• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4781707)   Today's Articles (133)
For: Zarkadas DM, Sirkar KK. Antisolvent crystallization in porous hollow fiber devices. Chem Eng Sci 2006;61:5030-48. [DOI: 10.1016/j.ces.2006.03.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Hu X, Zhao Y, Xiao W, He G, Jiang H, Ruan X, Jiang X. Improved Spherical Particle Preparation of Ceftriaxone Sodium via Membrane-Assisted Spherical Crystallization. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
2
Chergaoui S, Debecker DP, Leyssens T, Luis P. Key Parameters Impacting the Crystal Formation in Antisolvent Membrane-Assisted Crystallization. MEMBRANES 2023;13:140. [PMID: 36837643 PMCID: PMC9964214 DOI: 10.3390/membranes13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
3
Shao G, He Z, Xiao W, He G, Ruan X, Jiang X. On-line monitoring and analysis of membrane-assisted internal seeding for cooling crystallization of ammonium persulfate. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
4
Orehek J, Teslić D, Likozar B. Mechanistic modeling of a continuous multi-segment multi-addition antisolvent crystallization of benzoic acid in a coiled flow inverter (CFI) crystallizer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
5
Liu F, Luo W, Qiu J, Guo Y, Zhao S, Bao B. Continuous Antisolvent Crystallization of Dolutegravir Sodium Using Microfluidics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Membrane nanoprecipitation: From basics to technology development. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
7
Liu Q, Li M, Liu C, Yin J, Zhu X, Chen D. Continuous Synthesis of Polymer-Coated Drug Nanoparticles by Heterogeneous Nucleation in a Hollow-Fiber Membrane Module. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Piacentini E, Poerio T, Bazzarelli F, Giorno L. Continuous production of PVA-based hydrogel nanoparticles by membrane nanoprecipitation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
9
Sheng L, Li J, He G, Xiao W, Yan X, Li X, Ruan X, Jiang X. Visual study and simulation of interfacial liquid layer mass transfer in membrane-assisted antisolvent crystallization. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.116003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
10
Integrating crystallisation into transmembrane chemical absorption: Process intensification for ammonia separation from anaerobic digestate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
11
Li J, Sheng L, Tuo L, Xiao W, Ruan X, Yan X, He G, Jiang X. Membrane-Assisted Antisolvent Crystallization: Interfacial Mass-Transfer Simulation and Multistage Process Control. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Jin C, Chen D, Sirkar KK, Pfeffer R. An extended duration operation for solid hollow fiber membrane-based cooling crystallization. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
13
Michaud M, Mangin D, Charcosset C, Chabanon E. Dense Membrane Crystallization in Gas–Liquid Systems: Key Parameters Influencing Fouling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Su PC, Ward JD. Modeling of Membrane-Assisted Seeded Batch Crystallization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Zhou X, Wang B, Liu Q, Liu C, Gao X, Sirkar KK, Chen D. An Extended Duration Operation for Porous Hollow Fiber-Based Antisolvent Crystallization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Tuo L, Ruan X, Xiao W, Li X, He G, Jiang X. A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control. AIChE J 2018. [DOI: 10.1002/aic.16438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
17
Zhou X, Zhu X, Wang B, Li J, Liu Q, Gao X, Sirkar KK, Chen D. Continuous production of drug nanocrystals by porous hollow fiber-based anti-solvent crystallization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
18
Chen D, Wang B, Sirkar KK. Hydrodynamic modeling of porous hollow fiber anti-solvent crystallizer for continuous production of drug crystals. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
19
Fern JCW, Ohsaki S, Watano S, Pfeffer R. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module. Int J Pharm 2018;543:139-150. [PMID: 29551746 DOI: 10.1016/j.ijpharm.2018.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 12/24/2022]
20
Wu K, Wu H, Dai T, Liu X, Chen JF, Le Y. Controlling Nucleation and Fabricating Nanoparticulate Formulation of Sorafenib Using a High-Gravity Rotating Packed Bed. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Yang Z, Foster D, Dhinojwala A. Continuous production of polymer nanoparticles using a membrane-based flow cell. J Colloid Interface Sci 2017;501:150-155. [PMID: 28448835 DOI: 10.1016/j.jcis.2017.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
22
Bhoi S, Lenka M, Sarkar D. Particle engineering by optimization for the unseeded batch cooling crystallization of l-asparagine monohydrate. CrystEngComm 2017. [DOI: 10.1039/c7ce01291h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Membranes and crystallization processes: State of the art and prospects. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
24
Powell KA, Saleemi AN, Rielly CD, Nagy ZK. Monitoring Continuous Crystallization of Paracetamol in the Presence of an Additive Using an Integrated PAT Array and Multivariate Methods. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00373] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization. Int J Pharm 2016;499:395-402. [DOI: 10.1016/j.ijpharm.2016.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/02/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
26
Chen D, Singh D, Sirkar KK, Pfeffer R. Porous Hollow Fiber Membrane-Based Continuous Technique of Polymer Coating on Submicron and Nanoparticles via Antisolvent Crystallization. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
27
Chen D, Singh D, Sirkar KK, Pfeffer R. Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based antisolvent crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014;31:432-441. [PMID: 25552289 DOI: 10.1021/la503179t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
28
Thorat AA, Yadav MD, Dalvi SV. Simple criterion for stability of aqueous suspensions of ultrafine particles of a poorly water soluble drug. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014;30:4576-4592. [PMID: 24702638 DOI: 10.1021/la500825j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
29
Shang X, Ghosh R. Membrane reactor for continuous and selective protein mono-PEGylation. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
30
Di Profio G, Curcio E, Drioli E. Supersaturation Control and Heterogeneous Nucleation in Membrane Crystallizers: Facts and Perspectives. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100418z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Charcosset C, Kieffer R, Mangin D, Puel F. Coupling between Membrane Processes and Crystallization Operations. Ind Eng Chem Res 2010. [DOI: 10.1021/ie901824x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
32
Dalvi SV, Dave RN. Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. Int J Pharm 2010;387:172-9. [DOI: 10.1016/j.ijpharm.2009.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/06/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
33
Di Profio G, Stabile C, Caridi A, Curcio E, Drioli E. Antisolvent membrane crystallization of pharmaceutical compounds. J Pharm Sci 2009;98:4902-13. [DOI: 10.1002/jps.21785] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
34
Kieffer R, Mangin D, Puel F, Charcosset C. Precipitation of barium sulphate in a hollow fiber membrane contactor, Part I: Investigation of particulate fouling. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
35
Kieffer R, Mangin D, Puel F, Charcosset C. Precipitation of barium sulphate in a hollow fiber membrane contactor: Part II The influence of process parameters. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
36
Cuellar MC, Herreilers SN, Straathof AJJ, Heijnen JJ, van der Wielen LAM. Limits of Operation for the Integration of Water Removal by Membranes and Crystallization of l-Phenylalanine. Ind Eng Chem Res 2009. [DOI: 10.1021/ie8012659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
37
Sirkar KK. Membranes, Phase Interfaces, and Separations: Novel Techniques and Membranes—An Overview. Ind Eng Chem Res 2008. [DOI: 10.1021/ie8001952] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
38
Kieffer R, Charcosset C, Puel F, Mangin D. Numerical simulation of mass transfer in a liquid–liquid membrane contactor for laminar flow conditions. Comput Chem Eng 2008. [DOI: 10.1016/j.compchemeng.2007.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA