of label-free enrichment techniques. We conclude by discussing the advances that need to be made to translate the DHM-ML approach to staining-free enumeration of actual CTCs in cancer patient blood samples.
Collapse
Affiliation(s)
- Anirudh Gangadhar
- Department of Chemical Engineering, Texas Tech University Lubbock TX 79409 USA
| | - Hamed Sari-Sarraf
- Department of Electrical and Computer Engineering, Texas Tech UniversityLubbockTX 79409USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech UniversityLubbockTX 79409USA
| |
Collapse
|
25
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
26
|
Pore AA, Bithi SS, Zeinali M, Navaid HB, Nagrath S, Layeequr Rahman R, Vanapalli SA. Phenotyping of rare circulating cells in the blood of non-metastatic breast cancer patients using microfluidic Labyrinth technology. BIOMICROFLUIDICS 2022; 16:064107. [PMID: 36536791 PMCID: PMC9759355 DOI: 10.1063/5.0129602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 05/13/2023]
Abstract
Label-free technologies for isolating rare circulating cells in breast cancer patients are widely available; however, they are mostly validated on metastatic patient blood samples. Given the need to use blood-based biomarkers to inform on disease progression and treatment decisions, it is important to validate these technologies in non-metastatic patient blood samples. In this study, we specifically focus on a recently established label-free microfluidic technology Labyrinth and assess its capabilities to phenotype a variety of rare circulating tumor cells indicative of epithelial-to-mesenchymal transition as well as cancer-associated macrophage-like (CAML) cells. We specifically chose a patient cohort that is non-metastatic and selected to undergo neoadjuvant chemotherapy to assess the performance of the Labyrinth technology. We enrolled 21 treatment naïve non-metastatic breast cancer patients of various disease stages. Our results indicate that (i) Labyrinth microfluidic technology is successfully able to isolate different phenotypes of CTCs despite the counts being low. (ii) Invasive phenotypes of CTCs such as transitioning CTCs and mesenchymal CTCs were found to be present in high numbers in stage III patients as compared to stage II patients. (iii) As the total load of CTCs increased, the mesenchymal CTCs were found to be increasing. (iv) Labyrinth was able to isolate CAMLs with the counts being higher in stage III patients as compared to stage II patients. Our study demonstrates the ability of the Labyrinth microfluidic technology to isolate rare cancer-associated cells from the blood of treatment naïve non-metastatic breast cancer patients, laying the foundation for tracking oncogenic spread and immune response in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | | | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
27
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
28
|
Cha H, Fallahi H, Dai Y, Yadav S, Hettiarachchi S, McNamee A, An H, Xiang N, Nguyen NT, Zhang J. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. LAB ON A CHIP 2022; 22:2789-2800. [PMID: 35587546 DOI: 10.1039/d2lc00197g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (i.e., straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Antony McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
29
|
Rupp B, Owen S, Ball H, Smith KJ, Gunchick V, Keller ET, Sahai V, Nagrath S. Integrated Workflow for the Label-Free Isolation and Genomic Analysis of Single Circulating Tumor Cells in Pancreatic Cancer. Int J Mol Sci 2022; 23:7852. [PMID: 35887203 PMCID: PMC9316651 DOI: 10.3390/ijms23147852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
As pancreatic cancer is the third deadliest cancer in the U.S., the ability to study genetic alterations is necessary to provide further insight into potentially targetable regions for cancer treatment. Circulating tumor cells (CTCs) represent an especially aggressive subset of cancer cells, capable of causing metastasis and progressing the disease. Here, we present the Labyrinth-DEPArray pipeline for the isolation and analysis of single CTCs. Established cell lines, patient-derived CTC cell lines and freshly isolated CTCs were recovered and sequenced to reveal single-cell copy number variations (CNVs). The resulting CNV profiles of established cell lines showed concordance with previously reported data and highlight several gains and losses of cancer-related genes such as FGFR3 and GNAS. The novel sequencing of patient-derived CTC cell lines showed gains in chromosome 8q, 10q and 17q across both CTC cell lines. The pipeline was used to process and isolate single cells from a metastatic pancreatic cancer patient revealing a gain of chromosome 1q and a loss of chromosome 5q. Overall, the Labyrinth-DEPArray pipeline offers a validated workflow combining the benefits of antigen-free CTC isolation with single cell genomic analysis.
