1
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Pian LL, Song MH, Wang TF, Qi L, Peng TL, Xie KP. Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges. Front Endocrinol (Lausanne) 2025; 15:1401829. [PMID: 39839479 PMCID: PMC11746065 DOI: 10.3389/fendo.2024.1401829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion of pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis with a short median overall survival of 6-12 months and a low 5-year survival rate of approximately 3%. It is crucial to remove PanIN lesions to prevent the development of invasive PDAC, as PDAC spreads rapidly outside the pancreas. This review aims to provide the latest knowledge on PanIN risk, pathology, cellular origin, genetic susceptibility, and diagnosis, while identifying research gaps that require further investigation in this understudied area of precancerous lesions. PanINs are classified into PanIN 1, PanIN 2, and PanIN 3, with PanIN 3 having the highest likelihood of developing into invasive PDAC. Differentiating between PanIN 2 and PanIN 3 is clinically significant. Genetic alterations found in PDAC are also present in PanIN and increase with the grade of PanIN. Imaging methods alone are insufficient for distinguishing PanIN, necessitating the use of genetic and molecular tests for identification. In addition, metabolomics technologies and miRNAs are playing an increasingly important role in the field of cancer diagnosis, offering more possibilities for efficient identification of PanIN. Although detecting and stratifying the risk of PanIN poses challenges, the combined utilization of imaging, genetics, and metabolomics holds promise for improving patient survival in this field.
Collapse
Affiliation(s)
- Ling-ling Pian
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Mei-hui Song
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Teng-fei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Tie-li Peng
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Ke-ping Xie
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Tavano F, Latiano A, Palmieri O, Gioffreda D, Latiano T, Gentile A, Tardio M, Latiano TP, Gentile M, Terracciano F, Perri F. Duodenal Fluid Analysis as a Rewarding Approach to Detect Low-Abundance Mutations in Biliopancreatic Cancers. Int J Mol Sci 2024; 25:8436. [PMID: 39126005 PMCID: PMC11312909 DOI: 10.3390/ijms25158436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diagnosis of biliopancreatic cancers by the available serum tumor markers, imaging, and histopathological tissue specimen examination remains a challenge. Circulating cell-free DNA derived from matched pairs of secretin-stimulated duodenal fluid (DF) and plasma from 10 patients with biliopancreatic diseases and 8 control subjects was analyzed using AmpliSeq™ HD technology for Ion Torrent Next-Generation Sequencing to evaluate the potential of liquid biopsy with DF in biliopancreatic cancers. The median cfDNA concentration was greater in DF-derived than in plasma-derived samples. A total of 13 variants were detected: 11 vs. 1 were exclusive for DF relative to the plasma source, and 1 was shared between the two body fluids. According to the four-tier systems, 10 clinical tier-I-II (76.9%), 1 tier-III (7.7%), and 2 tier-IV (15.4%) variants were identified. Notably, the 11 tier-I-III variants were exclusively found in DF-derived cfDNA from five patients with biliopancreatic cancers, and were detected in seven genes (KRAS, TP53, BRAF, CDKN2A, RNF43, GNAS, and PIK3CA); 82% of the tier-I-III variants had a low abundance, with a VAF < 6%. The mutational profiling of DF seems to be a reliable and promising tool for identifying cancer-associated alterations in malignant cancers of the biliopancreatic tract.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annamaria Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Pia Latiano
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
4
|
Overbeek KA, Cahen DL, Bruno MJ. The role of endoscopic ultrasound in the detection of pancreatic lesions in high-risk individuals. Fam Cancer 2024; 23:279-293. [PMID: 38573399 PMCID: PMC11255057 DOI: 10.1007/s10689-024-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Individuals at high risk of developing pancreatic ductal adenocarcinoma are eligible for surveillance within research programs. These programs employ periodic imaging in the form of magnetic resonance imaging/magnetic resonance cholangiopancreatography or endoscopic ultrasound for the detection of early cancer or high-grade precursor lesions. This narrative review discusses the role of endoscopic ultrasound within these surveillance programs. It details its overall strengths and limitations, yield, burden on patients, and how it compares to magnetic resonance imaging. Finally, recommendations are given when and how to incorporate endoscopic ultrasound in the surveillance of high-risk individuals.
Collapse
Affiliation(s)
- Kasper A Overbeek
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Djuna L Cahen
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco J Bruno
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Goggins M. The role of biomarkers in the early detection of pancreatic cancer. Fam Cancer 2024; 23:309-322. [PMID: 38662265 PMCID: PMC11309746 DOI: 10.1007/s10689-024-00381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic surveillance can detect early-stage pancreatic cancer and achieve long-term survival, but currently involves annual endoscopic ultrasound and MRI/MRCP, and is recommended only for individuals who meet familial/genetic risk criteria. To improve upon current approaches to pancreatic cancer early detection and to expand access, more accurate, inexpensive, and safe biomarkers are needed, but finding them has remained elusive. Newer approaches to early detection, such as using gene tests to personalize biomarker interpretation, and the increasing application of artificial intelligence approaches to integrate complex biomarker data, offer promise that clinically useful biomarkers for early pancreatic cancer detection are on the horizon.
Collapse
Affiliation(s)
- Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
7
|
Stefanoudakis D, Frountzas M, Schizas D, Michalopoulos NV, Drakaki A, Toutouzas KG. Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:2827-2844. [PMID: 38666907 PMCID: PMC11049225 DOI: 10.3390/cimb46040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The present review demonstrates the major tumor suppressor genes, including TP53, CDKN2A and SMAD4, associated with pancreatic cancer. Each gene's role, prevalence and impact on tumor development and progression are analyzed, focusing on the intricate molecular landscape of pancreatic cancer. In addition, this review underscores the prognostic significance of specific mutations, such as loss of TP53, and explores some potential targeted therapies tailored to these molecular signatures. The findings highlight the importance of genomic analyses for risk assessment, early detection and the design of personalized treatment approaches in pancreatic cancer. Overall, this review provides a comprehensive analysis of the molecular intricacies of pancreatic tumors, paving the way for more effective and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Stefanoudakis
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (N.V.M.)
