1
|
Denk H, Abuja PM, Zatloukal K. Mallory-Denk bodies and hepatocellular senescence: a causal relationship? Virchows Arch 2024; 484:637-644. [PMID: 38289501 PMCID: PMC11063002 DOI: 10.1007/s00428-024-03748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/02/2024]
Abstract
Mallory-Denk bodies (MDBs) are hepatocellular cytoplasmic inclusions, which occur in certain chronic liver diseases, such as alcohol-related (ASH) and metabolic dysfunction-associated (MASH) steatohepatitis, copper toxicosis, some drug-induced liver disorders, chronic cholangiopathies, and liver tumors. Our study focused on the expression of the senescence markers p21WAF1/cip1 and p16INK4a in hepatocytes containing MDBs in steatohepatitis, chronic cholangiopathies with fibrosis or cirrhosis, Wilson's disease, and hepatocellular carcinomas. Cytoplasm and nuclei of MDB-containing hepatocytes as well as MDB inclusions, except those associated with carcinoma cells, were strongly p16-positive, p21-positive, as well as p21-negative nuclei in MDB-containing hepatocytes which were observed whereas MDBs were p21-negative. Expression of the senescence marker p16 suggests that MDB formation reflects an adaptive response to chronic stress resembling senescence with its consequences, i.e., expression of inflammation- and fibrosis-prone secretome. Thus, senescence can be regarded as "double-edged sword" since, on the one hand, it may be an attempt of cellular defense, but, on the other, also causes further and sustained damage by inducing inflammation and fibrosis related to the senescence-associated secretory phenotype and thus progression of chronic liver disease.
Collapse
Affiliation(s)
- Helmut Denk
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Peter M Abuja
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| |
Collapse
|
2
|
Phillips CL, Fu D, Herring LE, Armao D, Snider NT. Calpain-mediated proteolysis of vimentin filaments is augmented in giant axonal neuropathy fibroblasts exposed to hypotonic stress. Front Cell Dev Biol 2022; 10:1008542. [PMID: 36393840 PMCID: PMC9664965 DOI: 10.3389/fcell.2022.1008542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by loss-of-function mutations in the E3 ubiquitin ligase adaptor gigaxonin, which is encoded by the KLHL16 gene. Gigaxonin regulates the degradation of multiple intermediate filament (IF) proteins, including neurofilaments, GFAP, and vimentin, which aggregate in GAN patient cells. Understanding how IFs and their aggregates are processed under stress can reveal new GAN disease mechanisms and potential targets for therapy. Here we tested the hypothesis that hypotonic stress-induced vimentin proteolysis is impaired in GAN. In both GAN and control fibroblasts exposed to hypotonic stress, we observed time-dependent vimentin cleavage that resulted in two prominent ∼40-45 kDa fragments. However, vimentin proteolysis occurred more rapidly and extensively in GAN cells compared to unaffected controls as both fragments were generated earlier and at 4-6-fold higher levels. To test enzymatic involvement, we determined the expression levels and localization of the calcium-sensitive calpain proteases-1 and -2 and their endogenous inhibitor calpastatin. While the latter was not affected, the expression of both calpains was 2-fold higher in GAN cells compared to control cells. Moreover, pharmacologic inhibition of calpains with MDL-28170 or MG-132 attenuated vimentin cleavage. Imaging analysis revealed striking colocalization between large perinuclear vimentin aggregates and calpain-2 in GAN fibroblasts. This colocalization was dramatically altered by hypotonic stress, where selective breakdown of filaments over aggregates occurred rapidly in GAN cells and coincided with calpain-2 cytoplasmic redistribution. Finally, mass spectrometry-based proteomics revealed that phosphorylation at Ser-412, located at the junction between the central "rod" domain and C-terminal "tail" domain on vimentin, is involved in this stress response. Over-expression studies using phospho-deficient and phospho-mimic mutants revealed that Ser-412 is important for filament organization, solubility dynamics, and vimentin cleavage upon hypotonic stress exposure. Collectively, our work reveals that osmotic stress induces calpain- and proteasome-mediated vimentin degradation and IF network breakdown. These effects are significantly augmented in the presence of disease-causing KLHL16 mutations that alter intermediate filament organization. While the specific roles of calpain-generated vimentin IF fragments in GAN cells remain to be defined, this proteolytic pathway is translationally-relevant to GAN because maintaining osmotic homeostasis is critical for nervous system function.