Collapse
Affiliation(s)
- Brittany Rupp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Sarah Owen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Harrison Ball
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kaylee Judith Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (V.S.)
| | - Evan T. Keller
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (V.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Gangadhar A, Vanapalli SA. Inertial focusing of particles and cells in the microfluidic labyrinth device: Role of sharp turns. BIOMICROFLUIDICS 2022; 16:044114. [PMID: 36039114 PMCID: PMC9420047 DOI: 10.1063/5.0101582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Inertial, size-based focusing was investigated in the microfluidic labyrinth device consisting of several U-shaped turns along with circular loops. Turns are associated with tight curvature and, therefore, induce strong Dean forces for separating particles; however, systematic studies exploring this possibility do not exist. We characterized the focusing dynamics of different-sized rigid particles, cancer cells, and white blood cells over a range of fluid Reynolds numbers R e f . Streak widths of the focused particle streams at all the turns showed intermittent fluctuations that were substantial for smaller particles and at higher R e f . In contrast, cell streaks were less prone to fluctuations. Computational fluid dynamics simulations revealed the existence of strong turn-induced Dean vortices, which help explain the intermittent fluctuations seen in particle focusing. Next, we developed a measure of pairwise separability to evaluate the quality of separation between focused streams of two different particle sizes. Using this, we assessed the impact of a single sharp turn on separation. In general, the separability was found to vary significantly as particles traversed the tight-curvature U-turn. Comparing the separability at the entry and exit sections, we found that turns either improved or reduced separation between different-sized particles depending on R e f . Finally, we evaluated the separability at the downstream expansion section to quantify the performance of the labyrinth device in terms of achieving size-based enrichment of particles and cells. Overall, our results show that turns are better for cell focusing and separation given that they are more immune to curvature-driven fluctuations in comparison to rigid particles.
Collapse
Affiliation(s)
- Anirudh Gangadhar
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
31
|
Wang Z, Wang H, Lin S, Ahmed S, Angers S, Sargent EH, Kelley SO. Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. NANO LETTERS 2022; 22:4774-4783. [PMID: 35639489 DOI: 10.1021/acs.nanolett.2c01018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic cell sorting is an enabling tool for the isolation of specific cellular subpopulations for downstream applications and requires the cells to be labeled by a sufficient number of magnetic nanoparticles to leverage magnetophoresis for efficient separation. This requirement makes it challenging to target weakly expressed biomarkers. Here, we developed a new approach that selectively and efficiently amplifies the magnetic labeling on cells through sequentially connected antibodies and nanoparticles delivered to the surface or interior of the cell. Using this approach, we achieved amplification up to 100-fold for surface and intracellular markers. We also demonstrated the utility of this assay for enabling high-performance magnetic cell sorting when it is applied to the analysis of rare tumor cells for cancer diagnosis and the purification of transfected CAR T cells for immunotherapy. The data presented demonstrate a useful tool for the stratification of rare cell subpopulations.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
32
|
Zhou X, Zhang Y, Kang K, Mao Y, Yu Y, Yi Q, Wu Y. Controllable Environment Protein Corona-Disguised Immunomagnetic Beads for High-Performance Circulating Tumor Cell Enrichment. Anal Chem 2022; 94:4650-4657. [PMID: 35254814 DOI: 10.1021/acs.analchem.1c04587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enrichment performance of immunomagnetic beads (IMBs) in blood samples is usually challenging due to the ungoverned, in situ-formed protein corona, as it generally leads to negative effects, such as impeded targeting capacity and unwanted nonspecific absorption. On the contrary, a controlled protein premodification of IMBs with diverse functional environment (blood) proteins endows the composites with a new biological identity and may improve the anti-nonspecific ability, resulting in promising isolation benefits for circulating tumor cell (CTC) enrichment and downstream analyses. Specifically, fetal bovine serum and the four most abundant blood proteins, including human serum albumin, fibrinogen, immunoglobulin, and transferrin, were separately applied in this work. Conclusively, the biological properties of the applied protein corona camouflage have a great influence on the capture performance of IMBs, and certain proteins can enhance the enrichment performance to a large extent. Promisingly, human serum albumin-camouflaged IMBs (HSA-PIMBs) achieved a capture efficiency of 84.0-90.0% and significantly minimized nonspecific absorbed leukocytes to 164-264 in blood samples (0.5 mL, 25-55 model CTCs). Furthermore, HSA-PIMBs isolated 62-505 CTCs and 13-31 leukocytes from the blood samples of five cancer patients. The novel environment camouflage strategy provides a new insight into protein corona utilization and may improve the performance of targeted nanomaterials in a complex biological environment.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Yanchao Mao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, P. R. China
| |
Collapse
|
33