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (N.V.M.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos V. Michalopoulos
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (N.V.M.)
| | - Alexandra Drakaki
- Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Konstantinos G. Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (N.V.M.)
| |
Collapse
|
8
|
Hu Y, Jones D, Esnakula AK, Krishna SG, Chen W. Molecular Pathology of Pancreatic Cystic Lesions with a Focus on Malignant Progression. Cancers (Basel) 2024; 16:1183. [PMID: 38539517 PMCID: PMC10969285 DOI: 10.3390/cancers16061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
The malignant progression of pancreatic cystic lesions (PCLs) remains understudied with a knowledge gap, yet its exploration is pivotal for effectively stratifying patient risk and detecting cancer at its earliest stages. Within this review, we delve into the latest discoveries on the molecular level, revealing insights into the IPMN molecular landscape and revised progression model, associated histologic subtypes, and the role of inflammation in the pathogenesis and malignant progression of IPMN. Low-grade PCLs, particularly IPMNs, can develop into high-grade lesions or invasive carcinoma, underscoring the need for long-term surveillance of these lesions if they are not resected. Although KRAS and GNAS remain the primary oncogenic drivers of neoplastic development in IPMNs, additional genes that are important in tumorigenesis have been recently identified by whole exome sequencing. A more complete understanding of the genes involved in the molecular progression of IPMN is critical for effective monitoring to minimize the risk of malignant progression. Complicating these strategies, IPMNs are also frequently multifocal and multiclonal, as demonstrated by comparative molecular analysis. Algorithms for preoperative cyst sampling and improved radiomic techniques are emerging to model this spatial and temporal genetic heterogeneity better. Here, we review the molecular pathology of PCLs, focusing on changes associated with malignant progression. Developing models of molecular risk stratification in PCLs which can complement radiologic and clinical features, facilitate the early detection of pancreatic cancer, and enable the development of more personalized surveillance and management strategies are summarized.
Collapse
Affiliation(s)
- Yan Hu
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Dan Jones
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Ashwini K. Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
9
|
Gualtieri P, Cianci R, Frank G, Pizzocaro E, De Santis GL, Giannattasio S, Merra G, Butturini G, De Lorenzo A, Di Renzo L. Pancreatic Ductal Adenocarcinoma and Nutrition: Exploring the Role of Diet and Gut Health. Nutrients 2023; 15:4465. [PMID: 37892540 PMCID: PMC10610120 DOI: 10.3390/nu15204465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The incidence of pancreatic cancer is increasing worldwide. The most common form is represented by pancreatic ductal adenocarcinoma (PDAC) which has been shown to be linked to chronic inflammation. Notably, the gut microbiota has emerged as a critical player in regulating immune responses and inflammation. Indeed, intestinal dysbiosis, characterized by an imbalance in the gut microbiota composition, can contribute to the initiation of chronic inflammation. Sterile chronic inflammation can occur, probably activated by the translocation of bacterial components, such as lipopolysaccharide (LPS), the major component of Gram-negative microbiota, with the consequent induction of innate mucosal immunity, through the activation of Toll-like receptors (TLRs). Furthermore, the interaction between LPS and TLRs could enhance cancer progression. Recent research has shed light on the pivotal role of nutrition, as a modifiable risk factor, in PDAC immunological processes, particularly focusing on the immuno-modulatory effects of the gut microbiota. Different dietary regimens, fiber intake, immunonutrients, and antioxidants have the potential to either exacerbate or mitigate chronic inflammation, thereby influencing the pathogenesis and natural history of PDAC. These dietary components may affect the gut microbiota composition and, consequently, the level of inflammation, either promoting or protecting against PDAC. In this review of reviews, we discuss the modulatory role of nutrition and the gut microbiota in PDAC's immunological processes to explore a translational therapeutic approach that could improve the survival and quality of life of these patients.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Frank
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Erica Pizzocaro
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Silvia Giannattasio
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Giovanni Butturini
- Division of Hepato-Bilio-Pancreatic Surgery, P. Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy;
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| |
Collapse
|
10
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Papadopoulos N, Hruban RH. Molecular Mechanisms of Cystic Neoplasia‐. THE PANCREAS 2023:630-637. [DOI: 10.1002/9781119876007.ch82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
YANG HONG, LI WAN, REN LIWEN, YANG YIHUI, ZHANG YIZHI, GE BINBIN, LI SHA, ZHENG XIANGJIN, LIU JINYI, ZHANG SEN, DU GUANHUA, TANG BO, WANG HONGQUAN, WANG JINHUA. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol Res 2023; 31:83-99. [PMID: 37304241 PMCID: PMC10208033 DOI: 10.32604/or.2023.028905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic cancer is a malignant disease characterized by low survival and high recurrence rate, whose patients are mostly at the stage of locally advanced or metastatic disease when first diagnosed. Early diagnosis is particularly important because prognostic/predictive markers help guide optimal individualized treatment regimens. So far, CA19-9 is the only biomarker for pancreatic cancer approved by the FDA, but its effectiveness is limited by low sensitivity and specificity. With recent advances in genomics, proteomics, metabolomics, and other analytical and sequencing technologies, the rapid acquisition and screening of biomarkers is now possible. Liquid biopsy also occupies a significant place due to its unique advantages. In this review, we systematically describe and evaluate the available biomarkers that have the greatest potential as vital tools in diagnosing and treating pancreatic cancer.
Collapse
Affiliation(s)
- HONG YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - WAN LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - LIWEN REN
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIHUI YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIZHI ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BINBIN GE
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SHA LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - XIANGJIN ZHENG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - JINYI LIU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SEN ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - GUANHUA DU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BO TANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - HONGQUAN WANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - JINHUA WANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
13
|
Hata T, Mizuma M, Kusakabe T, Amano H, Furukawa T, Iwao T, Unno M. Simultaneous and sequential combination of genetic and epigenetic biomarkers for the presence of high-grade dysplasia in patients with pancreatic cyst: Discovery in cyst fluid and test in pancreatic juice. Pancreatology 2023; 23:218-226. [PMID: 36707261 DOI: 10.1016/j.pan.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND/OBJECTIVES Screening patients with intraductal papillary mucinous neoplasms (IPMN) has the primary goal of identifying potentially curable noninvasive precursors. We aimed to evaluate the diagnostic impact of genetic and epigenetic biomarkers in the presence of noninvasive precursors. METHODS Mutated KRAS/GNAS and methylated SOX17/TBX15/BMP3/TFPI2 DNA were assessed by droplet digital PCR in a discovery cohort of 70 surgically aspirated cyst fluids, and diagnostic performances for differentiating high-grade dysplasia (HGD) from low-grade dysplasia (LGD) was evaluated. We then tested these markers using an independent test cohort consisting of 156 serially collected pancreatic juice samples from 30 patients with IPMN. RESULTS Mutated KRAS and GNAS are specific for IPMNs but are not helpful for the prediction of histological grades. Cyst fluids from IPMN with HGD showed higher methylation levels of SOX17 (median, 0.141 vs. 0.021; P = 0.086) and TBX15 (median, 0.030 vs. 0.003; P = 0.028) than those with LGD. The combination of all tested markers yielded a diagnostic performance with sensitivity of 69.6%, and specificity of 90.0%. Among the 30 pancreatic juice samples exhibiting the highest abundance of KRAS/GNAS mutations in each patient in the test cohort, patients with histologically proven HGD due to pancreatic resection had a significantly higher prevalence (100% vs. 31%, P = 0.018) and abundance (P = 0.037) of methylated TBX15 than those without cytohistological diagnosis undergoing surveillance. CONCLUSIONS A simultaneous and sequential combination of mutated and methylated DNA markers in pancreatic cyst fluid and juice sample markers can help detect noninvasive pancreatic precursor neoplasms.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Aidu Chuo Hospital, Aizuwakamatsu, Japan.
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kusakabe
- Department of Pathology, Aidu Chuo Hospital, Aizuwakamatsu, Japan
| | - Hodaka Amano
- Department of Surgery, Aidu Chuo Hospital, Aizuwakamatsu, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiyasu Iwao
- Department of Gastroenterology, Aidu Chuo Hospital, Aizuwakamatsu, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
van Huijgevoort NCM, Hoogenboom SAM, Lekkerkerker SJ, Busch OR, Del Chiaro M, Fockens P, Somers I, Verheij J, Voermans RP, Besselink MG, van Hooft JE. Diagnostic accuracy of the AGA, IAP, and European guidelines for detecting advanced neoplasia in intraductal papillary mucinous neoplasm/neoplasia. Pancreatology 2023; 23:251-257. [PMID: 36805049 DOI: 10.1016/j.pan.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Follow-up in patients with intraductal papillary mucinous neoplasm (IPMN) aims to detect advanced neoplasia (high-grade dysplasia/cancer) in an early stage. The 2015 American Gastroenterological Association (AGA), 2017 International Association of Pancreatology (IAP), and the 2018 European Study Group on Cystic tumours of the Pancreas (European) guidelines differ in their recommendations on indications for surgery. However, it remains unclear which guideline is most accurate in predicting advanced neoplasia in IPMN. METHODS Patients who underwent surgery were extracted from a prospective database (January 2006-January 2021). In patients with IPMN, final pathology was compared with the indication for surgery according to the guidelines. ROC-curves were calculated to determine the diagnostic accuracy for each guideline. RESULTS Overall, 247 patients underwent surgery for cystic lesions. In 145 patients with IPMN, 52 had advanced neoplasia, of which the AGA guideline would have advised surgery in 14 (27%), the IAP and European guideline in 49 (94%) and 50 (96%). In 93 patients without advanced neoplasia, the AGA, IAP, and European guidelines would incorrectly have advised surgery in 8 (8.6%), 77 (83%) and 71 (76%). CONCLUSION The European and IAP guidelines are clearly superior in detecting advanced neoplasia in IPMN as compared to the AGA, albeit at the cost of a higher rate of unnecessary surgery. To harmonize care and to avoid confusion caused by conflicting statements, a global evidence-based guideline for PCN in collaboration with the various guidelines groups is required once the current guidelines require an update.
Collapse
Affiliation(s)
- Nadine C M van Huijgevoort
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sanne A M Hoogenboom
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Selma J Lekkerkerker
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marco Del Chiaro
- Department of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Inne Somers
- Department of Radiology, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Rogier P Voermans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Takano S, Fukasawa M, Enomoto N. Molecular assessment of endoscopically collected pancreatic juice and duodenal fluid from patients with pancreatic diseases. Dig Endosc 2023; 35:19-32. [PMID: 35665966 DOI: 10.1111/den.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
One concern associated with pancreatic diseases is the poor prognosis of pancreatic cancer. Even with advances in diagnostic modalities, risk stratification of premalignant lesions and differentiation of pancreatic cysts are challenging. Pancreatic lesions of concern include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystadenomas, pseudocysts, and retention cysts, as well as cystic degeneration of solid tumors such as solid pseudopapillary neoplasms and pancreatic neuroendocrine neoplasms. Pancreatic juice obtained during endoscopic retrograde cholangiopancreatography has previously been used for the detection of KRAS mutation. Recently, duodenal fluid, which can be obtained during the relatively minimally invasive procedures of endoscopic ultrasound (EUS) and esophagogastroduodenoscopy, and cyst fluid collected by EUS-guided fine-needle aspiration (FNA) were used for molecular biological analysis. Furthermore, advanced analytic methods with high sensitivity were used for the detection of single and multiple markers. Early detection of malignant pancreatic tumors and risk stratification of premalignant tumors can be performed using duodenal fluid samples with a single marker with high sensitivity. Technological advances in simultaneous detection of multiple markers allow for the differentiation of cystic pancreatic tumors. One thing to note is that the clinical guidelines do not recommend pancreatic cyst fluid and pancreatic juice (PJ) sampling by EUS-FNA and endoscopic retrograde cholangiopancreatography, respectively, in actual clinical practice, but state that they be performed at experienced facilities, and duodenal fluid sampling is not mentioned in the guidelines. With improved specimen handling and the combination of markers, molecular markers in PJ samples may be used in clinical practice in the near future.
