1
|
Toivola DM, Polari L, Schwerd T, Schlegel N, Strnad P. The keratin-desmosome scaffold of internal epithelia in health and disease - The plot is thickening. Curr Opin Cell Biol 2024; 86:102282. [PMID: 38000362 DOI: 10.1016/j.ceb.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.
Collapse
Affiliation(s)
- Diana M Toivola
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Ilomäki MA, Polari L, Stenvall CGA, Tayyab M, Kähärä K, Ridge KM, Toivola DM. Defining a timeline of colon pathologies after keratin 8 loss: rapid crypt elongation and diarrhea are followed by epithelial erosion and cell exfoliation. Am J Physiol Gastrointest Liver Physiol 2024; 326:G67-G77. [PMID: 37962942 PMCID: PMC11208023 DOI: 10.1152/ajpgi.00140.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Keratins are epithelial intermediate filament proteins that play a crucial role in cellular stress protection, with K8 being the most abundant in the colon. The intestinal epithelial-specific K8-deficient mouse model (K8flox/flox;Villin-Cre) exhibits characteristics of inflammatory bowel disease, including diarrhea, crypt erosion, hyperproliferation, and decreased barrier function. Nevertheless, the order in which these events occur and whether they are a direct cause of K8 loss or a consequence of one event inducing another remains unexplored. Increased knowledge about early events in the disruption of colon epithelial integrity would help to understand the early pathology of inflammatory and functional colon disorders and develop preclinical models and diagnostics of colonic diseases. Here, we aimed to characterize the order of physiological events after Krt8 loss by utilizing K8flox/flox;Villin-CreERt2 mice with tamoxifen-inducible Krt8 deletion in intestinal epithelial cells, and assess stool analysis as a noninvasive method to monitor real-time gene expression changes following Krt8 loss. K8 protein was significantly decreased within a day after induction, followed by its binding partners, K18 and K19 from day 4 onward. The sequential colonic K8 downregulation in adult mice leads to immediate diarrhea and crypt elongation with activation of proliferation signaling, followed by crypt loss and increased neutrophil activity within 6-8 days, highlighting impaired water balance and crypt elongation as the earliest colonic changes upon Krt8 loss. Furthermore, epithelial gene expression patterns were comparable between colon tissue and stool samples, demonstrating the feasibility of noninvasive monitoring of gut epithelia in preclinical research utilizing Cre-LoxP-based intestinal disease models.NEW & NOTEWORTHY Understanding the order in which physiological and molecular events occur helps to recognize the onset of diseases and improve their preclinical models. We utilized Cre-Lox-based inducible keratin 8 deletion in mouse intestinal epithelium to characterize the earliest events after keratin 8 loss leading to colitis. These include diarrhea and crypt elongation, followed by erosion and neutrophil activity. Our results also support noninvasive methodology for monitoring colon diseases in preclinical models.
Collapse
Affiliation(s)
- Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Kirah Kähärä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
4
|
Soluble Protein Hydrolysate Ameliorates Gastrointestinal Inflammation and Injury in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Biomolecules 2022; 12:biom12091287. [PMID: 36139127 PMCID: PMC9496120 DOI: 10.3390/biom12091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, recurring gastrointestinal diseases that severely impair health and quality of life. Although therapeutic options have significantly expanded in recent years, there is no effective therapy for a complete and permanent cure for IBD. Well tolerated dietary interventions to improve gastrointestinal health in IBD would be a welcome advance especially with anticipated favorable tolerability and affordability. Soluble protein hydrolysate (SPH) is produced by the enzymatic hydrolysis of commercial food industry salmon offcuts (consisting of the head, backbone and skin) and contains a multitude of bioactive peptides including those with anti-oxidant properties. This study aimed to investigate whether SPH ameliorates gastrointestinal injury in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Mice were randomly assigned to four groups: Control (no colitis), Colitis, Colitis/CP (with control peptide treatment), and Colitis/SPH (with SPH treatment). Colitis was induced by cutaneous sensitization with 1% TNBS on day −8 followed by 2.5% TNBS enema challenge on day 0. Control peptides and SPH were provided to the mice in the Colitis/CP or Colitis/SPH group respectively by drinking water at the final concentration of 2% w/v daily from day −10 to day 4. Then, the colon was harvested on day 4 and examined macro- and microscopically. Relevant measures included disease activity index (DAI), colon histology injury, immune cells infiltration, pro- and anti-inflammatory cytokines and anti-oxidative gene expression. It was found that SPH treatment decreased the DAI score and colon tissue injury when compared to the colitis-only and CP groups. The protective mechanisms of SPH were associated with reduced infiltration of CD4+ T, CD8+ T and B220+ B lymphocytes but not macrophages, downregulated pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6), and upregulated anti-inflammatory cytokines (transforming growth factor-β1 and interleukin-10) in the colon tissue. Moreover, the upregulation of anti-oxidative genes, including ferritin heavy chain 1, heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and superoxide dismutase 1, in the colons of colitis/SPH group was observed compared with the control peptide treatment group. In conclusion, the protective mechanism of SPH is associated with anti-inflammatory and anti-oxidative effects as demonstrated herein in an established mice model of colitis. Clinical studies with SPH as a potential functional food for the prevention or as an adjuvant therapy in IBD may add an effective and targeted diet-based approach to IBD management in the future.