Collapse
Affiliation(s)
- Cassandra L. Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Natasha T. Snider,
| |
Collapse
|
3
|
Song X, Wang X, Li X, Yan X, Liang Y, Huang Y, Huang L, Zeng H. Histopathology and transcriptome reveals the tissue-specific hepatotoxicity and gills injury in mosquitofish (Gambusia affinis) induced by sublethal concentration of triclosan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112325. [PMID: 34052755 DOI: 10.1016/j.ecoenv.2021.112325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS), a ubiquitous antimicrobial agent, has been frequently detected in wild fish, leading to concerns regarding TCS safety in the aquatic environment. The present work aims to investigate the TCS-mediated effects on various tissues (the liver, gills, brain, and testes) of wild-sourced adult mosquitofish based on histological analysis and transcriptome. Severe morphological injuries were only found in the liver and gills. The histopathological alterations in the liver were characterized by cytoplasmic vacuolation and degeneration, eosinophilic cytoplasmic inclusions, and nuclear polymorphism. The gill lesions contained epithelial lifting, intraepithelial edema, fusion and shortening of the secondary lamellae. Consistently, the numbers of differently expressed genes (DEGs) identified by transcriptome were in the order of liver (1627) > gills (182) > brain (9) > testes (4). Trend-aligned histopathological and transcriptomic changes in the 4 tissues, suggesting the tissue-specific response manner of mosquitofish to TCS, and the liver and gills were the target organs. TCS interrupted many biological pathways associated with lipogenesis and lipid metabolism, transmembrane transporters, protein synthesis, and carbohydrate metabolism in the liver, and it induced nonspecific immune response in the gills. TCS-triggered hepatotoxicity and gills damnification may lead to inflammation, apoptosis, diseases, and even death in mosquitofish. TCS showed moderate acute toxicity and bioaccumulative property on mosquitofish, suggesting that prolonged or massive use of TCS may pose an ecological risk.
Collapse
Affiliation(s)
- Xiaohong Song
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xin Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
| | - Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
| | - Yanpeng Liang
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Yuequn Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
| | - Liangliang Huang
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China.
| |
Collapse
|
4
|
Honma Y, Miyagawa K, Hara Y, Hayashi T, Kusanaga M, Ogino N, Minami S, Oe S, Ikeda M, Hino K, Harada M. Correlation of hepatitis C virus-mediated endoplasmic reticulum stress with autophagic flux impairment and hepatocarcinogenesis. Med Mol Morphol 2021; 54:108-121. [PMID: 33386512 DOI: 10.1007/s00795-020-00271-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022]
Abstract
Hepatitis C virus (HCV) infection has been known to use autophagy for its replication. However, the mechanisms by which HCV modulates autophagy remain controversial. We used HCV-Japanese fulminant hepatitis-1-infected Huh7 cells. HCV infection induced the accumulation of autophagosomes. Morphological analyses of monomeric red fluorescent protein (mRFP)-green fluorescent protein (GFP) tandem fluorescent-tagged LC3 transfection showed HCV infection impaired autophagic flux. Autophagosome-lysosome fusion assessed by transfection of mRFP- or GFP-LC3 and immunostaining of lysosomal-associated membrane protein 1 was inhibited by HCV infection. Decrease of HCV-induced endoplasmic reticulum (ER) stress by 4-phenylbutyric acid, a chemical chaperone, improved the HCV-mediated autophagic flux impairment. HCV infection-induced oxidative stress and subsequently DNA damage, but