Collapse
Affiliation(s)
- Shinichi Takano
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Mitsuharu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
16
|
Systematic review and meta-analysis: Diagnostic performance of DNA alterations in pancreatic juice for the detection of pancreatic cancer. Pancreatology 2022; 22:973-986. [PMID: 35864067 DOI: 10.1016/j.pan.2022.06.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer has a dismal prognosis. So far, imaging has been proven incapable of establishing an early enough diagnosis. Thus, biomarkers are urgently needed for early detection and improved survival. Our aim was to evaluate the pooled diagnostic performance of DNA alterations in pancreatic juice. METHODS A systematic literature search was performed in EMBASE, MEDLINE Ovid, Cochrane CENTRAL and Web of Science for studies concerning the diagnostic performance of DNA alterations in pancreatic juice to differentiate patients with high-grade dysplasia or pancreatic cancer from controls. Study quality was assessed using QUADAS-2. The pooled prevalence, sensitivity, specificity and diagnostic odds ratio were calculated. RESULTS Studies mostly concerned cell-free DNA mutations (32 studies: 939 cases, 1678 controls) and methylation patterns (14 studies: 579 cases, 467 controls). KRAS, TP53, CDKN2A, GNAS and SMAD4 mutations were evaluated most. Of these, TP53 had the highest diagnostic performance with a pooled sensitivity of 42% (95% CI: 31-54%), specificity of 98% (95%-CI: 92%-100%) and diagnostic odds ratio of 36 (95% CI: 9-133). Of DNA methylation patterns, hypermethylation of CDKN2A, NPTX2 and ppENK were studied most. Hypermethylation of NPTX2 performed best with a sensitivity of 39-70% and specificity of 94-100% for distinguishing pancreatic cancer from controls. CONCLUSIONS This meta-analysis shows that, in pancreatic juice, the presence of distinct DNA mutations (TP53, SMAD4 or CDKN2A) and NPTX2 hypermethylation have a high specificity (close to 100%) for the presence of high-grade dysplasia or pancreatic cancer. However, the sensitivity of these DNA alterations is poor to moderate, yet may increase if they are combined in a panel.
Collapse
|
17
|
Kuwatani M, Sakamoto N. Pathological and molecular diagnoses of early cancer with bile and pancreatic juice. Dig Endosc 2022; 34:1340-1355. [PMID: 35543333 DOI: 10.1111/den.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
The dismal prognosis of pancreaticobiliary malignancies is mainly attributed to the extremely difficult detection of early-stage lesions, including intraepithelial neoplasia. To improve prognosis, several studies on the early detection of cancer have been conducted using bile and pancreatic juices for pathological or molecular analyses. One approach is liquid biopsy that includes information about the tumor, such as circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes released by the tumor. Another approach is proteomics/metabolomics that reflects specific conditions in the tumor. These two approaches lead to artificial intelligence-based multiomics analyses that comprises genomics, proteomics/metabolomics, and transcriptomics. Based on the findings of molecular analysis, pathological analysis using immunohistochemical staining/fluorescence in situ hybridization has also been developed. Moreover, there have been reports of new methods/ingenuities for obtaining appropriate samples for the diagnosis of early-stage cancer. Here we review the knowledge on cutting-edge pathological and molecular analyses of bile and pancreatic juices, introduce some ingenuities in sampling and sample processing to promote effective clinical practice, and provide a basis for future studies.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| |
Collapse
|
18
|
Bell PD, Singhi AD. Integrating Molecular Analysis into the Pathologic Evaluation of Pancreatic Cysts. Surg Pathol Clin 2022; 15:455-468. [PMID: 36049828 DOI: 10.1016/j.path.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The development of cross-sectional imaging techniques has enhanced the detection of pancreatic cystic lesions (PCLs). PCLs are found in approximately 2% of the general population, often as incidentally detected lesions on computed tomography or MRI during the evaluation of other medical conditions. Broadly, PCLs are classified as mucinous or nonmucinous. Mucinous PCLs include mucinous cystic neoplasms and intraductal papillary mucinous neoplasms. Nonmucinous PCLs include pseudocysts, serous cystadenomas, solid pseudopapillary neoplasms, and cystic pancreatic neuroendocrine tumors, as well as cystic acinar cell carcinoma, cystic degeneration of pancreatic ductal adenocarcinoma, lymphoepithelial cyst, and others.
Collapse
Affiliation(s)
- Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Center, 200 Lothrop St. Pittbsurgh, PA 15213, USA.
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, 200 Lothrop St. Pittbsurgh, PA 15213, USA
| |
Collapse
|
19
|
Vanek P, Urban O, Zoundjiekpon V, Falt P. Current Screening Strategies for Pancreatic Cancer. Biomedicines 2022; 10:biomedicines10092056. [PMID: 36140157 PMCID: PMC9495594 DOI: 10.3390/biomedicines10092056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dreaded malignancy with a dismal 5-year survival rate despite maximal efforts on optimizing treatment strategies. Radical surgery is the only potential curative procedure. Unfortunately, the majority of patients are diagnosed with locally advanced or metastatic disease, which renders them ineligible for curative resection. Early detection of PDAC is thus considered to be the most effective way to improve survival. In this regard, pancreatic screening has been proposed to improve results by detecting asymptomatic stages of PDAC and its precursors. There is now evidence of benefits of systematic surveillance in high-risk individuals, and the current guidelines emphasize the potential of screening to affect overall survival in individuals with genetic susceptibility syndromes or familial occurrence of PDAC. Here we aim to summarize the current knowledge about screening strategies for PDAC, including the latest epidemiological data, risk factors, associated hereditary syndromes, available screening modalities, benefits, limitations, as well as management implications.
