1
|
Xiong J, Zhang B, Liang Z, Zhao X, Yang Y, Chen X, Wu J, Yang J, Fang Y, Pan C, Shi L, Luo Z, Guo Y. Highly Reactive Peroxide Species Promoted Soot Oxidation over an Ordered Macroporous Ce 0.8Zr 0.2O 2 Integrated Catalyzed Diesel Particulate Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8096-8108. [PMID: 38627223 DOI: 10.1021/acs.est.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Particulate matter, represented by soot particles, poses a significant global environmental threat, necessitating efficient control technology. Here, we innovatively designed and elaborately fabricated ordered hierarchical macroporous catalysts of Ce0.8Zr0.2O2 (OM CZO) integrated on a catalyzed diesel particulate filter (CDPF) using the self-assembly method. An oxygen-vacancy-enriched ordered macroporous Ce0.8Zr0.2O2 catalyst (VO-OM CZO) integrated CDPF was synthesized by subsequent NaBH4 reduction. The VO-OM CZO integrated CDPF exhibited a markedly enhanced soot oxidation activity compared to OM CZO and powder CZO coated CDPFs (T50: 430 vs 490 and 545 °C, respectively). The well-defined OM structure of the VO-OM CZO catalysts effectively improves the contact efficiency between soot and the catalysts. Meanwhile, oxygen vacancies trigger the formation of a large amount of highly reactive peroxide species (O22-) from molecular oxygen (O2) through electron abstraction from the three adjacent Ce3+ (3Ce3+ + Vö + O2 → 3Ce4+ + O22-), contributing to the efficient soot oxidation. This work demonstrates the fabrication of the ordered macroporous CZO integrated CDPF and reveals the importance of structure and surface engineering in soot oxidation, which sheds light on the design of highly efficient PM capture and removal devices.
Collapse
Affiliation(s)
- Juxia Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Baojian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Zhenfeng Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Xinya Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Yuan Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Xiaoping Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Jian Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Limin Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photo-Energy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430082, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, P. R. China
| |
Collapse
|
2
|
Luo J, Zhang H, Liu Z, Zhang Z, Pan Y, Liang X, Wu S, Xu H, Xu S, Jiang C. A review of regeneration mechanism and methods for reducing soot emissions from diesel particulate filter in diesel engine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86556-86597. [PMID: 37421534 DOI: 10.1007/s11356-023-28405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
With the global emphasis on environmental protection and the proposal of the climate goal of "carbon neutrality," countries around the world are calling for reductions in carbon dioxide, nitrogen oxide, and particulate matter pollution. These pollutants have severe impacts on human lives and should be effectively controlled. Engine exhaust is the most serious pollution source, and diesel engine is an important contributor to particulate matter. Diesel particulate filter (DPF) technology has proven to be an effective technology for soot control at the present and in the future. Firstly, the exacerbating effect of particulate matter on human infectious disease viruses is discussed. Then, the latest developments in the influence of key factors on DPF performance are reviewed at different observation scales (wall, channel, and entire filter). In addition, current soot catalytic oxidant schemes are presented in the review, and the significance of catalyst activity and soot oxidation kinetic models are highlighted. Finally, the areas that need further research are determined, which has important guiding significance for future research. Current catalytic technologies are focused on stable materials with high mobility of oxidizing substances and low cost. The challenge of DPF optimization design is to accurately calculate the balance between soot and ash load, DPF regeneration control strategy, and exhaust heat management strategy.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhonghang Liu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China.