|
Rupp B, Ball H, Wuchu F, Nagrath D, Nagrath S. Circulating tumor cells in precision medicine: challenges and opportunities. Trends Pharmacol Sci 2022; 43:378-391. [DOI: 10.1016/j.tips.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
|
34
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
35
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
36
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
37
|
Jeon H, Kwon T, Yoon J, Han J. Engineering a deformation-free plastic spiral inertial microfluidic system for CHO cell clarification in biomanufacturing. LAB ON A CHIP 2022; 22:272-285. [PMID: 34931631 DOI: 10.1039/d1lc00995h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inertial microfluidics has enabled many impactful high throughput applications. However, devices fabricated in soft elastomer (i.e., polydimethylsiloxane (PDMS)) suffer reliability issues due to significant deformation generated by the high pressure and flow rates in inertial microfluidics. In this paper, we demonstrated deformation-free and mass-producible plastic spiral inertial microfluidic devices for high-throughput cell separation applications. The design of deformable PDMS spiral devices was translated to their plastic version by compensating for the channel deformation in the PDMS devices, analyzed by numerical simulation and confocal imaging methods. The developed plastic spiral devices showed similar performance to their original PDMS devices for blood separation and Chinese hamster ovary (CHO) cell retention. Furthermore, using a multiplexed plastic spiral unit containing 100 spirals, we successfully demonstrated ultra-high-throughput cell clarification (at a processing rate of 1 L min-1) with a high cell-clarification efficiency of ∼99% (at the cell density changing from ∼2 to ∼10 × 106 cells mL-1). Benefitting from the continuous and clogging-free separation with an industry-level throughput, the cell clarification device could be a critical breakthrough for the production of therapeutic biologics such as antibodies or vaccines, impacting biomanufacturing in general.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Taehong Kwon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Junghyo Yoon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Synergistic Analysis of Circulating Tumor Cells Reveals Prognostic Signatures in Pilot Study of Treatment-Naïve Metastatic Pancreatic Cancer Patients. Biomedicines 2022; 10:biomedicines10010146. [PMID: 35052825 PMCID: PMC8773204 DOI: 10.3390/biomedicines10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most deadly cancer types because it usually is not diagnosed until the cancer has spread throughout the body. In this study, we isolate cancer cells found in the blood of pancreatic cancer patients called circulating tumor cells (CTCs) to study their mutation and gene expression profiles. Comparing patients with better and worse survival duration revealed signatures found in these cancer cells. Characterizing these signatures may help improve patient care by using alternative treatment options. Abstract Pancreatic ductal adenocarcinoma is typically diagnosed at late stages and has one of the lowest five-year survival rates of all malignancies. In this pilot study, we identify signatures related to survival and treatment response found in circulating tumor cells (CTCs). Patients with poor survival had increased mutant KRAS expression and deregulation of connected pathways such as PI3K-AKT and MAPK signaling. Further, in a subset of these patients, expression patterns of gemcitabine resistance mechanisms were observed, even prior to initiating treatment. This work highlights the need for identifying patients with these resistance profiles and designing treatment regimens to circumvent these mechanisms.
Collapse
|
39
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
40
|
Smith KJ, Jana JA, Kaehr A, Purcell E, Opdycke T, Paoletti C, Cooling L, Thamm DH, Hayes DF, Nagrath S. Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment. LAB ON A CHIP 2021; 21:3559-3572. [PMID: 34320046 DOI: 10.1039/d1lc00546d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells shed from tumors into the blood stream. These cells can provide valuable information about their tumor of origin and direct treatment decisions to improve patient outcomes. Current technologies isolate CTCs from a limited blood volume and often require pre-processing that leads to CTC loss, making it difficult to isolate enough CTCs to perform in-depth tumor analysis. Many inertial microfluidic devices have been developed to isolate CTCs at high flow rates, but they typically require either blood dilution, pre-processing to remove red blood cells, or a sheath buffer rather than being able to isolate cells directly from whole blood. To decrease the need for pre-processing while increasing CTC yield, we developed an inertial device, the CTCKey™, to focus CTCs in whole blood at high throughput yielding a concentrated product stream enriched for CTCs. The CTCKey™ consists of two sections to create CTC enriched blood that can be further processed using any CTC isolation device to selectively isolate the CTCs. A thorough analysis was performed using the MCF7 breast cancer cell line spiked into bovine serum albumin (BSA) solutions of varying concentrations, as well as whole blood to characterize the focusing patterns of the CTCKey™. At the optimal flow rate of 2.4 mL min-1, the CTCKey™ reduces the CTC containing blood volume by 78%; the CTCs from 1 mL of blood are now in 0.22 mL of blood. The CTCKey's™ ability to concentrate CTCs from a large original blood volume to a smaller, highly concentrated volume enables a much greater blood volume to be interrogated by downstream isolation and characterization methods despite their low volume input limitations.