Collapse
|
20
|
Tonini V, Zanni M. Early diagnosis of pancreatic cancer: What strategies to avoid a foretold catastrophe. World J Gastroenterol 2022; 28:4235-4248. [PMID: 36159004 PMCID: PMC9453775 DOI: 10.3748/wjg.v28.i31.4235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
While great strides in improving survival rates have been made for most cancers in recent years, pancreatic ductal adenocarcinoma (PDAC) remains one of the solid tumors with the worst prognosis. PDAC mortality often overlaps with incidence. Surgical resection is the only potentially curative treatment, but it can be performed in a very limited number of cases. In order to improve the prognosis of PDAC, there are ideally two possible ways: the discovery of new strategies or drugs that will make it possible to treat the tumor more successfully or an earlier diagnosis that will allow patients to be operated on at a less advanced stage. The aim of this review was to summarize all the possible strategies available today for the early diagnosis of PDAC and the paths that research needs to take to make this goal ever closer. All the most recent studies on risk factors and screening modalities, new laboratory tests including liquid biopsy, new imaging methods and possible applications of artificial intelligence and machine learning were reviewed and commented on. Unfortunately, in 2022 the results for this type of cancer still remain discouraging, while a catastrophic increase in cases is expected in the coming years. The article was also written with the aim of highlighting the urgency of devoting more attention and resources to this pathology in order to reach a solution that seems more and more unreachable every day.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Manuel Zanni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
21
|
Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, Kennedy M, Tem V, Ho YJ, Leibold J, Paffenholz SV, Barriga FM, Chu K, Goswami S, Wuest AN, Simon JM, Tsanov KM, Chakravarty D, Zhang H, Leslie CS, Lowe SW, Dow LE. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol 2022; 40:862-873. [PMID: 35165384 PMCID: PMC9232935 DOI: 10.1038/s41587-021-01172-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Base editing can be applied to characterize single nucleotide variants of unknown function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors remains challenging. Here, we describe modular base-editing-activity 'sensors' that link sgRNAs and cognate target sites in cis and use them to systematically measure the editing efficiency and precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying sensor editing across >200,000 editor-sgRNA combinations, we provide a comprehensive resource of sgRNAs for introducing and interrogating cancer-associated single nucleotide variants in multiple model systems. We demonstrate that sensor-validated tools streamline production of in vivo cancer models and that integrating sensor modules in pooled sgRNA libraries can aid interpretation of high-throughput base editing screens. Using this approach, we identify several previously uncharacterized mutant TP53 alleles as drivers of cancer cell proliferation and in vivo tumor development. We anticipate that the framework described here will facilitate the functional interrogation of cancer variants in cell and animal models.
Collapse
Affiliation(s)
- Francisco J Sánchez-Rivera
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bianca J Diaz
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Edward R Kastenhuber
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henri Schmidt
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alyna Katti
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Margaret Kennedy
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Vincent Tem
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josef Leibold
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Stella V Paffenholz
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Francisco M Barriga
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevan Chu
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexandra N Wuest
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janelle M Simon
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debyani Chakravarty
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongxin Zhang
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Sekita‐Hatakeyama Y, Fujii T, Nishikawa T, Mitoro A, Sawai M, Itami H, Morita K, Uchiyama T, Takeda M, Sho M, Yoshiji H, Hatakeyama K, Ohbayashi C. Evaluation and diagnostic value of next-generation sequencing analysis of residual liquid-based cytology specimens of pancreatic masses. Cancer Cytopathol 2022; 130:202-214. [PMID: 34665935 PMCID: PMC9297882 DOI: 10.1002/cncy.22525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liquid-based cytology (LBC) is a widely used method for processing specimens obtained by endoscopic biopsy. This study evaluated next-generation sequencing (NGS) analysis of LBC specimens to improve the diagnostic accuracy of pancreatic lesions. METHODS Upon the diagnosis of a suspected pancreatic mass, LBC residues were used retrospectively. The quantity and quality of DNA extracted from residual LBC samples were evaluated, and an NGS analysis targeting 6 genes (KRAS, GNAS, TP53, CDKN2A, SMAD4, and PIK3CA) was performed. RESULTS The library was prepared from LBC specimens taken from 52 cases: 44 were successful, and 8 preparations failed. An analysis of DNA quantity and quality suggested that the success or failure of NGS implementation depended on both properties. The final diagnosis was achieved by a combination of the pathological analysis of the surgical excision or biopsy material with clinical information. Among the 33 cases of pancreatic ductal adenocarcinoma (PDAC), KRAS, TP53, CDKN2A, and SMAD4 mutations were identified in 31 (94%), 16 (48%), 3 (9%), and 2 (6%), respectively. Among the 11 benign cases, only a KRAS mutation was identified in 1 case. On the basis of NGS results, 18 of 33 PDACs (55%) were classified as highly dysplastic or more, and 10 of 11 benign lesions were evaluated as nonmalignant, which was consistent with the final diagnosis. CONCLUSIONS NGS analysis using LBC specimens from which DNA of appropriate quantity and quality has been extracted could contribute to improving the assessment of pancreatic tumor malignancies and the application of molecular-targeted drugs.
Collapse
Affiliation(s)
| | - Tomomi Fujii
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Takeshi Nishikawa
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Akira Mitoro
- Department of GastroenterologyNara Medical UniversityKashiharaJapan
| | - Masayoshi Sawai
- Department of GastroenterologyMinami‐Nara General Medical CenterOyodo‐ChoJapan
| | - Hiroe Itami
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Kouhei Morita
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Tomoko Uchiyama
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Maiko Takeda
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Masayuki Sho
- Department of SurgeryNara Medical UniversityKashiharaJapan
| | - Hitoshi Yoshiji
- Department of GastroenterologyNara Medical UniversityKashiharaJapan
| | - Kinta Hatakeyama
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
- Department of PathologyNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Chiho Ohbayashi
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
23
|
Li J, Lama R, Galster SL, Inigo JR, Wu J, Chandra D, Chemler SR, Wang X. Small Molecule MMRi62 Induces Ferroptosis and Inhibits Metastasis in Pancreatic Cancer via Degradation of Ferritin Heavy Chain and Mutant p53. Mol Cancer Ther 2022; 21:535-545. [PMID: 35131878 DOI: 10.1158/1535-7163.mct-21-0728] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
High frequency of KRAS and TP53 mutations is a unique genetic feature of pancreatic ductal adenocarcinoma (PDAC). TP53 mutation not only renders PDAC resistance to chemotherapies but also drives PDAC invasiveness. Therapies targeting activating mutant KRAS are not available and the outcomes of current PDAC treatment are extremely poor. Here we report that MMRi62, initially identified as an MDM2-MDM4-targeting small molecule with p53-independent pro-apoptotic activity, shows anti-PDAC activity in vitro and in vivo. We show that MMRi62 inhibits proliferation, clonogenic and spheroid growth of PDAC cells by induction of cell death. MMRi62-induced cell death in PDAC is characteristic of ferroptosis which is associated with increased autophagy, increased reactive oxygen species and lysosomal degradation of NCOA4 and Ferritin Heavy Chain (FTH1). In addition to induced degradation of FTH1, MMRi62 also induces proteasomal degradation of mutant p53. Interestingly, MMRi62-induced ferroptosis occurs in PDAC cell lines harboring either KRAS and TP53 double mutations or single TP53 mutation. In orthotopic xenograft PDAC mouse models, MMRi62 was capable of inhibiting tumor growth in mice associated with downregulation of NCOA4 and mutant p53 in vivo. Strikingly, MMRi62 completely abrogated metastasis of orthotopic tumors to distant organs, which is consistent with MMRi62's ability to inhibit cell migration and invasion in vitro. These findings identified MMRi62 as a novel ferroptosis inducer capable of suppressing PDAC growth and overcoming metastasis.
Collapse
Affiliation(s)
- Junhui Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Rati Lama
- Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Samuel L Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo
| | - Joseph R Inigo
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Jin Wu
- Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Dhyan Chandra
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, State University of New York
| | - Xinjiang Wang
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center
| |
Collapse
|
24
|
Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022; 11:426. [PMID: 35159234 PMCID: PMC8834004 DOI: 10.3390/cells11030426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming is a feature of cancers for which recent research has been particularly active, providing numerous insights into the mechanisms involved. It occurs across the entire cancer process, from development to resistance to therapies. Established tumors exhibit dependencies for metabolic pathways, constituting vulnerabilities that can be targeted in the clinic. This knowledge is of particular importance for cancers that are refractory to any therapeutic approach, such as Pancreatic Ductal Adenocarcinoma (PDAC). One of the metabolic pathways dysregulated in PDAC is autophagy, a survival process that feeds the tumor with recycled intracellular components, through both cell-autonomous (in tumor cells) and nonautonomous (from the local and distant environment) mechanisms. Autophagy is elevated in established PDAC tumors, contributing to aberrant proliferation and growth even in a nutrient-poor context. Critical elements link autophagy to PDAC including genetic alterations, mitochondrial metabolism, the tumor microenvironment (TME), and the immune system. Moreover, high autophagic activity in PDAC is markedly related to resistance to current therapies. In this context, combining autophagy inhibition with standard chemotherapy, and/or drugs targeting other vulnerabilities such as metabolic pathways or the immune response, is an ongoing clinical strategy for which there is still much to do through translational and multidisciplinary research.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Institut Paoli-Calmettes, Aix Marseille Université, F-13009 Marseille, France; (G.R.-C.); (N.A.H.)
| |
Collapse
|
25
|
Deng J, Fleming JB. Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 9:759691. [PMID: 35127700 PMCID: PMC8814460 DOI: 10.3389/fcell.2021.759691] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the most immunotherapy drugs act upon T cell surface proteins to promote tumoricidal T cell activity. However, this approach has to date been unsuccessful in certain solid tumor types including pancreatic, prostate cancer and glioblastoma. Myeloid-related innate immunity can promote tumor progression through direct and indirect effects on T cell activity; improved understanding of this field may provide another therapeutic avenue for patients with these tumors. Myeloid cells can differentiate into both pro-inflammatory and anti-inflammatory mature form depending upon the microenvironment. Most cancer type exhibit oncogenic activating point mutations (ex. P53 and KRAS) that trigger cytokines production. In addition, tumor environment (ex. Collagen, Hypoxia, and adenosine) also regulated inflammatory signaling cascade. Both the intrinsic and extrinsic factor driving the tumor immune microenvironment and regulating the differentiation and function of myeloid cells, T cells activity and tumor progression. In this review, we will discuss the relationship between cancer cells and myeloid cells-mediated tumor immune microenvironment to promote cancer progression and immunotherapeutic resistance. Furthermore, we will describe how cytokines and chemokines produced by cancer cells influence myeloid cells within immunosuppressive environment. Finally, we will comment on the development of immunotherapeutic strategies with respect to myeloid-related innate immunity.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. Fleming
- H. Lee Moffitt Cancer Center, Department of Gastrointestinal Oncology, Tampa, FL, United States
- *Correspondence: Jason B. Fleming,
| |
Collapse
|
26
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|
27
|
Zhang Q, Wang Z, Yu X, Zhang M, Zheng Q, He Y, Guo W. Immune Subtypes Based on Immune-Related lncRNA: Differential Prognostic Mechanism of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:698296. [PMID: 34307375 PMCID: PMC8292792 DOI: 10.3389/fcell.2021.698296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer consists one of tumors with the highest degree of malignancy and the worst prognosis. To date, immunotherapy has become an effective means to improve the prognosis of patients with pancreatic cancer. Long non-coding RNAs (lncRNAs) have also been associated with the immune response. However, the role of immune-related lncRNAs in the immune response of pancreatic cancer remains unclear. In this study, we identified immune-related lncRNA pairs through a new combinatorial algorithm, and then clustered and deeply analyzed the immune characteristics and functional differences between subtypes. Subsequently, the prognostic model of 3 candidate lncRNA pairs was determined by multivariate COX analysis. The results showed significant prognostic differences between the C1 and C2 subtypes, which may be due to the differential infiltration of CTL and NK cells and the activation of tumor-related pathways. The prognostic model of the 3 lncRNA pairs (AC244035.1_vs._AC063926.1, AC066612.1_vs._AC090124.1, and AC244035.1_vs._LINC01885) was established, which exhibits stable and effective prognostic prediction performance. These 3 lncRNA pairs may regulate the anti-tumor effect of immune cells through ion channel pathways. In conclusion, our research demonstrated the panoramic differences in immune characteristics between subtypes and stable prognostic models, and identified new potential targets for immunotherapy.
Collapse
Affiliation(s)
- Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
28
|
Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol 2021; 18:457-468. [PMID: 34099908 DOI: 10.1038/s41575-021-00470-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Due to its poor prognosis and the late stage at which it is typically diagnosed, early detection of pancreatic cancer is a pressing clinical problem. Advances in genomic analysis of human pancreatic tissue and other biospecimens such as pancreatic cyst fluid, pancreatic juice and blood have opened the possibility of DNA-based molecular approaches for early detection of pancreatic cancer. In this Review, we discuss and focus on the pathological and molecular features of precancerous lesions of the pancreas, including pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, which are target lesions of early detection approaches. We also discuss the most prevalent genetic alterations in these precancerous lesions, including somatic mutations in the oncogenes KRAS and GNAS as well as tumour suppressor genes CDKN2A, TP53 and SMAD4. We highlight the latest discoveries related to genetic heterogeneity and multifocal neoplasia in precancerous lesions. In addition, we review specific approaches, challenges and clinically available assays for early detection of pancreatic cancer using DNA-based molecular techniques. Although detection and risk stratification of precancerous pancreatic neoplasms are difficult problems, progress in this field highlights the promise of molecular approaches for improving survival of patients with this disease.
Collapse
|
29
|
Rift CV, Melchior LC, Scheie D, Hansen CP, Lund EL, Hasselby JP. Molecular heterogeneity of pancreatic intraductal papillary mucinous neoplasms and implications for novel endoscopic tissue sampling strategies. J Clin Pathol 2021; 75:jclinpath-2021-207598. [PMID: 34039665 DOI: 10.1136/jclinpath-2021-207598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
AIMS Intraductal papillary mucinous neoplasms (IPMNs) may be precursor lesions of pancreatic cancer. The path towards malignancy is associated with mutations in tumour suppressor-and oncogenes that may serve as biomarkers during diagnostic investigation. A novel micro forceps has made it possible to obtain biopsies from the cyst wall for analysis by next generation sequencing (NGS), providing an opportunity for early detection and intervention. However, the impact of spatial tumour heterogeneity on the representability of the biopsies has not been determined. The primary aim is to characterise the impact of molecular heterogeneity of the luminal cyst wall on tissue sampling strategies with small biopsies. METHODS We performed NGS and immunohistochemical phenotyping on 18 resected IPMNs with varying degrees of dysplasia and for a subset, concomitant carcinoma, using a commercially available NGS-panel of 51 oncogenes. We simulated endoscopic biopsies by performing punch biopsies (PBs) of the cyst wall from resected specimens. RESULTS In total, 127 NGS analyses were performed. Concomitant KRAS and GNAS was a common feature of the IPMNs. Mutations in KRAS and GNAS were associated with low-grade dysplasia whereas alterations in TP53, SMAD4, CDKN2A and PIK3CA were associated with high-grade dysplasia and/or carcinoma. The mutational analysis of the PBs from the cyst wall was compared with the whole lesion. No difference was detected between PBs and whole lesions when the cumulated mutational profile in increasing order of randomly performed PBs was compared. CONCLUSIONS Small IPMN biopsies from the cyst wall are adequate to yield a molecular diagnosis.
Collapse
Affiliation(s)
| | | | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
30
|
Simpson RE, Flick KF, Gromski MA, Al-Haddad MA, Easler JJ, Sherman S, Fogel EL, Schmidt CM, DeWitt JM. Utility of DNA Profiling From Main Pancreatic Duct Fluid by Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography to Screen for Malignant Potential. Pancreas 2021; 49:714-722. [PMID: 32433411 DOI: 10.1097/mpa.0000000000001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The yield of genetic testing of main pancreatic duct (MPD) fluid collected during endoscopic retrograde cholangiopancreatography (ERCP) versus endoscopic ultrasound-guided fine-needle aspiration is unclear. METHODS Consecutive MPD fluid samples obtained by endoscopic ultrasound/ERCP with DNA profiling were reviewed, excluding specimens designated "no amplification." Invasive disease included invasive cancer or malignant cytology. RESULTS One hundred ten samples from 109 patients who underwent ERCP (n = 32) or endoscopic ultrasound-guided fine-needle aspiration (n = 78) were analyzed (2007-2018). Leading indications were dilated MPD and suspected intraductal papillary mucinous neoplasm. Elevated DNA quantity, KRAS, loss of heterozygosity (LOH), and GNAS mutations occurred in 61.5%, 25.5%, 16.4%, and 8.7% of samples, respectively. Elevated DNA quantity occurred more frequently in ERCP samples (84.4% vs 51.9%, P = 0.002); other mutation yields were similar (P > 0.05). Invasive pathology (P = 0.032) was associated with LOH in the subset of patients who underwent surgery (n = 44). Adverse events occurred more frequently after ERCP (28.1% vs 9.0%, P = 0.016). CONCLUSIONS Endoscopic MPD fluid sampling may yield genetic data to improve diagnosis and risk stratification. In our surgical cohort, LOH was the sole predictor of invasive pathology. Endoscopic ultrasound-guided fine-needle aspiration of MPD fluid, when possible, is preferred because of superior safety profile.
