1
|
Abdallah KS. Uncovering mRNA sequences that control translation initiation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00862-z. [PMID: 40399646 DOI: 10.1038/s41580-025-00862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Affiliation(s)
- Kyrillos S Abdallah
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025; 60:1498-1515.e8. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Meguerditchian C, Baux D, Ludwig T, Genin E, Trégouët DA, Soukarieh O. Enhancing the annotation of small ORF-altering variants using MORFEE: introducing MORFEEdb, a comprehensive catalog of SNVs affecting upstream ORFs in human 5'UTRs. NAR Genom Bioinform 2025; 7:lqaf017. [PMID: 40109352 PMCID: PMC11920869 DOI: 10.1093/nargab/lqaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Non-canonical small open reading frames (sORFs) are among the main regulators of gene expression. The most studied of these are upstream ORFs (upORFs) located in the 5'-untranslated region (UTR) of coding genes. Internal ORFs (intORFs) in the coding sequence and downstream ORFs (dORFs) in the 3'UTR have received less attention. Different bioinformatics tools permit the prediction of single nucleotide variants (SNVs) altering upORFs, mainly those creating AUGs or deleting stop codons, but no tool predicts variants altering non-canonical translation initiation sites and those altering intORFs or dORFs. We propose an upgrade of our MORFEE bioinformatics tool to identify SNVs that may alter all types of sORFs in coding transcripts from a VCF file. Moreover, we generate an exhaustive catalog, named MORFEEdb, reporting all possible SNVs altering existing upORFs or creating new ones in human transcripts, and provide an R script for visualizing the results. MORFEEdb has been implemented in the public platform Mobidetails. Finally, the annotation of ClinVar variants with MORFEE reveals that > 45% of UTR-SNVs can alter upORFs or dORFs. In conclusion, MORFEE and MORFEEdb have the potential to improve the molecular diagnosis of rare human diseases and to facilitate the identification of functional variants from genome-wide association studies of complex traits.
Collapse
Affiliation(s)
- Caroline Meguerditchian
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, F-3000 Bordeaux, France
| | - David Baux
- Molecular Genetics Laboratory, Université de Montpellier, CHU Montpellier, F-34000 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), Université de Montpellier, Inserm, F-34000 Montpellier, France
- Montpellier BioInformatique pour le Diagnostic Clinique (MOBIDIC), CHU Montpellier, F-34000 Montpellier, France
| | - Thomas E Ludwig
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| | - Emmanuelle Genin
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| | - David-Alexandre Trégouët
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, F-3000 Bordeaux, France
| | - Omar Soukarieh
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, F-3000 Bordeaux, France
- Université de Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, F-33600 Pessac, France
| |
Collapse
|
4
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
5
|
Koubek J, Kaur J, Bhandarkar S, Lewis CJT, Niederer RO, Stanciu A, Aitken CE, Gilbert WV. Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA (NEW YORK, N.Y.) 2025; 31:193-207. [PMID: 39626887 PMCID: PMC11789482 DOI: 10.1261/rna.080310.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Translation initiation is a highly regulated process that broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here, we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5'-untranslated regions (5' UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5' UTRs from 4252 genes, we demonstrate that eIF3 binds specifically to a subset of 5' UTRs that contain a short unstructured binding motif, AMAYAA. eIF3-binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancers and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.
Collapse
Affiliation(s)
- Jiří Koubek
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jaswinder Kaur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shivani Bhandarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andrei Stanciu
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Lewis CJT, Xie LH, Bhandarkar SM, Jin D, Abdallah K, Draycott AS, Chen Y, Thoreen CC, Gilbert WV. Quantitative profiling of human translation initiation reveals elements that potently regulate endogenous and therapeutically modified mRNAs. Mol Cell 2025; 85:445-459.e5. [PMID: 39706187 PMCID: PMC11780321 DOI: 10.1016/j.molcel.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions (UTRs) including alternative isoforms and identify sequences that mediate 200-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissecting mechanisms of human translation initiation and engineering more potent therapeutic mRNAs.
Collapse
Affiliation(s)
- Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Li H Xie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Danni Jin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Kyrillos Abdallah
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Austin S Draycott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Yixuan Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Wakabayashi H, Zhu M, Grayhack EJ, Mathews DH, Ermolenko DN. 40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630811. [PMID: 39803544 PMCID: PMC11722282 DOI: 10.1101/2024.12.30.630811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in Saccharomyces cerevisiae cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis. These observations indicate that mRNA scanning is not rate limiting in yeast cells. Conversely, the presence of secondary structures in the 5' UTR strongly inhibits translation. Loss-of-function mutations in translational RNA helicases eIF4A and Ded1, as well as mutations in other initiation factors implicated in mRNA scanning, namely eIF4G, eIF4B, eIF3g and eIF3i, produced a similar decrease in translation of GFP reporters with short and long unstructured 5' UTRs. As expected, mutations in Ded1, eIF4B and eIF3i severely diminished translation of the reporters with structured 5' UTRs. Evidently, while RNA helicases eIF4A and Ded1 facilitate 40S recruitment and secondary structure unwinding, they are not rate-limiting for the 40S movement along the 5' UTR. Hence, our data indicate that, instead of helicase-driven translocation, one-dimensional diffusion predominately drives mRNA scanning by the 40S subunits in yeast cells.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Strayer EC, Krishna S, Lee H, Vejnar C, Neuenkirchen N, Gupta A, Beaudoin JD, Giraldez AJ. NaP-TRAP reveals the regulatory grammar in 5'UTR-mediated translation regulation during zebrafish development. Nat Commun 2024; 15:10898. [PMID: 39738051 PMCID: PMC11685710 DOI: 10.1038/s41467-024-55274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP). NaP-TRAP measures translation in a frame-specific manner through the immunocapture of epitope tagged nascent peptides of reporter mRNAs. We benchmark NaP-TRAP to polysome profiling and use it to quantify Kozak strength and the regulatory landscapes of 5' UTRs in the developing zebrafish embryo and in human cells. Through this approach we identified general and developmentally dynamic cis-regulatory elements, as well as potential trans-acting proteins. We find that U-rich motifs are general enhancers, and upstream ORFs and GC-rich motifs are global repressors of translation. We also observe a translational switch during the maternal-to-zygotic transition, where C-rich motifs shift from repressors to prominent activators of translation. Conversely, we show that microRNA sites in the 5' UTR repress translation following the zygotic expression of miR-430. Together these results demonstrate that NaP-TRAP is a versatile, accessible, and powerful method to decode the regulatory functions of UTRs across different systems.
Collapse
Affiliation(s)
- Ethan C Strayer
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Srikar Krishna
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Haejeong Lee
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Amit Gupta
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
- Yale Stem Cell Center, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
| |
Collapse
|
9
|
Gehrke L, Gonçalves VDR, Andrae D, Rasko T, Ho P, Einsele H, Hudecek M, Friedel SR. Current Non-Viral-Based Strategies to Manufacture CAR-T Cells. Int J Mol Sci 2024; 25:13685. [PMID: 39769449 PMCID: PMC11728233 DOI: 10.3390/ijms252413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications.
Collapse
Affiliation(s)
- Leon Gehrke
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Vasco Dos Reis Gonçalves
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Dominik Andrae
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamas Rasko
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Patrick Ho
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, 97070 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Luna-Cerralbo D, Blasco-Machín I, Adame-Pérez S, Lampaya V, Larraga A, Alejo T, Martínez-Oliván J, Broset E, Bruscolini P. A statistical-physics approach for codon usage optimisation. Comput Struct Biotechnol J 2024; 23:3050-3064. [PMID: 39188969 PMCID: PMC11345917 DOI: 10.1016/j.csbj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
The concept of "codon optimisation" involves adjusting the coding sequence of a target protein to account for the inherent codon preferences of a host species and maximise protein expression in that species. However, there is still a lack of consensus on the most effective approach to achieve optimal results. Existing methods typically depend on heuristic combinations of different variables, leaving the user with the final choice of the sequence hit. In this study, we propose a new statistical-physics model for codon optimisation. This model, called the Nearest-Neighbour interaction (NN) model, links the probability of any given codon sequence to the "interactions" between neighbouring codons. We used the model to design codon sequences for different proteins of interest, and we compared our sequences with the predictions of some commercial tools. In order to assess the importance of the pair interactions, we additionally compared the NN model with a simpler method (Ind) that disregards interactions. It was observed that the NN method yielded similar Codon Adaptation Index (CAI) values to those obtained by other commercial algorithms, despite the fact that CAI was not explicitly considered in the algorithm. By utilising both the NN and Ind methods to optimise the reporter protein luciferase, and then analysing the translation performance in human cell lines and in a mouse model, we found that the NN approach yielded the highest protein expression in vivo. Consequently, we propose that the NN model may prove advantageous in biotechnological applications, such as heterologous protein expression or mRNA-based therapies.