not apoptosis. Furthermore, HCV induced cytoprotective effects against the cellular stress by facilitating the formation of cytoplasmic inclusion bodies as shown by p62 expression and by modulating keratin protein expression and activated nuclear factor erythroid 2-related factor 2. HCV eradication by direct-acting antivirals improved autophagic flux, but DNA damage persisted. In conclusion, HCV-induced ER stress correlates with autophagic flux impairment. Decrease of ER stress is considered to be a promising therapeutic strategy for HCV-related chronic liver diseases. However, we should be aware that the risk of hepatocarcinogenesis remains even after HCV eradication.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tsuguru Hayashi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Sota Minami
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masanori Ikeda
- Department of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
5
|
Tirawanchai N, Kengkoom K, Isarangkul D, Burana-osot J, Kanjanapruthipong T, Chantip S, Phattanawasin P, Sotanaphun U, Ampawong S. A combination extract of kaffir lime, galangal, and lemongrass maintains blood lipid profiles, hepatocytes, and liver mitochondria in rats with nonalcoholic steatohepatitis. Biomed Pharmacother 2020; 124:109843. [DOI: 10.1016/j.biopha.2020.109843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
|
6
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
7
|
Animal models of NAFLD from the pathologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:929-942. [PMID: 29746920 DOI: 10.1016/j.bbadis.2018.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.
Collapse
|
8
|
Honma Y, Sato-Morita M, Katsuki Y, Mihara H, Baba R, Harada M. Trehalose activates autophagy and decreases proteasome inhibitor-induced endoplasmic reticulum stress and oxidative stress-mediated cytotoxicity in hepatocytes. Hepatol Res 2018; 48:94-105. [PMID: 28295916 DOI: 10.1111/hepr.12892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 02/08/2023]
Abstract
AIM Endoplasmic reticulum stress is associated with the pathophysiology of various liver diseases. Endoplasmic reticulum stress mediates the accumulation of abnormal proteins and leads to oxidative stress, cytoplasmic inclusion body formation, and apoptosis in hepatocytes. Autophagy is a bulk degradation pathway for long-lived cytoplasmic proteins or damaged organelles and is also a major degradation pathway for many aggregate-prone and disease-causing proteins. We previously reported that rapamycin, a mammalian target of rapamycin inhibitor, activated autophagy and decreased proteasome inhibitor-mediated ubiquitinated protein accumulation, cytoplasmic inclusion body formation, and apoptosis in hepatocytes. Trehalose is a non-reducing disaccharide that has been shown to activate autophagy. It has been reported to decrease aggregate-prone proteins and ameliorate cytotoxicity in neurodegenerative disease models. However, the effects of trehalose in hepatocytes are unclear. METHODS We show here that trehalose activated autophagy and reduced endoplasmic reticulum stress, cytoplasmic inclusion body formation, and apoptosis in proteasome inhibitor-treated liver-derived cultured cells. CONCLUSION To our knowledge, this is the first report showing that trehalose activates autophagy and has cytoprotective effects in hepatocytes. Our findings suggest that trehalose can become a therapeutic agent for endoplasmic reticulum stress-related liver diseases.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Miyuki Sato-Morita
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuka Katsuki
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
9
|
Weerasinghe SVW, Park MJ, Portney DA, Omary MB. Mouse genetic background contributes to hepatocyte susceptibility to Fas-mediated apoptosis. Mol Biol Cell 2016; 27:3005-3012. [PMID: 27535425 PMCID: PMC5063609 DOI: 10.1091/mbc.e15-06-0423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