Collapse
|
5
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
6
|
Stenvall CGA, Tayyab M, Grönroos TJ, Ilomäki MA, Viiri K, Ridge KM, Polari L, Toivola DM. Targeted deletion of keratin 8 in intestinal epithelial cells disrupts tissue integrity and predisposes to tumorigenesis in the colon. Cell Mol Life Sci 2021; 79:10. [PMID: 34951664 PMCID: PMC8709826 DOI: 10.1007/s00018-021-04081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/08/2023]
Abstract
Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.
Collapse
Affiliation(s)
- Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | - Karen M Ridge
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Wu J, Niu J, Li M, Miao Y. Keratin 1 maintains the intestinal barrier in ulcerative colitis. Genes Genomics 2021; 43:1389-1402. [PMID: 34562265 DOI: 10.1007/s13258-021-01166-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The intestinal mechanical barrier plays a key role in the pathogenesis of ulcerative colitis (UC). Our previous study showed keratin 1 (KRT1) was downregulated in UC, but the mechanism by which KRT1 affects the intestinal barrier remains unknown. OBJECTIVES To explore the mechanism of KRT1 in the intestinal barrier in UC. METHODS Colonic tissues were collected from 20 UC patients before and after mucosal healing (MH) and 15 healthy controls. The expression of KRT1 was measured by PCR, western blotting and immunohistochemistry (IHC). A dextran sulfate sodium (DSS)-induced colitis model was established in krt1 transgenic (TG) mice, and the mice were treated with methylprednisolone (MP) to explore the role of KRT1 in the intestinal barrier. Inflammation was evaluated through the DAI score, colon, spleen and H&E. The expression of KRT1 and tight junction (TJ) proteins in mouse was analysed by the same methods. RESULTS The transcription and expression of KRT1 in UC was decreased and recovered after MH but did not reach the level of the healthy controls. Similar to the clinical results, the expression of krt1 was decreased in DSS-induced colitis and upregulated after MP. Moreover, the krt1 TG group exhibited less inflammation than wild-type (WT) group. The expression of Occludin and ZO-1 decreased after DSS induction, the decreases in Occludin and ZO-1 in the krt1 TG group were lower than WT group, which was significantly increased after MP, while the expression of Claudin-2 exhibited the opposite effect. CONCLUSIONS Keratin 1 maintains the intestinal barrier by upregulating TJ proteins in UC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
9
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
10
|
Agliata I, Fernandez-Jimenez N, Goldsmith C, Marie JC, Bilbao JR, Dante R, Hernandez-Vargas H. The DNA methylome of inflammatory bowel disease (IBD) reflects intrinsic and extrinsic factors in intestinal mucosal cells. Epigenetics 2020; 15:1068-1082. [PMID: 32281463 PMCID: PMC7518701 DOI: 10.1080/15592294.2020.1748916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormal DNA methylation has been described in human inflammatory conditions of the gastrointestinal tract, such as inflammatory bowel disease (IBD). As other complex diseases, IBD results from the balance between genetic predisposition and environmental exposures. As such, DNA methylation may be the consequence (and potential effector) of both, genetic susceptibility variants and/or environmental signals such as cytokine exposure. We attempted to discern between these two non-excluding possibilities by performing a combined analysis of published DNA methylation data in intestinal mucosal cells of IBD and control samples. We identified abnormal DNA methylation at different levels: deviation from mean methylation signals at site and region levels, and differential variability. A fraction of such changes is associated with genetic polymorphisms linked to IBD susceptibility. In addition, by comparing with another intestinal inflammatory condition (i.e., coeliac disease) we propose that aberrant DNA methylation can also be the result of unspecific processes such as chronic inflammation. Our characterization suggests that IBD methylomes combine intrinsic and extrinsic responses in intestinal mucosal cells, and could point to knowledge-based biomarkers of IBD detection and progression.