Collapse
Affiliation(s)
- David Luna-Cerralbo
- Department of Theoretical Physics, Faculty of Science, University of Zaragoza, c/ Pedro Cerbuna s/n, Zaragoza, 50009, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, c/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| | - Irene Blasco-Machín
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Susana Adame-Pérez
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Verónica Lampaya
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Ana Larraga
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Teresa Alejo
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Juan Martínez-Oliván
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Esther Broset
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Pierpaolo Bruscolini
- Department of Theoretical Physics, Faculty of Science, University of Zaragoza, c/ Pedro Cerbuna s/n, Zaragoza, 50009, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, c/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| |
Collapse
|
11
|
Cheng Z, Islam S, Kanlong JG, Sheppard M, Seo H, Nikolaitchik OA, Kearse MG, Pathak VK, Musier-Forsyth K, Hu WS. Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure. J Virol 2024; 98:e0116024. [PMID: 39315813 PMCID: PMC11494990 DOI: 10.1128/jvi.01160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
HIV-1 must generate infectious virions to spread to new hosts and HIV-1 unspliced RNA (HIV-1 RNA) plays two central roles in this process. HIV-1 RNA serves as an mRNA that is translated to generate proteins essential for particle production and replication, and it is packaged into particles as the viral genome. HIV-1 uses several transcription start sites to generate multiple RNAs that differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. The virus relies on host machinery to translate its RNAs in a cap-dependent manner. Here, we demonstrate that the 5' context of HIV-1 RNA affects the efficiency of translation both in vitro and in cells. Although both RNAs are competent for translation, 3G RNA is translated more efficiently than 1G RNA. The 5' untranslated region (UTR) of 1G and 3G RNAs has previously been shown to fold into distinct structural ensembles. We show that HIV-1 mutants in which the 5' UTR of 1G and 3G RNAs fold into similar structures were translated at similar efficiencies. Thus, the host machinery translates two 99.9% identical HIV-1 RNAs with different efficiencies, and the translation efficiency is regulated by the 5' UTR structure.IMPORTANCEHIV-1 unspliced RNA contains all the viral genetic information and encodes virion structural proteins and enzymes. Thus, the unspliced RNA serves distinct roles as viral genome and translation template, both critical for viral replication. HIV-1 generates two major unspliced RNAs with a 2-nt difference at the 5' end (3G RNA and 1G RNA). The 1G transcript is known to be preferentially packaged over the 3G transcript. Here, we showed that 3G RNA is favorably translated over 1G RNA based on its 5' untranslated region (UTR) RNA structure. In HIV-1 mutants in which the two major transcripts have similar 5' UTR structures, 1G and 3G RNAs are translated similarly. Therefore, HIV-1 generates two 9-kb RNAs with a 2-nt difference, each serving a distinct role dictated by differential 5' UTR structures.
Collapse
Affiliation(s)
- Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Joseph G. Kanlong
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Madeline Sheppard
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Heewon Seo
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
12
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Mangkalaphiban K, Ganesan R, Jacobson A. Pleiotropic effects of PAB1 deletion: Extensive changes in the yeast proteome, transcriptome, and translatome. PLoS Genet 2024; 20:e1011392. [PMID: 39236083 PMCID: PMC11407637 DOI: 10.1371/journal.pgen.1011392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand both the direct and indirect roles of PABPC in more detail, we have employed mass spectrometry to assess the abundance of the components of the yeast proteome, as well as RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, in cells lacking the PAB1 gene. We find that pab1Δ cells manifest drastic changes in the proteome and transcriptome, as well as defects in translation initiation and termination. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination. Collectively, our results indicate that, unlike the loss of simpler regulatory proteins, elimination of cellular Pab1 is profoundly pleiotropic and disruptive to numerous aspects of post-transcriptional regulation.
Collapse
Affiliation(s)
- Kotchaphorn Mangkalaphiban
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Robin Ganesan
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Allan Jacobson
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
14
|
Schlusser N, González A, Pandey M, Zavolan M. Current limitations in predicting mRNA translation with deep learning models. Genome Biol 2024; 25:227. [PMID: 39164757 PMCID: PMC11337900 DOI: 10.1186/s13059-024-03369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of protein synthesis depends on the 5' untranslated region (5'UTR) of the mRNAs, and recently, deep learning models were proposed to predict the translation output of mRNAs from the 5'UTR sequence. At the same time, large data sets of endogenous and reporter mRNA translation have become available. RESULTS In this study, we use complementary data obtained in two different cell types to assess the accuracy and generality of currently available models for predicting translational output. We find that while performing well on the data sets on which they were trained, deep learning models do not generalize well to other data sets, in particular of endogenous mRNAs, which differ in many properties from reporter constructs. CONCLUSIONS These differences limit the ability of deep learning models to uncover mechanisms of translation control and to predict the impact of genetic variation. We suggest directions that combine high-throughput measurements and machine learning to unravel mechanisms of translation control and improve construct design.
Collapse
Affiliation(s)
- Niels Schlusser
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Asier González
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Muskan Pandey
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
- Current address: Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
15
|
Zhao G, Liu Z, Quan J, Lu J, Li L, Pan Y. Ribosome Profiling and RNA Sequencing Reveal Translation and Transcription Regulation under Acute Heat Stress in Rainbow Trout ( Oncorhynchus mykiss, Walbaum, 1792) Liver. Int J Mol Sci 2024; 25:8848. [PMID: 39201531 PMCID: PMC11354268 DOI: 10.3390/ijms25168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) is an important economic cold-water fish that is susceptible to heat stress. To date, the heat stress response in rainbow trout is more widely understood at the transcriptional level, while little research has been conducted at the translational level. To reveal the translational regulation of heat stress in rainbow trout, in this study, we performed a ribosome profiling assay of rainbow trout liver under normal and heat stress conditions. Comparative analysis of the RNA-seq data with the ribosome profiling data showed that the folding changes in gene expression at the transcriptional level are moderately correlated with those at the translational level. In total, 1213 genes were significantly altered at the translational level. However, only 32.8% of the genes were common between both levels, demonstrating that heat stress is coordinated across both transcriptional and translational levels. Moreover, 809 genes exhibited significant differences in translational efficiency (TE), with the TE of these genes being considerably affected by factors such as the GC content, coding sequence length, and upstream open reading frame (uORF) presence. In addition, 3468 potential uORFs in 2676 genes were identified, which can potentially affect the TE of the main open reading frames. In this study, Ribo-seq and RNA-seq were used for the first time to elucidate the coordinated regulation of transcription and translation in rainbow trout under heat stress. These findings are expected to contribute novel data and theoretical insights to the international literature on the thermal stress response in fish.
Collapse
Affiliation(s)
| | - Zhe Liu
- Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.Q.); (J.L.); (L.L.); (Y.P.)
| | | | | | | | | |
Collapse
|
16
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
17
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. eLife 2024; 13:RP93255. [PMID: 38573742 PMCID: PMC10994665 DOI: 10.7554/elife.93255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
20
|
Lewis CJT, Xie L, Bhandarkar S, Jin D, Abdallah KS, Draycott AS, Chen Y, Thoreen CC, Gilbert WV. Quantitative profiling of human translation initiation reveals regulatory elements that potently affect endogenous and therapeutically modified mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582532. [PMID: 38463950 PMCID: PMC10925289 DOI: 10.1101/2024.02.28.582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions and identify sequences that mediate 250-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissect mechanisms of human translation initiation and engineer more potent therapeutic mRNAs. Highlights Measurement of >30,000 human 5' UTRs reveals a 250-fold range of translation outputSystematic mutagenesis demonstrates the causality of short (3-6nt) regulatory elementsN1-methylpseudouridine alters translation initiation in a sequence-specific mannerOptimal modified 5' UTRs outperform those in the current class of mRNA vaccines.
Collapse
|
21
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
22
|
Hernández G, García A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M, Moreno-Hagelsieb G, Montiel-Dávalos A, Lasko P, Sonenberg N. Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes. Nucleic Acids Res 2024; 52:1064-1079. [PMID: 38038264 PMCID: PMC10853783 DOI: 10.1093/nar/gkad1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University. 75 University Ave. W, Waterloo, ON N2L 3C5, Canada
| | - Angélica Montiel-Dávalos
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University. Montreal, QC H3G 0B1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| |
Collapse
|
23
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562452. [PMID: 37986768 PMCID: PMC10659408 DOI: 10.1101/2023.10.16.562452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S pre-initiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
24
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
25
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Focht CM, Hiller DA, Grunseich SG, Strobel SA. Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity. RNA (NEW YORK, N.Y.) 2023; 29:1126-1139. [PMID: 37130702 PMCID: PMC10351892 DOI: 10.1261/rna.079560.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Riboswitches function as important translational regulators in bacteria. Comprehensive mutational analysis of transcriptional riboswitches has been used to probe the energetic intricacies of interplay between the aptamer and expression platform, but translational riboswitches have been inaccessible to massively parallel techniques. The guanidine-II (gdm-II) riboswitch is an exclusively translational class. We have integrated RelE cleavage with next-generation sequencing to quantify ligand-dependent changes in translation initiation for all single and double mutations of the Pseudomonas aeruginosa gdm-II riboswitch, a total of more than 23,000 variants. This extensive mutational analysis is consistent with the prominent features of the bioinformatic consensus. These data indicate, unexpectedly, that direct sequestration of the Shine-Dalgarno sequence is dispensable for riboswitch function. Additionally, this comprehensive data set reveals important positions not identified in previous computational and crystallographic studies. Mutations in the variable linker region stabilize alternate conformations. The double mutant data reveal the functional importance of the previously modeled P0b helix formed by the 5' and 3' tails that serves as the basis for translational control. Additional mutations to GU wobble base pairs in both P1 and P2 reveal how the apparent cooperativity of the system involves an intricate network of communication between the two binding sites. This comprehensive examination of a translational riboswitch's expression platform illuminates how the riboswitch is precisely tuned and tunable with regard to ligand sensitivity, the amplitude of expression between ON and OFF states, and the cooperativity of ligand binding.
Collapse
Affiliation(s)
- Caroline M Focht
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - David A Hiller
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - Sabrina G Grunseich
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Scott A Strobel
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
29
|
Guo LT, Pyle AM. RT-based Sanger sequencing of RNAs containing complex RNA repetitive elements. Methods Enzymol 2023; 691:17-27. [PMID: 37914445 DOI: 10.1016/bs.mie.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Although next-generation sequencing (NGS) technologies have revolutionized our ability to sequence DNA with high-throughput, the chain termination-based Sanger sequencing method remains a widely used approach for DNA sequence analysis due to its simplicity, low cost and high accuracy. In particular, high accuracy makes Sanger sequencing the "gold standard" for sequence validation in basic research and clinical applications. During the early days of Sanger sequencing development, reverse transcriptase (RT)-based RNA sequencing was also explored and showed great promise, but the approach did not acquire popularity over time due to the limited processivity and low template unwinding capability of Avian Myeloblastosis Virus (AMV) RT, and other RT enzymes available at the time. RNA molecules have complex features, often containing repetitive sequences and stable secondary or tertiary structures. While these features are required for RNA biological function, they represent strong obstacles for retroviral RTs. Repetitive sequences and stable structures cause reverse transcription errors and premature primer extension stops, making chain termination-based methods unfeasible. MarathonRT is an ultra-processive RT encoded group II intron that can copy RNA molecules of any sequence and structure in a single cycle, making it an ideal RT enzyme for Sanger RNA sequencing. In this chapter, we upgrade the Sanger RNA sequencing method by replacing AMV RT with MarathonRT, providing a simple, robust method for direct RNA sequence analysis. The guidance for troubleshooting and further optimization are also provided.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
30
|
Abstract
Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA;
| | - Sigrid Nachtergaele
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
31
|
Mangkalaphiban K, Ganesan R, Jacobson A. Direct and indirect consequences of PAB1 deletion in the regulation of translation initiation, translation termination, and mRNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543082. [PMID: 37398227 PMCID: PMC10312514 DOI: 10.1101/2023.05.31.543082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand these roles of PABPC in more detail for endogenous mRNAs, and to distinguish its direct effects from indirect effects, we have employed RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, as well as mass spectrometry to assess the abundance of the components of the yeast proteome, in cells lacking the PAB1 gene. We observed drastic changes in the transcriptome and proteome, as well as defects in translation initiation and termination, in pab1Δ cells. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination, but this defect may be a direct effect of the loss of Pab1 as it could not be attributed to significant reductions in the levels of release factors.