| | - Yajuan Pan
- School of Mechanical Engineering, Liuzhou Institute of Technology, Liuzhou, 545616, China
| | - Xiguang Liang
- Liuzhou Jindongfang Automotive Parts Co., Ltd., Liuzhou, 545036, China
| | - Shizhuo Wu
- Liuzhou Branch, Aisn AUTO R&D Co., Ltd., Liuzhou, 545616, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
3
|
Tan Y, Zheng P, E J, Han D, Feng C. Effects of inlet velocity and structure parameters on the performance of a rotary diesel particulate filter for truck diesel engine based on fuzzy grey relational analysis. CHEMOSPHERE 2022; 307:135843. [PMID: 35970212 DOI: 10.1016/j.chemosphere.2022.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a three-dimensional mathematical model of the rotary diesel particulate filter (RDPF) for truck diesel engine is established according to the fluid mechanics and porous media theory. The effects of inlet velocity and structure parameters (diameter ratio, expansion angle and filter length) on the flow uniformity in the RDPF are investigated. Furthermore, the Fuzzy grey relational analysis (FGRA) is employed to make a weight analysis of the influences of structure parameters on the regeneration performance and pressure drop of the RDPF. The results show that the velocity uniformity in the RDPF can be improved by properly reducing the inlet velocity, diameter ratio or expansion angle θ1. The capture-regeneration volume ratio with 8-10 is appropriate range for the structural optimization. Finally, the expansion angle θ1 is the most important structure parameter for the filter regeneration performance (regeneration time R = 0.8467; regeneration efficiency R = 0.6849) and the diameter ratio is the most important structure parameter for the pressure drop at the capture-regeneration "balance point" (R = 0.9352).
Collapse
Affiliation(s)
- Yan Tan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Panyue Zheng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Jiaqiang E
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China; Institute of New Energy and Energy-saving & Emission-reduction Technology, Hunan University, Changsha, 410082, China.
| | - Dandan Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China; Institute of New Energy and Energy-saving & Emission-reduction Technology, Hunan University, Changsha, 410082, China
| | - Changlin Feng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Wang X, Wei K, Xu K, Shi L, Xue Z, Wang H, Jiang C, Wang J, Zhang X. Fe‐Ce Composite Oxide Catalysts Supported on 3D Nickel Foam for Catalytic Oxidation of Soot. ChemistrySelect 2022. [DOI: 10.1002/slct.202202019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xie Wang
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Kun Wei
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Kaixuan Xu
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Liming Shi
- Development and Planning Department, Quality Control Center Anqing Petrochemical Company, SINOPEC Anqing 246002 PR China
| | - Zhifeng Xue
- Development and Planning Department, Quality Control Center Anqing Petrochemical Company, SINOPEC Anqing 246002 PR China
| | - Huan Wang
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Caihong Jiang
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Junwei Wang
- School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 PR China
| | - Xianlong Zhang
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 PR China
| |
Collapse
|
5
|
Wong PK, Ghadikolaei MA, Chen SH, Fadairo AA, Ng KW, Lee SMY, Xu JC, Lian ZD, Li L, Wong HC, Ning Z, Gali NK, Zhao J. Physical, chemical, and cell toxicity properties of mature/aged particulate matter (PM) trapped in a diesel particulate filter (DPF) along with the results from freshly produced PM of a diesel engine. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128855. [PMID: 35429757 DOI: 10.1016/j.jhazmat.2022.128855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The lifetime and efficiency of diesel particulate filters (DPFs) strongly depend on the proper and periodic cleaning and servicing. Unfortunately, in some cases, inappropriate methods are applied to clean the DPFs, e.g., using air compressors without proper disposal procedures which can have negative impacts on human health, the environment, and DPF's efficiency. However, there is no information available about the properties of this kind of PM. This research is therefore presented to explore the physicochemical and toxicity properties of aged PM trapped in a DPF (using compressed air for PM sampling) employing STEM, SEM, EDS, Organic Carbon Analyzer, TGA/DSC, and Raman Spectrometer for investigating the physicochemical properties, and assays of cell viability, cellular reactive oxygen species (ROS), interleukin-6, and tumor necrosis factor-alpha (TNF-α) for investigating the toxicity properties. Also, analyses from fresh PM samples from the diesel vehicle at two engine speeds are presented. It is found that at a certain/fixed PM number/mass for all three samples tested, the PM from DPF compared with the fresh PM can have both positive (particularly having the lowest water-soluble total carbon ratio) and negative impacts on human health (particularly having the highest cell death rate of 13.4%, ROS, and TNF-α) and the environment.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau
| | | | - Shou Hao Chen
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau
| | | | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau
| | | | - Jin Cheng Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau
| | - Zhen Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau
| | - Lin Li
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Hang Cheong Wong
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jing Zhao
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau
| |
Collapse
|
6
|
Soot Oxidation in a Plasma-Catalytic Reactor: A Case Study of Zeolite-Supported Vanadium Catalysts. Catalysts 2022. [DOI: 10.3390/catal12070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The plasma-catalytic oxidation of soot was studied over zeolite-supported vanadium catalysts, while four types of zeolites (MCM-41, mordenite, USY and 5A) were used as catalyst supports. The soot oxidation rate followed the order of V/MCM-41 > V/mordenite > V/USY > V/5A, while 100% soot oxidation was achieved at 54th min of reaction over V/MCM-41 and V/mordenite. The CO2 selectivity of the process follows the opposite order of oxidation rate over the V/M catalyst. A wide range of catalyst characterizations including N2 adsorption–desorption, XRD, XPS, H2-TPR and O2-TPD were performed to obtain insights regarding the reaction mechanisms of soot oxidation in plasma-catalytic systems. The redox properties were recognized to be crucial for the soot oxidation process. The effects of discharge power, gas flow rate and reaction temperature on soot oxidation were also investigated. The results showed that higher discharge power, higher gas flow rate and lower reaction temperature were beneficial for soot oxidation rate. However, these factors would impose a negative effect on CO2 selectivity. The proposed “plasma-catalysis” method possessed the unique advantages of quick response, mild operation conditions and system compactness. The method could be potentially applied for the regeneration of diesel particulate filters (DPF) at low temperatures and contribute to the the emission control of diesel engines.
Collapse
|
7
|
Feng R, Hu X, Li G, Sun Z, Deng B. A comparative investigation between particle oxidation catalyst (POC) and diesel particulate filter (DPF) coupling aftertreatment system on emission reduction of a non-road diesel engine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113576. [PMID: 35512474 DOI: 10.1016/j.ecoenv.2022.113576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Non-road emission regulations are becoming increasingly rigorous, which makes it necessary for non-road engines to adopt aftertreatment systems. The commonly used aftertreatments mainly include diesel oxidation catalytic (DOC), diesel particulate filter (DPF), particle oxidation catalyst (POC), selective catalytic reduction (SCR) and ammonia purification catalyst (ASC). The purpose of this study is to investigate the effects of using an integrated system (DOC + DPF/POC + SCR + ASC) on non-road diesel engine emissions under steady-state and transient operating conditions, respectively. The major works are the comparison between POC and DPF from the viewpoint of emission reduction. The results show that both POC and DPF can effectively reduce particulate matter (PM) and nitrogen oxide (NOX) emissions under steady-state conditions, and DPF has better purification effect than POC, especially for PM. The PM conversion rate of DPF is up to 87%, while that of POC is only 60% under the non-road steady-state test cycle (NRSC). Both NOX and hydrocarbon (HC) conversion rates are high, exceeding 95%. The conversions of PM, NOX, HC, and carbon monoxide (CO) of DPF in the non-road transient test cycle (NRTC) are 92.83%, 96.99%, 96.86% and 81.45%, respectively, while those of POC are 60.12%, 95.45%, 92.82% and 79.51%, respectively. Both the POC and DPF systems can meet the emission regulation limits. As a result, POC has the potential to substitute DPF in non-road engines due to its lower product and maintenance costs. We hope that the comparison study will provide useful guidance for improving the emissions performance of non-road diesel engines.