Liver disease progression is modulated by genetic modifiers in mouse strains and across human races and ethnicities. We hypothesized that hepatocyte culture duration and genetic background regulate hepatocyte susceptibility to apoptosis. Hepatocytes were isolated from FVB/N, C57BL/6, and C3H/He mice and cultured or treated with Fas ligand or acetaminophen after different culture times. Protein and mRNA expressions of Fas receptor, caspases-3/7/8, and Bak/Bax/Bid proteins were determined. FVB/N hepatocytes manifested rapid decreases of caspases-3/7 but not caspase-8 as culture time increased, which paralleled decreased susceptibility to apoptosis. Some changes were also found in Fas-receptor and Bak, Bax, and Bid proteins; caspase mRNA decreases were also noted. Caspase protein degradation was partially reversed by lysosomal protease but not proteasome or autophagy inhibitors. C57BL/6 and FVB/N hepatocytes behaved similarly in their limited susceptibility to apoptosis, whereas C3H/He hepatocytes show limited alterations in caspases, with consequent increased susceptibility to apoptosis. Similarly, C3H/He mice were more susceptible than C57BL/6 and FVB/N mice to Fas-mediated liver injury. Therefore there are significant mouse strain-dependent differences in susceptibility to apoptosis and selective loss of caspases upon short-term hepatocyte culture, with consequent decrease in susceptibility to apoptosis. These differences likely reflect genetic modifiers that provide resistance or predisposition to hepatocyte death.
Collapse
Affiliation(s)
- Sujith V W Weerasinghe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A Portney
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Hiura M, Honma Y, Miyagawa K, Oe S, Shimajiri S, Mihara H, Oe M, Sato-Morita M, Katsuki Y, Harada M. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res 2015; 45:1124-35. [PMID: 25581125 DOI: 10.1111/hepr.12478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
Abstract
AIM Autophagy induction and Mallory-Denk body (MDB) formation have been considered to have cytoprotective effects from cellular stress in liver diseases. We investigated the relations among oxidative stress, autophagy and MDB formation in patients with chronic hepatitis B (CHB), chronic hepatitis C (CHC) and non-alcoholic fatty liver disease (NAFLD) to clarify the alleviation mechanisms against oxidative stress of hepatocytes. METHODS First, we treated cultured cells with proteasome inhibitor (PI) or free fatty acid (FFA) and evaluated endoplasmic reticulum (ER) stress, oxidative stress, ubiquitinated proteins and p62 by western blotting. Then, we used human liver biopsy samples to evaluate oxidative stress, autophagy and MDB formation by immunohistochemical analysis. RESULTS Treatment with PI or FFA increased ER stress, oxidative stress, ubiquitinated proteins and p62 in cultured cells. Human liver biopsy samples of CHC and NAFLD showed that MDB formed in areas with strong oxidative stress and that the MDB-containing cells circumvented oxidative stress. Keratin 8 (K8) expression was strong in MDB-containing cells in CHC and NAFLD. However, in CHB samples, the expression of K8 was not increased in response to oxidative stress and MDB aggregates did not appear. Aminotransferase values were significantly lower in patients with CHC and NAFLD in whom light chain 3 antibody expression was increased in response to oxidative stress. CONCLUSION Strong expression of K8 was considered to be important for MDB formation. MDB protect liver cells from oxidative stress at a cellular level and autophagy reduced hepatic damage when it was induced in the hepatocytes exposed to strong oxidative stress.