Collapse
Affiliation(s)
- Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
32
|
Draper JM, Philipp J, Neeb ZT, Thomas R, Katzman S, Salama S, Haussler D, Sanford J. Isoform-specific translational control is evolutionarily conserved in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537863. [PMID: 37131629 PMCID: PMC10153275 DOI: 10.1101/2023.04.21.537863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Alternative splicing (AS) alters messenger RNA (mRNA) coding capacity, localization, stability, and translation. Here we use comparative transcriptomics to identify cis-acting elements coupling AS to translational control (AS-TC). We sequenced total cytosolic and polyribosome-associated mRNA from human, chimpanzee, and orangutan induced pluripotent stem cells (iPSCs), revealing thousands of transcripts with splicing differences between subcellular fractions. We found both conserved and species-specific polyribosome association patterns for orthologous splicing events. Intriguingly, alternative exons with similar polyribosome profiles between species have stronger sequence conservation than exons with lineage-specific ribosome association. These data suggest that sequence variation underlies differences in the polyribosome association. Accordingly, single nucleotide substitutions in luciferase reporters designed to model exons with divergent polyribosome profiles are sufficient to regulate translational efficiency. We used position specific weight matrices to interpret exons with species-specific polyribosome association profiles, finding that polymorphic sites frequently alter recognition motifs for trans-acting RNA binding proteins. Together, our results show that AS can regulate translation by remodeling the cis-regulatory landscape of mRNA isoforms.
Collapse
|
33
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
34
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
35
|
Lewis CJT, Niederer RO, Neupane R, Gilbert WV. Optimized protocol for quantifying 5' UTR-mediated translation initiation in S. cerevisiae using direct analysis of ribosome targeting. STAR Protoc 2022; 3:101862. [PMID: 36595943 PMCID: PMC9678775 DOI: 10.1016/j.xpro.2022.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Direct analysis of ribosome targeting (DART) allows investigators to measure the translation initiation potential of thousands of RNAs in parallel. Here, we describe an optimized protocol for generating active translation extract from S. cerevisiae, followed by in vitro translation, purification of ribosome-bound RNAs, and subsequent library preparation and sequencing. This protocol can be applied to a variety of cell types and will enable high-throughput interrogation of translational determinants. For complete details on the use and execution of this protocol, please refer to Niederer et al. (2022).1.
Collapse
Affiliation(s)
- Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rachel O Niederer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ritam Neupane
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Zhang X, Zeng Y. Relative specificity as an important consideration in the big data era. Front Genet 2022; 13:1030415. [DOI: 10.3389/fgene.2022.1030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Technological breakthroughs such as high-throughput methods, genomics, single-cell studies, and machine learning have fundamentally transformed research and ushered in the big data era of biology. Nevertheless, current data collections, analyses, and modeling frequently overlook relative specificity, a crucial property of molecular interactions in biochemical systems. Relative specificity describes how, for example, an enzyme reacts with its many substrates at different rates, and how this discriminatory action alone is sufficient to modulate the substrates and downstream events. As a corollary, it is not only important to comprehensively identify an enzyme’s substrates, but also critical to quantitatively determine how the enzyme interacts with the substrates and to evaluate how it shapes subsequent biological outcomes. Genomics and high-throughput techniques have greatly facilitated the studies of relative specificity in the 21st century, and its functional significance has been demonstrated in complex biochemical systems including transcription, translation, protein kinases, RNA-binding proteins, and animal microRNAs (miRNAs), although it remains ignored in most work. Here we analyze recent findings in big data and relative specificity studies and explain how the incorporation of relative specificity concept might enhance our mechanistic understanding of gene functions, biological phenomena, and human diseases.
Collapse
|
37
|
Focht CM, Strobel SA. Efficient quantitative monitoring of translational initiation by RelE cleavage. Nucleic Acids Res 2022; 50:e105. [PMID: 35871288 PMCID: PMC9561414 DOI: 10.1093/nar/gkac614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The sequences of the 5′ untranslated regions (5′-UTRs) of mRNA alter gene expression across domains of life. Transcriptional modulators can be easily assayed through transcription termination, but translational regulators often require indirect, laborious methods. We have leveraged RelE’s ribosome-dependent endonuclease activity to develop a quantitative assay to monitor translation initiation of cis-regulatory mRNAs. RelE cleavage accurately reports ligand-dependent changes in ribosome association for two translational riboswitches and provides quantitative information about each switch's sensitivity and range of response. RelE accurately reads out sequence-driven changes in riboswitch specificity and function and is quantitatively dependent upon ligand concentration. RelE cleavage similarly captures differences in translation initiation between yeast 5′-UTR isoforms. RelE cleavage can thus reveal a plethora of information about translation initiation in different domains of life.
Collapse
Affiliation(s)
- Caroline M Focht
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven , CT 06510 , USA
- Institute of Biomolecular Design and Discovery , West Haven , CT 06516 , USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven , CT 06510 , USA
- Institute of Biomolecular Design and Discovery , West Haven , CT 06516 , USA
- Department of Chemistry, Yale University , New Haven , CT 06511 , USA
| |
Collapse
|