1
|
Bertolotti P, Gallinardi F, Ghidoli M, Bertarelli C, Lanzani G, Paternò GM. Photocontrol of bacterial membrane potential regulates antibiotic persistence in B. subtilis. EUROPEAN PHYSICAL JOURNAL PLUS 2025; 140:336. [PMID: 40291950 PMCID: PMC12021945 DOI: 10.1140/epjp/s13360-025-06263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when Bacillus subtilis is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Pietro Bertolotti
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Federico Gallinardi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Biotechnology and Bioscience, Università di Milano – Bicocca, Building U3 – BIOS, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marta Ghidoli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
2
|
de la Viuda V, Buceta J, Grobas I. Physical communication pathways in bacteria: an extra layer to quorum sensing. Biophys Rev 2025; 17:667-685. [PMID: 40376406 PMCID: PMC12075086 DOI: 10.1007/s12551-025-01290-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025] Open
Abstract
Bacterial communication is essential for survival, adaptation, and collective behavior. While chemical signaling, such as quorum sensing, has been extensively studied, physical cues play a significant role in bacterial interactions. This review explores the diverse range of physical stimuli, including mechanical forces, electromagnetic fields, temperature, acoustic vibrations, and light that bacteria may experience with their environment and within a community. By integrating these diverse communication pathways, bacteria can coordinate their activities and adapt to changing environmental conditions. Furthermore, we discuss how these physical stimuli modulate bacterial growth, lifestyle, motility, and biofilm formation. By understanding the underlying mechanisms, we can develop innovative strategies to combat bacterial infections and optimize industrial processes.
Collapse
Affiliation(s)
- Virgilio de la Viuda
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Javier Buceta
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Iago Grobas
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| |
Collapse
|
3
|
Asefifeyzabadi N, Nguyen T, Li H, Zhu K, Yang HY, Baniya P, Medina Lopez A, Gallegos A, Hsieh HC, Dechiraju H, Hernandez C, Schorger K, Recendez C, Tebyani M, Selberg J, Luo L, Muzzy E, Hsieh C, Barbee A, Orozco J, Alhamo MA, Levin M, Aslankoohi E, Gomez M, Zhao M, Teodorescu M, Isseroff RR, Rolandi M. A pro-reparative bioelectronic device for controlled delivery of ions and biomolecules. Wound Repair Regen 2024; 32:709-719. [PMID: 38794912 DOI: 10.1111/wrr.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kan Zhu
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andrea Medina Lopez
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cristian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kaelan Schorger
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Recendez
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Le Luo
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Elana Muzzy
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, California, Santa Cruz, USA
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Economics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Moyasar A Alhamo
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Marcella Gomez
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Min Zhao
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
- Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
5
|
Wang S, Aljirafi FO, Payne GF, Bentley WE. Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control. Curr Opin Biotechnol 2024; 85:103052. [PMID: 38150921 DOI: 10.1016/j.copbio.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Futoon O Aljirafi
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Muñoz-Rodríguez D, Bourqqia-Ramzi M, García-Esteban MT, Murciano-Cespedosa A, Vian A, Lombardo-Hernández J, García-Pérez P, Conejero F, Mateos González Á, Geuna S, Herrera-Rincon C. Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota-Brain Axis. Int J Mol Sci 2023; 24:13394. [PMID: 37686197 PMCID: PMC10488255 DOI: 10.3390/ijms241713394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota-brain axis. The aim of this paper is (i) to establish a reliable method for the assessment of the bioelectrical state of two bacterial strains: Bacillus subtilis (B. subtilis) and Limosilactobacillus reuteri (L. reuteri); (ii) to monitor the bacterial bioelectrical profile throughout its growth dynamics; and (iii) to evaluate the effects of two neurotransmitters (glutamate and γ-aminobutyric acid-GABA) on the bioelectrical signature of bacteria. Our results show that membrane potential (Vmem) and the proliferative capacity of the population are functionally linked in B. subtilis in each phase of the cell cycle. Remarkably, we demonstrate that bacteria respond to neural signals by changing Vmem properties. Finally, we show that Vmem changes in response to neural stimuli are present also in a microbiota-related strain L. reuteri. Our proof-of-principle data reveal a new methodological approach for the better understanding of the relation between bacteria and the brain, with a special focus on gut microbiota. Likewise, this approach will open exciting perspectives in the study of the inter-cellular mechanisms which regulate the bi-directional communication between bacteria and neurons and, ultimately, for designing gut microbiota-brain axis-targeted treatments for neuropsychiatric diseases.
Collapse
Affiliation(s)
- David Muñoz-Rodríguez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Marwane Bourqqia-Ramzi
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Maria Teresa García-Esteban
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Antonio Murciano-Cespedosa
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Alejandro Vian
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Juan Lombardo-Hernández
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Pablo García-Pérez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Conejero
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Álvaro Mateos González
- NYU-ECNU Institute of Mathematical Sciences, Shanghai New York University, Shanghai 200122, China;
| | - Stefano Geuna
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Celia Herrera-Rincon
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. iScience 2023; 26:107140. [PMID: 37404371 PMCID: PMC10316662 DOI: 10.1016/j.isci.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
Collapse
Affiliation(s)
- Marcus S. Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Matthew P. Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Caleb A. Hellman
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Nathan D. Schwalm
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Justin P. Jahnke
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Christian J. Sund
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
8
|
de Souza‐Guerreiro TC, Bondelli G, Grobas I, Donini S, Sesti V, Bertarelli C, Lanzani G, Asally M, Paternò GM. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205007. [PMID: 36710255 PMCID: PMC10015841 DOI: 10.1002/advs.202205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Iago Grobas
- Physical and Theoretical Chemistry LaboratoryOxfordOX1 3QZUK
| | - Stefano Donini
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Valentina Sesti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| | - Munehiro Asally
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Giuseppe Maria Paternò
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| |
Collapse
|
9
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Joshi PS, Hu K, Larkin JW, Rosenstein JK. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE : HEALTHCARE TECHNOLOGY : [PROCEEDINGS]. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE 2022; 2022:439-443. [PMID: 37126479 PMCID: PMC10148594 DOI: 10.1109/biocas54905.2022.9948674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this paper we present spatio-temporally controlled electrochemical stimulation of aqueous samples using an integrated CMOS microelectrode array with 131,072 pixels. We demonstrate programmable gold electrodeposition in arbitrary spatial patterns, controllable electrolysis to produce microscale hydrogen bubbles, and spatially targeted electrochemical pH modulation. Dense spatially-addressable electrochemical stimulation is important for a wide range of bioelectronics applications.
Collapse
|