Collapse
Affiliation(s)
- Iolanda Agliata
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute , Leioa, Spain
| | - Chloe Goldsmith
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France
| | - Julien C Marie
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France
| | - Jose R Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute , Leioa, Spain.,Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
| | - Robert Dante
- Department of Signaling of Tumoral Escape, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon , Lyon, France
| | - Hector Hernandez-Vargas
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard , Lyon, France
| |
Collapse
|
11
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
12
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Dong X, Liu Z, Lan D, Niu J, Miao J, Yang G, Zhang F, Sun Y, Wang K, Miao Y. Critical role of Keratin 1 in maintaining epithelial barrier and correlation of its down-regulation with the progression of inflammatory bowel disease. Gene 2017; 608:13-19. [DOI: 10.1016/j.gene.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
|
14
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
15
|
Misiorek JO, Lähdeniemi IAK, Nyström JH, Paramonov VM, Gullmets JA, Saarento H, Rivero-Müller A, Husøy T, Taimen P, Toivola DM. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 2016; 37:777-786. [PMID: 27234655 DOI: 10.1093/carcin/bgw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in protection from cellular stress. K8, K18 and K19 are the main components of keratin filaments in colonic epithelia but their role in intestinal diseases remains ambiguous. A function for keratins in intestinal health is supported by the K8-knock-out (K8(-/-)) mouse which manifests an early chronic ulcerative colitis-like inflammatory bowel disease and epithelial hyperproliferation. We tested whether K8(-/-) mice are more susceptible to colorectal cancer (CRC) compared to K8 wild type (K8(+/+)), and K8 heterozygote (K8(+/-)) mice showing increased proliferation but no inflammation. K8(-/-) mice did not develop CRC spontaneously, but had dramatically increased numbers of tumors in the distal colon in the azoxymethane (AOM) and Apc(Min/+) CRC models while neither K8(+/+) nor K8(+/-) mice were susceptible. Upregulation of IL-22 in combination with a complete loss of its negative regulator IL-22BP, and increased downstream STAT3-signaling in K8(-/-) and K8(-/-)Apc(Min/+) colonic epithelia confirmed that the IL-22 pathway, important in inflammation, proliferation and tissue regeneration, was activated. The nearly total loss of IL-22BP correlated with an activated inflammasome leading to increased cleaved caspase-1, and the putative IL-22BP inhibitor, IL-18, as well as a decrease in ALDH1/2. Ablation of K8 in a colorectal cancer cell line similarly resulted in increased IL-18 and decreased ALDH1/2. K8/K18 co-immunoprecipitated with pro-caspase-1, a component of the inflammasome in the colon, which suggests that keratins modulate inflammasome activity and protect the colon from inflammation and tumorigenesis. The K8-null mouse models also provide novel epithelial-derived robust colon-specific CRC models.