Collapse
Affiliation(s)
- Renhua Feng
- Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China; Mechanical Engineering Institute, Chongqing University, Chongqing 400044, China
| | - Xiulin Hu
- Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China
| | - Guanghua Li
- Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China
| | - Zhengwei Sun
- Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China
| | - Banglin Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Lyu Q, Ou Q, Chen W, Wang Y, Chang C, Li Y, Che D, Pui DY. Impacts of catalyst coating on the filtration performance of catalyzed wall-flow filters: From the viewpoint of microstructure. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Dangsunthonchai M, Visuwan P, Komintarachat C, Theinnoi K, Chuepeng S. Nanoparticle Components and Number-Size Distribution of Waste Cooking Oil-Based Biodiesel Exhaust Gas from a Diesel Particulate Filter-Equipped Engine. ACS OMEGA 2022; 7:3384-3394. [PMID: 35128248 PMCID: PMC8811915 DOI: 10.1021/acsomega.1c05627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
An experimental study of the particulate matter (PM)-related emissions from the combustion of waste cooking oil (WCO)-based biodiesel-blended (0%, 30%, and 100% v/v) fuels in a four-cylinder diesel particulate filter (DPF)-equipped engine was carried out. A laboratory-scale DPF under the controlled conditions was installed into an aftertreatment system, and the PM mass and number characteristics were investigated. The combustion analysis based on in-cylinder pressure shows that the added WCO shortened the ignition delay, advanced the combustion ignition, and increased peak pressure values compared to conventional diesel fuel. The WCO increase in specific fuel consumption led to a slight reduction in brake thermal efficiency. The WCO-fueled engine showed reduced PM and total unburned hydrocarbon but increased nitric oxide emission. The nucleation and accumulation were characterized for nanoparticle number and size distribution. The particle number (PN) concentration in total was declined to smaller values when fueling with WCO. In the thermogravimetric analysis, the PM of WCO oxidized to a greater level than that of diesel fuel, which was observed by the weight loss rates during the specified heating program. WCO lowered the elemental carbon (EC) part of PM than diesel fuel. When equipping an exhaust system with DPF, the EC and the total PN drastically reduced while the particle size slightly increased. The use of DPF with the WCO biodiesel mitigated both EC and organic carbon components of the captured particles of the released PM.
Collapse
Affiliation(s)
- Mongkol Dangsunthonchai
- Department
of Mechanical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Poranat Visuwan
- Department
of Mechanical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
- ATAE
Research Unit, Department of Mechanical Engineering, Faculty of Engineering
at Sriracha, Kasetsart University, 199 Sukhumvit Road, Chonburi 20230, Thailand
| | - Cholada Komintarachat
- Department
of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, 199 Sukhumvit Road, Chonburi 20230, Thailand
| | - Kampanart Theinnoi
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Sathaporn Chuepeng
- ATAE
Research Unit, Department of Mechanical Engineering, Faculty of Engineering
at Sriracha, Kasetsart University, 199 Sukhumvit Road, Chonburi 20230, Thailand
| |
Collapse
|
10
|
The Impact of Alternative Fuels on Ship Engine Emissions and Aftertreatment Systems: A Review. Catalysts 2022. [DOI: 10.3390/catal12020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Marine engines often use diesel as an alternative fuel to improve the economy. In recent years, waste oil, biodiesel and alcohol fuel are the most famous research directions among the alternative fuels for diesel. With the rapid development of the shipping industry, the air of coastal areas is becoming increasingly polluted. It is now necessary to reduce the emission of marine engines to meet the strict emission regulations. There are many types of alternative fuels for diesel oil and the difference of the fuel may interfere with the engine emissions; however, PM, HC, CO and other emissions will have a negative impact on SCR catalyst. This paper reviews the alternative fuels such as alcohols, waste oils, biodiesel made from vegetable oil and animal oil, and then summarizes and analyzes the influence of different alternative fuels on engine emissions and pollutant formation mechanism. In addition, this paper also summarizes the methods that can effectively reduce the emissions of marine engines; it can provide a reference for the study of diesel alternative fuel and the reduction of marine engine emissions.
Collapse
|