Collapse
Affiliation(s)
- Kaylee Judith Smith
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | | | - Anna Kaehr
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Emma Purcell
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Tyler Opdycke
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Costanza Paoletti
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas H Thamm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Hayes
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Sunitha Nagrath
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
42
|
Hyler AR, Hong D, Davalos RV, Swami NS, Schmelz EM. A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency. Electrophoresis 2021; 42:1366-1377. [PMID: 33687759 DOI: 10.1002/elps.202000324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/23/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells' native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1-2 h of exposure and subsequent culture, cells' viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells' dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.
Collapse
Affiliation(s)
| | - Daly Hong
- CytoRecovery, Inc., Blacksburg, VA, USA
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Eva M Schmelz
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.,Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
43
|
Cornejo MA, Linz TH. Harnessing Joule heating in microfluidic thermal gel electrophoresis to create reversible barriers for cell enrichment. Electrophoresis 2021; 42:1238-1246. [PMID: 33570796 PMCID: PMC8178196 DOI: 10.1002/elps.202000379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Gel electrophoresis is a ubiquitous bioanalytical technique used to characterize the components of cell lysates. However, analyses of bulk lysates sacrifice detection sensitivity because intracellular biomolecules become diluted, and the liberation of proteases and nucleases can degrade target analytes. This report describes a method to enrich cells directly within a microfluidic gel as a first step toward online measurement of trace intracellular biomolecules with minimal dilution and degradation. Thermal gels were employed as the gel matrix because they can be reversibly converted between liquid and solid phases as a function of temperature. Rather than fabricate costly heating elements into devices to control temperature-and thus the phase of the gel-Joule heating was used instead. Adjoining regions of liquid-phase and solid-phase gel were formed within microfluidic channels by selectively inducing localized Joule heat. Cells migrated through the liquid gel but could not enter the solid gel-accumulating at the liquid-solid gel boundary-whereas small molecule contaminants passed through to waste. Barriers were then liquified on-demand by removing Joule heat to collect the purified, non-lysed cells for downstream analyses. Using voltage-controlled Joule heating to regulate the phase of thermal gels is an innovative approach to facilitate in-gel cell enrichment in low-cost microfluidic devices.
Collapse
Affiliation(s)
- Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
44
|
Gao S, Chen S, Liu Y, Mao H, Lu Q. Highly Integrated Cell-Imprinted Biomimetic Interface for All-in-One Diagnosis of Heterogeneous Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19603-19612. [PMID: 33881300 DOI: 10.1021/acsami.1c00577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-cell capture and in situ analysis of circulating tumor cells (CTCs) in blood are of great significance for early cancer diagnosis, prognosis, and individualized treatment. However, designing an all-in-one platform that enables not only efficiently specific isolation of CTCs but also in situ analysis of heterogeneity and drug screening is challenging. Here, a cell-imprinted alginate hydrogel (CIAH) interface with all-in-one functions was developed for the capture, in situ analysis, and drug-response study at a single-cell level. Based on the equivalent morphology and "specific odor" left by template cells and supplemented by natural antibody, the CIAH interface exhibited outstanding performance in isolating CTCs from samples suffering from cancers. Beyond capture, the CIAH interface was also able to serve as a high-throughput platform for subpopulation analysis and drug response of heterogeneous CTCs. We demonstrated that the highly integrated multifunctional CIAH interface is a promising new tool for single-cell profiling of phenotypic heterogeneity and guiding of personalized anticancer therapy.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Kang K, Zhou X, Zhang Y, Zhu N, Li G, Yi Q, Wu Y. Cell-Released Magnetic Vesicles Capturing Metabolic Labeled Rare Circulating Tumor Cells Based on Bioorthogonal Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007796. [PMID: 33749110 DOI: 10.1002/smll.202007796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Capture of circulating tumor cells (CTCs) with high efficiency and high purity holds great value for potential clinical applications. Besides the existing problems of contamination from blood cells and plasma proteins, unknown/down-regulated expression of targeting markers (e.g., antigen, receptor, etc.) of CTCs have questioned the reliability and general applicability of current CTCs capture methodologies based on immune/aptamer-affinity. Herein, a cell-engineered strategy is designed to break down such barriers by employing the cell metabolism as the leading force to solve key problems. Generally, through an extracellular vesicle generation way, the cell-released magnetic vesicles inherited parent cellular membrane characteristics are produced, and then functionalized with dibenzoazacyclooctyne to target and isolate the metabolic labeled rare CTCs. This strategy offers good reliability and broader possibilities to capture different types of tumor cells, as proven by the capture efficiency above 84% and 82% for A549 and HepG2 cell lines as well as an extremely low detection limitation of 5 cells. Moreover, it enabled high purity enrichment of CTCs from 1 mL blood samples of tumor-bearing mice, only ≈5-757 white blood cells are non-specific caught, ignoring the potential phenotypic fluctuation associated with the cancer progression.
Collapse
Affiliation(s)
- Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Guohao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
46
|
High throughput viscoelastic particle focusing and separation in spiral microchannels. Sci Rep 2021; 11:8467. [PMID: 33875755 PMCID: PMC8055915 DOI: 10.1038/s41598-021-88047-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Passive particle manipulation using inertial and elasto-inertial microfluidics have received substantial interest in recent years and have found various applications in high throughput particle sorting and separation. For separation applications, elasto-inertial microfluidics has thus far been applied at substantial lower flow rates as compared to inertial microfluidics. In this work, we explore viscoelastic particle focusing and separation in spiral channels at two orders of magnitude higher Reynolds numbers than previously reported. We show that the balance between dominant inertial lift force, dean drag force and elastic force enables stable 3D particle focusing at dynamically high Reynolds numbers. Using a two-turn spiral, we show that particles, initially pinched towards the inner wall using an elasticity enhancer, PEO (polyethylene oxide), as sheath migrate towards the outer wall strictly based on size and can be effectively separated with high precision. As a proof of principle for high resolution particle separation, 15 µm particles were effectively separated from 10 µm particles. A separation efficiency of 98% for the 10 µm and 97% for the 15 µm particles was achieved. Furthermore, we demonstrate sheath-less, high throughput, separation using a novel integrated two-spiral device and achieved a separation efficiency of 89% for the 10 µm and 99% for the 15 µm particles at a sample flow rate of 1 mL/min—a throughput previously only reported for inertial microfluidics. We anticipate the ability to precisely control particles in 3D at extremely high flow rates will open up several applications, including the development of ultra-high throughput microflow cytometers and high-resolution separation of rare cells for point of care diagnostics.
Collapse
|
47
|
Trinidad CV, Tetlow AL, Bantis LE, Godwin AK. Reducing Ovarian Cancer Mortality Through Early Detection: Approaches Using Circulating Biomarkers. Cancer Prev Res (Phila) 2021; 13:241-252. [PMID: 32132118 DOI: 10.1158/1940-6207.capr-19-0184] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
More than two-thirds of all women diagnosed with epithelial ovarian cancer (EOC) will die from the disease (>14,000 deaths annually), a fact that has not changed considerably in the last three decades. Although the 5-year survival rates for most other solid tumors have improved steadily, ovarian cancer remains an exception, making it the deadliest of all gynecologic cancers and five times deadlier than breast cancer. When diagnosed early, treatment is more effective, with a 5-year survival rate of up to 90%. Unfortunately, most cases are not detected until after the cancer has spread, resulting in a dismal 5-year survival rate of less than 30%. Current screening methods for ovarian cancer typically use a combination of a pelvic examination, transvaginal ultrasonography, and serum cancer antigen 125 (CA125), but these have made minimal impact on improving mortality. Thus, there is a compelling unmet need to develop new molecular tools that can be used to diagnose early-stage EOC and/or assist in the clinical management of the disease after a diagnosis, given that more than 220,000 women are living with ovarian cancer in the United States and are at risk of recurrence. Here, we discuss the state of advancing liquid-based approaches for improving the early detection of ovarian cancer.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.