Collapse
Affiliation(s)
- Julia O Misiorek
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Iris A K Lähdeniemi
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Valeriy M Paramonov
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Josef A Gullmets
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Helena Saarento
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Adolfo Rivero-Müller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland and
| | - Diana M Toivola
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Center for Disease Modeling, University of Turku, Turku 20520, Finland
| |
Collapse
|
16
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
17
|
Asghar MN, Priyamvada S, Nyström JH, Anbazhagan AN, Dudeja PK, Toivola DM. Keratin 8 knockdown leads to loss of the chloride transporter DRA in the colon. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1147-54. [PMID: 27125276 PMCID: PMC4935477 DOI: 10.1152/ajpgi.00354.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/23/2016] [Indexed: 02/06/2023]
Abstract
Keratins (K) are intermediate filament proteins important in protection from stress. The roles of keratins in the intestine are not clear, but K8 knockout (K8(-/-)) mice develop a Th2-type colonic inflammation, epithelial hyperproliferation, and mild diarrhea caused by a keratin level-dependent decrease in short-circuit current and net sodium and chloride absorption in the distal colon. The lack of K8 leads to mistargeting or altered levels of membrane proteins in colonocytes; however, the main transporter responsible for the keratin-related ion transport defect is unknown. We here analyzed protein and mRNA levels of candidate ion transporters CFTR, PAT-1, NHE-3, and DRA in ileum, cecum, and proximal and distal colon. Although no differences were observed for CFTR, PAT-1, or NHE-3, DRA mRNA levels were decreased by three- to fourfold and DRA protein was almost entirely lost in K8(-/-) cecum and proximal and distal colon compared with K8(+/+), whereas the levels in ileum were normal. In K8(+/-) mice, DRA mRNA levels were unaltered, while decreased DRA protein levels were detected in the proximal colon. Immunofluorescence staining confirmed the loss of DRA in K8(-/-) distal colon, while K8(+/-) displayed a similar but more patchy apical DRA distribution compared with K8(+/+) DRA was similarly decreased when K8 was knocked down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. Taken together, the loss of DRA in the K8(-/-) mouse colon and cecum explains the dramatic chloride transport defect and diarrheal phenotype after K8 inactivation and identifies K8 as a novel regulator of DRA.
Collapse
Affiliation(s)
- M. Nadeem Asghar
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| | - Shubha Priyamvada
- 2University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Joel H. Nyström
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| | | | - Pradeep K. Dudeja
- 2University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Diana M. Toivola
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| |
Collapse
|
18
|
Toivola DM, Habtezion A, Misiorek JO, Zhang L, Nyström JH, Sharpe O, Robinson WH, Kwan R, Omary MB. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. FASEB J 2015; 29:5081-9. [PMID: 26399787 DOI: 10.1096/fj.14-269795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
Human mutations in keratin 8 (K8) and keratin 18 (K18), the intermediate filament proteins of hepatocytes, predispose to several liver diseases. K8-null mice develop chronic liver injury and fragile hepatocytes, dysfunctional mitochondria, and Th2-type colitis. We tested the hypothesis that autoantibody formation accompanies the liver damage that associates with K8/K18 absence. Sera from wild-type control, K8-null, and K18-null mice were analyzed by immunoblotting and immunofluorescence staining of cell and mouse tissue homogenates. Autoantibodies to several antigens were identified in 81% of K8-null male mice 8 mo or older. Similar autoantibodies were detected in aging K18-null male mice that had a related liver phenotype but normal colon compared with K8-null mice, suggesting that the autoantibodies are linked to liver rather than colonic disease. However, these autoantibodies were not observed in nontransgenic mice subjected to 4 chronic injury models. The autoantigens are ubiquitous and partition with mitochondria. Mass spectrometry and purified protein analysis identified, mitochondrial HMG-CoA synthase, aldehyde dehydrogenase, and catalase as the primary autoantigens, and glutamate dehydrogenase and epoxide hydrolase-2 as additional autoantigens. Therefore, absence of the hepatocyte keratins results in production of anti-mitochondrial autoantibodies (AMA) that recognize proteins involved in energy metabolism and oxidative stress, raising the possibility that AMA may be found in patients with keratin mutations that associate with liver and other diseases.