Collapse
Affiliation(s)
- Masaaki Hiura
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Shinji Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masami Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Yuka Katsuki
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, Kitakyushu, Japan
| |
Collapse
|
11
|
Honma Y, Harada M. New therapeutic strategy for hepatocellular carcinoma by molecular targeting agents via inhibition of cellular stress defense mechanisms. J UOEH 2014; 36:229-235. [PMID: 25501753 DOI: 10.7888/juoeh.36.229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The prognosis of advanced hepatocellular carcinoma (HCC) has remained very poor.It has recently been reported that the molecular targeting agent sorafenib can improve the prognosis of patients with advanced HCC. However, the detailed mechanisms of sorafenib, especially its direct effects on hepatoma and hepatocyte cells, are poorly understood, making a more detailed investigation about the molecular mechanism of sorafenib necessary. Endoplasmic reticulum (ER) stress is related to the pathophysiology of various liver diseases, including chronic viral hepatitis, alcoholic and nonalcoholic steatohepatitis and HCC. In this regard, our recent data examining the molecular effects of sorafenib focused on the cellular defense mechanisms from ER stress, the unfolded protein response (UPR) and keratin phosphorylation, demonstrated that sorafenib inhibited both important cytoprotective mechanisms, UPR and keratin phosphorylation, and enhances the anti-tumor effect in combination with proteasome inhibitors. This review summarizes the cytoprotective mechanisms from ER stress and our results about the direct effect of sorafenib on the cytoprotective mechanisms.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | | |
Collapse
|
12
|
Torruellas C, French SW, Medici V. Diagnosis of alcoholic liver disease. World J Gastroenterol 2014; 20:11684-11699. [PMID: 25206273 PMCID: PMC4155359 DOI: 10.3748/wjg.v20.i33.11684] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol is a hepatotoxin that is commonly consumed worldwide and is associated with a spectrum of liver injury including simple steatosis or fatty liver, alcoholic hepatitis, fibrosis, and cirrhosis. Alcoholic liver disease (ALD) is a general term used to refer to this spectrum of alcohol-related liver injuries. Excessive or harmful alcohol use is ranked as one of the top five risk factors for death and disability globally and results in 2.5 million deaths and 69.4 million annual disability adjusted life years. All patients who present with clinical features of hepatitis or chronic liver disease or who have elevated serum elevated transaminase levels should be screened for an alcohol use disorder. The diagnosis of ALD can generally be made based on history, clinical and laboratory findings. However, the diagnosis of ALD can be clinically challenging as there is no single diagnostic test that confirms the diagnosis and patients may not be forthcoming about their degree of alcohol consumption. In addition, clinical findings may be absent or minimal in early ALD characterized by hepatic steatosis. Typical laboratory findings in ALD include transaminase levels with aspartate aminotransferase greater than alanine aminotransferase as well as increased mean corpuscular volume, gamma-glutamyltranspeptidase, and IgA to IgG ratio. In unclear cases, the diagnosis can be supported by imaging and liver biopsy. The histological features of ALD can ultimately define the diagnosis according to the typical presence and distribution of hepatic steatosis, inflammation, and Mallory-Denk bodies. Because of the potential reversible nature of ALD with sobriety, regular screening of the general population and early diagnosis are essential.
Collapse
|
13
|
Kucukoglu O, Guldiken N, Chen Y, Usachov V, El-Heliebi A, Haybaeck J, Denk H, Trautwein C, Strnad P. High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin 8. Hepatology 2014; 60:169-78. [PMID: 24519272 DOI: 10.1002/hep.27068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/06/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated keratins 8/18 (K8/K18). MDBs are characteristic of alcoholic and nonalcoholic steatohepatitis (NASH) and discriminate between the relatively benign simple steatosis and the more aggressive NASH. Given the emerging evidence for a genetic predisposition to MDB formation and NASH development in general, we studied whether high-fat (HF) diet triggers MDB formation and liver injury in susceptible animals. Mice were fed a high-fat (HF) or low-fat (LF) diet plus a cofactor for MDB development, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Additionally, we fed nontransgenic and K8 overexpressing mice (K8tg) with the HF diet. The presence of MDB and extent of liver injury was