Collapse
Affiliation(s)
- Camille V Trinidad
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Leonidas E Bantis
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
48
|
Wu TH, Wu CH, Huang CJ, Chang YC. Anticlogging Hemofiltration Device for Mass Collection of Circulating Tumor Cells by Ligand-Free Size Selection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3399-3409. [PMID: 33689353 DOI: 10.1021/acs.langmuir.0c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.
Collapse
Affiliation(s)
- Tzu-Hsien Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Cheng-Han Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Chemical & Materials Engineering Department, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
- NCU-DSM Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Kalyan S, Torabi C, Khoo H, Sung HW, Choi SE, Wang W, Treutler B, Kim D, Hur SC. Inertial Microfluidics Enabling Clinical Research. MICROMACHINES 2021; 12:257. [PMID: 33802356 PMCID: PMC7999476 DOI: 10.3390/mi12030257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Fast and accurate interrogation of complex samples containing diseased cells or pathogens is important to make informed decisions on clinical and public health issues. Inertial microfluidics has been increasingly employed for such investigations to isolate target bioparticles from liquid samples with size and/or deformability-based manipulation. This phenomenon is especially useful for the clinic, owing to its rapid, label-free nature of target enrichment that enables further downstream assays. Inertial microfluidics leverages the principle of inertial focusing, which relies on the balance of inertial and viscous forces on particles to align them into size-dependent laminar streamlines. Several distinct microfluidic channel geometries (e.g., straight, curved, spiral, contraction-expansion array) have been optimized to achieve inertial focusing for a variety of purposes, including particle purification and enrichment, solution exchange, and particle alignment for on-chip assays. In this review, we will discuss how inertial microfluidics technology has contributed to improving accuracy of various assays to provide clinically relevant information. This comprehensive review expands upon studies examining both endogenous and exogenous targets from real-world samples, highlights notable hybrid devices with dual functions, and comments on the evolving outlook of the field.
Collapse
Affiliation(s)
- Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Corinna Torabi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Hyun Woo Sung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA;
| | - Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Wenzhao Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Benjamin Treutler
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si 17508, Korea
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
50
|
Teng T, Kamal M, Iriondo O, Amzaleg Y, Luo C, Thomas A, Lee G, Hsu CJ, Nguyen JD, Kang I, Hicks J, Smith A, Sposto R, Yu M. N-Acetyl-L-cysteine Promotes Ex Vivo Growth and Expansion of Single Circulating Tumor Cells by Mitigating Cellular Stress Responses. Mol Cancer Res 2020; 19:441-450. [PMID: 33303691 DOI: 10.1158/1541-7786.mcr-20-0482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells (CTC) can be isolated via a minimally invasive blood draw and are considered a "liquid biopsy" of their originating solid tumors. CTCs contain a small subset of metastatic precursors that can form metastases in secondary organs and provide a resource to identify mechanisms underlying metastasis-initiating properties. Despite technological advancements that allow for highly sensitive approaches of detection and isolation, CTCs are very rare and often present as single cells, posing an extreme challenge for ex vivo expansion after isolation. Here, using previously established patient-derived CTC lines, we performed a small-molecule drug screen to identify compounds that can improve ex vivo culture efficiency for single CTCs. We found that N-acetyl-L-cysteine (NAC) and other antioxidants can promote ex vivo expansion of single CTCs, by reducing oxidative and other stress particularly at the initial stage of single-cell expansion. RNA-seq analysis of growing clones and nongrowing clones confirmed the effect by NAC, but also indicates that NAC-induced decrease in oxidative stress is insufficient for promoting proliferation of a subset of cells with predominant senescent features. Despite the challenge in expanding all CTCs, NAC treatment led to establishment of single CTC clones that have similar tumorigenic features. IMPLICATIONS: Through a small molecule screen and validation study, we found that NAC could improve the success of ex vivo expansion of single CTCs by mitigating the initial stress, with the potential to facilitate the investigation of functional heterogeneity in CTCs.
Collapse
Affiliation(s)
- Teng Teng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Second XiangYa Hospital of Central South University, XiangYa School of Medicine, Central South University, ChangSha, HuNan, China
| | - Mohamed Kamal
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Zoology, Faculty of Science, University of Benha, Benha, Egypt
| | - Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of the University of Southern California, Los Angeles, California
| | - Chunqiao Luo
- Biostatistics Core, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ching-Ju Hsu
- Bridge Institute, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - John D Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Irene Kang
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - James Hicks
- Bridge Institute, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Andrew Smith
- Department of Molecular and Computational Biology, USC David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Richard Sposto
- Biostatistics Core, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California. .,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|