Collapse
Affiliation(s)
- Diana M Toivola
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Aida Habtezion
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Julia O Misiorek
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Linxing Zhang
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Joel H Nyström
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Orr Sharpe
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - William H Robinson
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - Raymond Kwan
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| | - M Bishr Omary
- *Department of Science and Engineering, Department of Biosciences, and Department of Cell Biology, Åbo Akademi University, Turku, Finland; Division of Gastroenterology and Hepatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Guldiken N, Zhou Q, Kucukoglu O, Rehm M, Levada K, Gross A, Kwan R, James LP, Trautwein C, Omary MB, Strnad P. Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with c-jun amino-terminal kinase activation and protein adduct formation. Hepatology 2015; 62:876-86. [PMID: 25963979 PMCID: PMC4549164 DOI: 10.1002/hep.27891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/15/2015] [Accepted: 05/03/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Keratins 8 and 18 (K8/K18) are the intermediate filaments proteins of simple-type digestive epithelia and provide important cytoprotective function. K8/K18 variants predispose humans to chronic liver disease progression and poor outcomes in acute acetaminophen (APAP)-related liver failure. Given that K8 G62C and R341H/R341C are common K8 variants in European and North American populations, we studied their biological significance using transgenic mice. Mice that overexpress the human K8 variants, R341H or R341C, were generated and used together with previously described mice that overexpress wild-type K8 or K8 G62C. Mice were injected with 600 mg/kg of APAP or underwent bile duct ligation (BDL). Livers were evaluated by microarray analysis, quantitative real-time polymerase chain reaction, immunoblotting, histological and immunological staining, and biochemical assays. Under basal conditions, the K8 G62C/R341H/R341C variant-expressing mice did not show an obvious liver phenotype or altered keratin filament distribution, whereas K8 G62C/R341C animals had aberrant disulphide cross-linked keratins. Animals carrying the K8 variants displayed limited gene expression changes, but had lower nicotinamide N-methyl transferase (NNMT) levels and were predisposed to APAP-induced hepatotoxicity. NNMT represents a novel K8/K18-associated protein that becomes up-regulated after K8/K18 transfection. The more pronounced liver damage was accompanied by increased and prolonged JNK activation; elevated APAP protein adducts; K8 hyperphosphorylation at S74/S432 with enhanced keratin solubility; and prominent pericentral keratin network disruption. No differences in APAP serum levels, glutathione, or adenosine triphosphate levels were noted. BDL resulted in similar liver injury and biliary fibrosis in all mouse genotypes. CONCLUSION Expression of human K8 variants G62C, R341H, or R341C in mice predisposes to acute APAP hepatotoxicity, thereby providing direct evidence for the importance of these variants in human acute liver failure.
Collapse
Affiliation(s)
- Nurdan Guldiken
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany,Department of Internal Medicine I, University Hospital Ulm, Ulm Germany
| | - Qin Zhou
- Department of Medicine, Palo Alto VA Medical Center, CA; and Stanford University Digestive Disease Center, USA
| | - Ozlem Kucukoglu
- Department of Internal Medicine I, University Hospital Ulm, Ulm Germany
| | - Melanie Rehm
- Department of Internal Medicine I, University Hospital Ulm, Ulm Germany
| | - Kateryna Levada
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Annika Gross
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Raymond Kwan
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, and the VA Ann Arbor Health Care System, Ann Arbor, MI, USA
| | - Laura P. James
- Arkansas Children's Hospital Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Christian Trautwein
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, and the VA Ann Arbor Health Care System, Ann Arbor, MI, USA
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany,Department of Internal Medicine I, University Hospital Ulm, Ulm Germany,To whom correspondence should be addressed. Corresponding author: Pavel Strnad, Department of Internal Medicine III and IZKF, University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen, Tel.: +49(241) 80-35324, Fax: +49(241) 80-82455,
| |
Collapse
|
20
|
Cytokeratins in gastroenterology. Systematic review. GASTROENTEROLOGY REVIEW 2015; 10:61-70. [PMID: 26557935 PMCID: PMC4631267 DOI: 10.5114/pg.2015.51182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 01/24/2023]
Abstract
Keratins are proteins that form intermediate filaments of epithelial cell cytoskeleton. The utility of keratin expression determination is based on the fact that epithelial cells acquire a specific pattern of keratin expression during differentiation and maturation, which reflects the specificity of the tissue and the degree of maturation, and generally remains stable during carcinogenesis. Determination of the pattern makes it possible to identify the origin of cells in diagnosing neoplastic lesions as well as in research on pathophysiology or the possibility to apply keratin-positive cell detection in the process of cancer staging and treatment planning. As keratins undergo degradation during apoptosis as caspase substrate the identification of the caspase-derived K18 fragment by the use of specific monoclonal antibody allows us to estimate the apoptosis/necrosis ratio, especially in liver pathology, e.g. nonalcoholic steatohepatitis, chronic hepatitis or graft-versus-host disease or in assessing response to antiviral or antitumour therapy.