evaluated using biochemical markers, histological staining, and immunofluorescence microscopy. In DDC-fed animals, an HF diet resulted in greater liver injury and up-regulation of inflammation-related genes. As a potential mechanism, K8/K18 accumulation and increased ecto-5'-nucleotidase (CD73) levels were noted. In the genetically susceptible K8tg mice, HF diet triggered hepatocellular injury, ballooning, apoptosis, inflammation, and MDB development by way of 1) decreased expression of the major stress-inducible chaperone Hsp72 with appearance of misfolded keratins; 2) elevated levels of the transglutaminase 2 (TG2); 3) increased K8 phosphorylation at S74 with subsequent TG2-mediated crosslinking of phosphorylated K8; and 4) higher production of the MDB-modifier gene CD73. CONCLUSION Our data demonstrate that HF diet triggers aggregate formation and development of liver injury in susceptible individuals through misfolding and crosslinking of excess K8.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Snow KK, Bell MC, Stoddard AM, Curto TM, Wright EC, Dienstag JL. Processes to manage analyses and publications in a phase III multicenter randomized clinical trial. Trials 2014; 15:159. [PMID: 24886378 PMCID: PMC4040510 DOI: 10.1186/1745-6215-15-159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
Background The timely publication of findings in peer-reviewed journals is a primary goal of clinical research. In clinical trials, the processes leading to publication can be complex from choice and prioritization of analytic topics through to journal submission and revisions. As little literature exists on the publication process for multicenter trials, we describe the development, implementation, and effectiveness of such a process in a multicenter trial. Methods The Hepatitis C Antiviral Long-Term Treatment against Cirrhosis (HALT-C) trial included a data coordinating center (DCC) and clinical centers that recruited and followed more than 1,000 patients. Publication guidelines were approved by the steering committee, and the publications committee monitored the publication process from selection of topics to publication. Results A total of 73 manuscripts were published in 23 peer-reviewed journals. When manuscripts were closely tracked, the median time for analyses and drafting of manuscripts was 8 months. The median time for data analyses was 5 months and the median time for manuscript drafting was 3 months. The median time for publications committee review, submission, and journal acceptance was 7 months, and the median time from analytic start to journal acceptance was 18 months. Conclusions Effective publication guidelines must be comprehensive, implemented early in a trial, and require active management by study investigators. Successful collaboration, such as in the HALT-C trial, can serve as a model for others involved in multidisciplinary and multicenter research programs. Trial registration The HALT-C Trial was registered with clinicaltrials.gov (NCT00006164).
Collapse
Affiliation(s)
| | | | | | - Teresa M Curto
- New England Research Institutes, 9 Galen Street, Watertown, MA 02472, USA.
| | | | | |
Collapse
|
15
|
Snider NT, Griggs NW, Singla A, Moons DS, Weerasinghe SV, Lok AS, Ruan C, Burant CF, Conjeevaram HS, Omary MB. CD73 (ecto-5'-nucleotidase) hepatocyte levels differ across mouse strains and contribute to mallory-denk body formation. Hepatology 2013; 58:1790-800. [PMID: 23729294 PMCID: PMC3796030 DOI: 10.1002/hep.26525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 01/22/2023]
Abstract
UNLABELLED Formation of hepatocyte Mallory-Denk bodies (MDBs), which are aggregates of keratins 8 and 18 (K8/K18), ubiquitin, and the ubiquitin-binding protein, p62, has a genetic predisposition component in humans and mice. We tested the hypothesis that metabolomic profiling of MDB-susceptible C57BL and MDB-resistant C3H mouse strains can illuminate MDB-associated pathways. Using both targeted and unbiased metabolomic analyses, we demonstrated significant differences in intermediates of purine metabolism. Further analysis revealed that C3H and C57BL livers differ significantly in messenger RNA (mRNA) level, protein expression, and enzymatic activity of the adenosine-generating enzyme, ecto-5'-nucleotidase (CD73), which was significantly lower in C57BL livers. CD73 mRNA levels were also dramatically decreased in human liver biopsies from hepatitis C and nonalcoholic fatty liver disease patients. Feeding mice with a diet containing the MDB-inducing agent, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), significantly decreased CD73 protein and activity in C57BL livers and resulted in loss of plasma membrane CD73 expression and activity in isolated mouse hepatocytes. To further examine the role of CD73 in MDB formation in vivo, we fed wild-type (WT) and CD73(-/-) mice a DDC-containing diet. Liver enlargement, p62 induction, and disappearance of the K8/K18 cytoskeleton were attenuated in CD73(-/-) , compared to WT livers. MDB formation, as assessed by biochemical and immunofluorescence detection of keratin and ubiquitin complexes, was nearly absent in CD73(-/-) mice. CONCLUSION Purine metabolism and CD73 expression are linked to susceptibility to MDB formation in livers of different mouse strains. Expression of the adenosine-generating enzyme, CD73, contributes to experimental MDB induction and is highly regulated in MDB-associated liver injury in mice and in chronic human liver disease.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicholas W. Griggs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amika Singla
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David S. Moons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sujith V.W. Weerasinghe
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna S. Lok
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chunhai Ruan
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles F. Burant
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hari S. Conjeevaram
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Pagadala MR, McCullough A. The relevance of liver histology to predicting clinically meaningful outcomes in nonalcoholic steatohepatitis. Clin Liver Dis 2012; 16:487-504. [PMID: 22824477 PMCID: PMC4176889 DOI: 10.1016/j.cld.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease. Nonalcoholic steatohepatitis (NASH), the more severe form of NAFLD, has an increased risk for progression to cirrhosis. The available data suggest increased morbidity and mortality among those patients with advanced histologic severity such as NASH and fibrosis. Despite the lack of a universally accepted histologic definition of NAFLD and inconsistency among pathologists regarding histologic findings essential to the diagnosis of NASH, a few studies have identified specific histologic findings (particularly fibrosis regardless of stage) that are able to predict NAFLD-related mortality as being most important.
Collapse
Affiliation(s)
- Mangesh R. Pagadala
- Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
| | - Arthur.J. McCullough
- Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH,Departments of Gastroenterology and Hepatology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
18
|
Singla A, Moons DS, Snider NT, Wagenmaker ER, Jayasundera VB, Omary MB. Oxidative stress, Nrf2 and keratin up-regulation associate with Mallory-Denk body formation in mouse erythropoietic protoporphyria. Hepatology 2012; 56:322-31. [PMID: 22334478 PMCID: PMC3389581 DOI: 10.1002/hep.25664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/27/2012] [Indexed: 01/02/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are hepatocyte inclusions commonly seen in steatohepatitis. They are induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 12 weeks, which also causes porphyrin accumulation. Erythropoietic protoporphyria (EPP) is caused by mutations in ferrochelatase (fch), and a fraction of EPP patients develop liver disease that is phenocopied in Fech(m1Pas) mutant (fch/fch) mice, which have an inactivating fch mutation. fch/fch mice develop spontaneous MDBs, but the molecular factors involved in their formation and whether they relate to DDC-induced MDBs are unknown. We tested the hypothesis that fch mutation creates a molecular milieu that mimics experimental drug-induced MDBs. In 13- and 20-week-old fch/fch mice, serum alkaline phosphatase, alanine aminotransferase, and bile acids were increased. The 13-week-old fch/fch mice did not develop histologically evident MDBs but manifested biochemical alterations required for MDB formation, including increased transglutaminase-2 and keratin overexpression, with a greater keratin 8 (K8)-to-keratin 18 (K18) ratio, which are critical for drug-induced MDB formation. In 20-week-old fch/fch mice, spontaneous MDBs were readily detected histologically and biochemically. Short-term (3-week) DDC feeding markedly induced MDB formation in 20-week-old fch/fch mice. Under basal conditions, old fch/fch mice had significant alterations in mitochondrial oxidative-stress markers, including increased protein oxidation, decreased proteasomal activity, reduced adenosine triphosphate content, and Nrf2 (redox sensitive transcription factor) up-regulation. Nrf2 knockdown in HepG2 cells down-regulated K8, but not K18. CONCLUSION Fch/fch mice develop age-associated spontaneous MDBs, with a marked propensity for rapid MDB formation upon exposure to DDC, and therefore provide a genetic model for MDB formation. Inclusion formation in the fch/fch mice involves oxidative stress which, together with Nrf2-mediated increase in K8, promotes MDB formation.