Collapse
|
21
|
The amount of keratins matters for stress protection of the colonic epithelium. PLoS One 2015; 10:e0127436. [PMID: 26000979 PMCID: PMC4441500 DOI: 10.1371/journal.pone.0127436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
Keratins (K) are important for epithelial stress protection as evidenced by keratin mutations predisposing to human liver diseases and possibly inflammatory bowel diseases. A role for K8 in the colon is supported by the ulcerative colitis-phenotype with epithelial hyperproliferation and abnormal ion transport in K8-knockout (K8-/-) mice. The heterozygote knockout (K8+/-) colon appears normal but displays a partial ion transport-defect. Characterizing the colonic phenotype we show that K8+/- colon expresses ~50% less keratins compared to K8 wild type (K8+/+) but de novo K7 expression is observed in the top-most cells of the K8+/- and K8-/- crypts. The K8+/- colonic crypts are significantly longer due to increased epithelial hyperproliferation, but display no defects in apoptosis or inflammation in contrast to K8-/-. When exposed to colitis using the dextran sulphate sodium-model, K8+/- mice showed higher disease sensitivity and delayed recovery compared to K8+/+ littermates. Therefore, the K8+/- mild colonic phenotype correlates with decreased keratin levels and increased sensitivity to experimental colitis, suggesting that a sufficient amount of keratin is needed for efficient stress protection in the colonic epithelia.
Collapse
|
22
|
Zupancic T, Stojan J, Lane EB, Komel R, Bedina-Zavec A, Liovic M. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease. PLoS One 2014; 9:e99398. [PMID: 24915158 PMCID: PMC4051775 DOI: 10.1371/journal.pone.0099398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.
Collapse
Affiliation(s)
- Tina Zupancic
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Stojan
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Radovan Komel
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mirjana Liovic
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
23
|
Breynaert C, Dresselaers T, Perrier C, Arijs I, Cremer J, Van Lommel L, Van Steen K, Ferrante M, Schuit F, Vermeire S, Rutgeerts P, Himmelreich U, Ceuppens JL, Geboes K, Van Assche G. Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease. PLoS One 2013; 8:e68876. [PMID: 23894361 PMCID: PMC3720888 DOI: 10.1371/journal.pone.0068876] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/31/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine Breynaert
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Clinical immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Clémentine Perrier
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Clinical immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Clinical immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Kristel Van Steen
- Montefiore Institute, System and Modeling Unit, University of Liège, Liège, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jan L. Ceuppens
- Laboratory of Clinical immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Karel Geboes
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
24
|
Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM. Keratins in colorectal epithelial function and disease. Int J Exp Pathol 2012; 93:305-18. [PMID: 22974212 DOI: 10.1111/j.1365-2613.2012.00830.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keratins are the largest subgroup of intermediate filament proteins, which are an important constituent of the cellular cytoskeleton. The principally expressed keratins (K) of the intestinal epithelium are K8, K18 and K19. The specific keratin profile of a particular epithelium provides it with strength and integrity. In the colon, keratins have been shown to regulate electrolyte transport, likely by targeting ion transporters to their correct location in the colonocytes. Keratins are highly dynamic and are subject to post-translational modifications including phosphorylation, acetylation and glycosylation. These affect the filament dynamics and hence solubility of keratins and may contribute to protection against degradation. Keratin null mice (K8(-/-) ) develop colitis, and abnormal keratin mutations have been shown to be associated with inflammatory bowel disease (IBD). Abnormal expression of K7 and K20 has been noted in colitis-associated dysplasia and cancers. In sporadic colorectal cancers (CRCs) may be useful in predicting tumour prognosis; a low K20 expression is noted in CRCs with high microsatellite instability; and keratins have been noted as dysregulated in peri-adenomatous fields. Caspase-cleaved fragment of K18 (M30) in the serum of patients with CRC has been used as a marker of cancer load and to assess response to therapy. These data suggest an emerging importance of keratins in maintaining normal function of the gastrointestinal epithelium as well as being a marker of various colorectal diseases. This review will primarily focus on the biology of these proteins, physiological functions and alterations in IBD and CRCs.