Collapse
Affiliation(s)
- Amika Singla
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - David S. Moons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Natasha T. Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Elizabeth R. Wagenmaker
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - V. Bernadene Jayasundera
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622,Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5622,To whom correspondence should be addressed: Bishr Omary, University of Michigan Medical School, Department of Molecular & Integrative Physiology, 7744 Medical Science Building II, 1137 Catherine St., Ann Arbor, MI 48109, Phone: 734-764-4376, Fax: 734-936-8813,
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Keratins are a subgroup of intermediate filaments expressed in the epithelia. Keratins emerged as important tissue-protecting genes and keratin variants cause/predispose to development of more than 50 human disorders. Our review focuses on the importance of keratins in context of liver disease. RECENT FINDINGS K8/K18 variants are found in approximately 4% of white population and predispose to development and adverse outcome of multiple liver diseases. K8/K18 are major constituents of Mallory-Denk bodies, that is inclusions found in alcoholic and nonalcoholic steatohepatitis (NASH) and dysregulated keratin expression, K8 hyperphosphorylation, misfolding and crosslinking via transglutaminase 2 facilitate aggregate formation. Necrosis-generated and apoptosis-generated keratin serum fragments are emerging as important noninvasive markers of multiple liver diseases, particularly NASH. Keratins are established markers of tumor origin and in hepatocellular carcinoma, K19 expression is associated with poor prognosis. SUMMARY Keratins are established tumor markers and are widely used as noninvasive markers of liver injury. In addition, the data that have become available in recent years have greatly advanced our understanding of keratins as modifiers of liver disease development.
Collapse
|
20
|
Kwan R, Hanada S, Harada M, Strnad P, Li DH, Omary MB. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation. FASEB J 2012; 26:2318-26. [PMID: 22362895 DOI: 10.1096/fj.11-198580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte inclusions that are associated with poor liver disease prognosis. The intermediate filament protein keratin 8 (K8) and its cross-linking by transglutaminase-2 (TG2) are essential for MDB formation. K8 hyperphosphorylation occurs in association with liver injury and MDB formation, but the link between keratin phosphorylation and MDB formation is unknown. We used a mutational approach to identify K8 Q70 as a residue that is important for K8 cross-linking to itself and other liver proteins. K8 cross-linking is markedly enhanced on treating cells with a phosphatase inhibitor and decreases dramatically on K8 S74A or Q70N mutation in the presence of phosphatase inhibition. K8 Q70 cross-linking, in the context of synthetic peptides or intact proteins transfected into cells, is promoted by phosphorylation at K8 S74 or by an S74D substitution and is inhibited by S74A mutation. Transgenic mice that express K8 S74A or a K8 G62C liver disease variant that inhibits K8 S74 phosphorylation have a markedly reduced ability to form MDBs. Our findings support a model in which the stress-triggered phosphorylation of K8 S74 induces K8 cross-linking by TG2, leading to MDB formation. These findings may extend to neuropathies and myopathies that are characterized by intermediate filament-containing inclusions.
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Snider NT, Weerasinghe SVW, Singla A, Leonard JM, Hanada S, Andrews PC, Lok AS, Omary MB. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation. ACTA ACUST UNITED AC 2012; 195:217-29. [PMID: 22006949 PMCID: PMC3198167 DOI: 10.1083/jcb.201102142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Differential expression and activity of the cellular energy regulators GAPDH and NDPK underlie reactive oxygen species–induced damage in the mouse liver and may contribute to human liver disease progression. Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|