Collapse
Affiliation(s)
- Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
25
|
Strnad P, Usachov V, Debes C, Gräter F, Parry DAD, Omary MB. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J Cell Sci 2012; 124:4221-32. [PMID: 22215855 DOI: 10.1242/jcs.089516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin 'mutation hotspot' residues and their wild-type counterparts.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon. Proc Natl Acad Sci U S A 2011; 108:1445-50. [PMID: 21220329 DOI: 10.1073/pnas.1010833108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Keratin 8 (K8) is a major intermediate filament protein present in enterocytes and serves an antiapoptotic function in hepatocytes. K8-null mice develop colonic hyperplasia and colitis that are reversed after antibiotic treatment. To investigate the pathways that underlie the mechanism of colonocyte hyperplasia and the normalization of the colonic phenotype in response to antibiotics, we performed genome-wide microarray analysis. Functional annotation of genes that are differentially regulated in K8(-/-) and K8(+/+) isolated colon crypts (colonocytes) identified apoptosis as a major altered pathway. Exposure of K8(-/-) colonocytes or colon organ ("organoid") cultures, but not K8(-/-) small intestine organoid cultures, to apoptotic stimuli showed, surprisingly, that they are resistant to apoptosis compared with their wild-type counterparts. This resistance is not related to inflammation per se because T-cell receptor α-null (TCR-α(-/-)) and wild-type colon cultures respond similarly upon induction of apoptosis. Following antibiotic treatment, K8(-/-) colonocytes and organ cultures become less resistant to apoptosis and respond similarly to the wild-type colonocytes. Antibiotics also normalize most differentially up-regulated genes, including survivin and β4-integrin. Treatment of K8(-/-) mice with anti-β4-integrin antibody up-regulated survivin, and induced phosphorylation of focal adhesion kinase with decreased activation of caspases. Therefore, unlike the proapoptotic effect of K8 mutation or absence in hepatocytes, lack of K8 confers resistance to colonocyte apoptosis in a microflora-dependent manner.
Collapse
|
27
|
Strnad P, Zhou Q, Hanada S, Lazzeroni LC, Zhong BH, So P, Davern TJ, Lee WM, Omary MB. Keratin variants predispose to acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology 2010; 139:828-35, 835.e1-3. [PMID: 20538000 PMCID: PMC3249217 DOI: 10.1053/j.gastro.2010.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Keratins 8 and 18 (K8/K18) provide anti-apoptotic functions upon liver injury. The cytoprotective function of keratins explains the overrepresentation of K8/K18 variants in patients with cirrhosis. However, K8/K18 variant-associated susceptibility to acute liver injury, which is well-described in animal models, has not been studied in humans. METHODS We analyzed the entire coding regions of KRT8 and KRT18 genes (15 total exons and their exon-intron boundaries) to determine the frequency of K8/K18 variants in 344 acute liver failure (ALF) patients (49% acetaminophen-related) and 2 control groups (African-American [n = 245] and previously analyzed white [n = 727] subjects). RESULTS Forty-five ALF patients had significant amino-acid-altering K8/K18 variants, including 23 with K8 R341H and 11 with K8 G434S. K8 variants were significantly more common (total of 42 patients) than K18 variants (3 patients) (P < .001). We found increased frequency of variants in white ALF patients (9.1%) versus controls (3.7%) (P = .01). K8 R341H was more common in white (P = .01) and G434S was more common in African-American (P = .02) ALF patients versus controls. White patients with K8/K18 variants were less likely to survive ALF without transplantation (P = .02). K8 A333A and G434S variants associated exclusively with African Americans (23% combined frequency in African American but none in white controls; P < .0001), while overall, K18 variants were more common in non-white liver-disease subjects compared to whites (2.8% vs 0.6%, respectively; P = .008). CONCLUSIONS KRT8 and KRT18 are important susceptibility genes for ALF development. Presence of K8/K18 variants predisposes to adverse ALF outcome, and some variants segregate with unique ethnic and race backgrounds.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany.
| | - Qin Zhou
- Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Shinichiro Hanada
- Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA
| | - Laura C. Lazzeroni
- Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Bi Hui Zhong
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Phillip So
- Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Timothy J. Davern
- Division of Gastroenterology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|
28
|
Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, Singh SR. Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci (Schol Ed) 2010; 2:993-1008. [PMID: 20515838 DOI: 10.2741/s115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and prevalence of Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. According to some estimates >1 million new cases of IBD arise in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD.
Collapse
Affiliation(s)
- Udai P Singh
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhong B, Strnad P, Selmi C, Invernizzi P, Tao GZ, Caleffi A, Chen M, Bianchi I, Podda M, Pietrangelo A, Gershwin ME, Omary MB. Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity. Hepatology 2009; 50:546-54. [PMID: 19585610 PMCID: PMC2756069 DOI: 10.1002/hep.23041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Keratins (K) 8 and 18 variants predispose carriers to the development of end-stage liver disease and patients with chronic hepatitis C to disease progression. Hepatocytes express K8/K18, whereas biliary epithelia express K8/K18/K19. K8-null mice, which are predisposed to liver injury, spontaneously develop anti-mitochondrial antibodies (AMA) and have altered hepatocyte mitochondrial size and function. There is no known association of K19 with human disease and no known association of K8/K18/K19 with human autoimmune liver disease. We tested the hypothesis that K8/K18/K19 variants associate with primary biliary cirrhosis (PBC), an autoimmune cholestatic liver disease characterized by the presence of serum AMA. In doing so, we analyzed the entire exonic regions of K8/K18/K19 in 201 Italian patients and 200 control blood bank donors. Five disease-associated keratin heterozygous variants were identified in patients versus controls (K8 G62C/R341H/V380I, K18 R411H, and K19 G17S). Four variants were novel and included K19 G17S/V229M/N184N and K18 R411H. Overall, heterozygous disease-associated keratin variants were found in 17 of 201 (8.5%) PBC patients and 4 of 200 (2%) blood bank donors (P < 0.004, odds ratio = 4.53, 95% confidence interval = 1.5-13.7). Of the K19 variants, K19 G17S was found in three patients but not in controls and all K8 R341H (eight patients and three controls) associated with concurrent presence of the previously described intronic K8 IVS7+10delC deletion. Notably, keratin variants associated with disease severity (12.4% variants in Ludwig stage III/IV versus 4.2% in stages I/II; P < 0.04, odds ratio = 3.25, 95% confidence interval = 1.02-10.40), but not with the presence of AMA. CONCLUSION K8/K18/K19 variants are overrepresented in Italian PBC patients and associate with liver disease progression. Therefore, we hypothesize that K8/K18/K19 variants may serve as genetic modifiers in PBC.
Collapse
Affiliation(s)
| | | | - Carlo Selmi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Pietro Invernizzi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy
| | - Guo-Zhong Tao
- Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Angela Caleffi
- Center for Hemochromatosis, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Minhu Chen
- Division of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ilaria Bianchi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Mauro Podda
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - M. Bishr Omary
- Address correspondence to: Bishr Omary, University of Michigan, School of Medicine, Department of Molecular & Integrative Physiology, 7744 Medical Science II, 1301 E. Catherine Street, Ann Arbor, MI 48109, (734) 647-2107 Phone; (734) 936-8813 Fax;
| |
Collapse
|
30
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
31
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|
32
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
33
|
Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 2007; 46:1639-49. [PMID: 17969036 DOI: 10.1002/hep.21976] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Keratin polypeptides 8 and 18 (K8/K18) are the cytoskeletal intermediate filament proteins of hepatocytes while K8/K18/K19 are the keratins of hepatobiliary ductal cells. Hepatocyte K8/K18 are highly abundant and behave as stress proteins with injury-inducible expression. Human association studies show that K8/K18 germline heterozygous mutations predispose to end-stage liver disease of multiple etiologies ( approximately 3 fold increased risk), and to liver disease progression in patients with chronic hepatitis C infection. These findings are supported by extensive transgenic mouse and ex vivo primary hepatocyte culture studies showing that K8 or K18 mutations predispose the liver to acute or subacute injury and promote apoptosis and fibrosis. Mutation-associated predisposition to liver injury is likely related to mechanical and nonmechanical keratin functions including maintenance of cell integrity, protection from apoptosis and oxidative injury, serving as a phosphate sponge, regulation of mitochondrial organization/function and protein targeting. These functions are altered by mutation-induced changes in keratin phosphorylation, solubility and filament organization/reorganization. Keratins are also the major constituents of Mallory-Denk bodies (MDBs). A toxin-induced K8>K18 ratio, and keratin crosslinking by transglutaminase-2 play essential roles in MDB formation. Furthermore, intracellular or cell-released K18 fragments, generated by caspase-mediated proteolysis during apoptosis serve as markers of liver injury. Therefore, K8 and K18 are cytoprotective stress proteins that play a central role in guarding hepatocytes from apoptosis. Keratin involvement in liver disease is multi-faceted and includes modulating disease progression upon mutation, formation of MDBs in response to unique forms of injury, and serving as markers of epithelial cell death.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University Digestive Disease Center, Palo Alto, CA
| | | | | | | | | |
Collapse
|