Collapse
Affiliation(s)
| | | | - Mark A Gromski
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
| | - Mohammad A Al-Haddad
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
- Indiana University Health Pancreatic Cyst and Cancer Early Detection Center
| | - Jeffrey J Easler
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
| | - Stuart Sherman
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
| | - Evan L Fogel
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
| | - C Max Schmidt
- From the Departments of Surgery
- Indiana University Health Pancreatic Cyst and Cancer Early Detection Center
- Department of Biochemistry/Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - John M DeWitt
- Medicine, Division of Gastroenterology, Indiana University School of Medicine
- Indiana University Health Pancreatic Cyst and Cancer Early Detection Center
| |
Collapse
|
31
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Dbouk M, Brewer Gutierrez OI, Lennon AM, Chuidian M, Shin EJ, Kamel IR, Fishman EK, He J, Burkhart RA, Wolfgang CL, Hruban RH, Goggins MG, Canto MI. Guidelines on management of pancreatic cysts detected in high-risk individuals: An evaluation of the 2017 Fukuoka guidelines and the 2020 International Cancer of the Pancreas Screening (CAPS) consortium statements. Pancreatology 2021; 21:613-621. [PMID: 33593706 DOI: 10.1016/j.pan.2021.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Objectives: Pancreatic cysts are frequently detected in high-risk individuals (HRI) undergoing surveillance for pancreatic cancer. The International Cancer of the Pancreas Screening (CAPS) Consortium developed consensus recommendations for surgical resection of pancreatic cysts in HRI that are similar to the Fukuoka guidelines used for the management of sporadic cysts. We compared the performance characteristics of CAPS criteria for pancreatic cyst management in HRI with the Fukuoka guidelines originally designed for the management of cysts in non-HRI. METHODS Using prospectively collected data from CAPS studies, we determined for each patient with resected screen-detected cyst(s) whether Fukuoka guidelines or CAPS consensus statements would have recommended surgery. We compared sensitivity, specificity, PPV, NPV, and Receiver Operator Characteristics (ROC) curves of these guidelines at predicting the presence of high-grade dysplasia or invasive cancer in pancreatic cysts. RESULTS 356/732 HRI had ≥ one pancreatic cyst detected; 24 had surgery for concerning cystic lesions. The sensitivity, specificity, PPV, and NPV for the Fukuoka criteria were 40%, 85%, 40%, and 85%, while those of the CAPS criteria were 60%, 85%, 50%, 89%, respectively. ROC curve analyses showed no significant difference between the Fukuoka and CAPS criteria. CONCLUSIONS In HRI, the CAPS and Fukuoka criteria are moderately specific, but not sufficiently sensitive for detecting advanced neoplasia in cystic lesions. New approaches are needed to guide the surgical management of cystic lesions in HRI.
Collapse
Affiliation(s)
- Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Olaya I Brewer Gutierrez
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anne Marie Lennon
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Miguel Chuidian
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Eun Ji Shin
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ihab R Kamel
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Richard A Burkhart
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
33
|
Liu X, Chen B, Chen J, Sun S. A novel tp53-associated nomogram to predict the overall survival in patients with pancreatic cancer. BMC Cancer 2021; 21:335. [PMID: 33789615 PMCID: PMC8011162 DOI: 10.1186/s12885-021-08066-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gene mutations play critical roles in tumorigenesis and cancer development. Our study aimed to screen survival-related mutations and explore a novel gene signature to predict the overall survival in pancreatic cancer. METHODS Somatic mutation data from three cohorts were used to identify the common survival-related gene mutation with Kaplan-Meier curves. RNA-sequencing data were used to explore the signature for survival prediction. First, Weighted Gene Co-expression Network Analysis was conducted to identify candidate genes. Then, the ICGC-PACA-CA cohort was applied as the training set and the TCGA-PAAD cohort was used as the external validation set. A TP53-associated signature calculating the risk score of every patient was developed with univariate Cox, least absolute shrinkage and selection operator, and stepwise regression analysis. Kaplan-Meier and receiver operating characteristic curves were plotted to verify the accuracy. The independence of the signature was confirmed by the multivariate Cox regression analysis. Finally, a prognostic nomogram including 359 patients was constructed based on the combined expression data and the risk scores. RESULTS TP53 mutation was screened to be the robust and survival-related mutation type, and was associated with immune cell infiltration. Two thousand, four hundred fifty-five genes included in the six modules generated in the WGCNA were screened as candidate survival related TP53-associated genes. A seven-gene signature was constructed: Risk score = (0.1254 × ERRFI1) - (0.1365 × IL6R) - (0.4400 × PPP1R10) - (0.3397 × PTOV1-AS2) + (0.1544 × SCEL) - (0.4412 × SSX2IP) - (0.2231 × TXNL4A). Area Under Curves of 1-, 3-, and 5-year ROC curves were 0.731, 0.808, and 0.873 in the training set and 0.703, 0.677, and 0.737 in the validation set. A prognostic nomogram including 359 patients was constructed and well-calibrated, with the Area Under Curves of 1-, 3-, and 5-year ROC curves as 0.713, 0.753, and 0.823. CONCLUSIONS The TP53-associated signature exhibited good prognostic efficacy in predicting the overall survival of PC patients.
Collapse
Affiliation(s)
- Xun Liu
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Bobo Chen
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Jiahui Chen
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Shaolong Sun
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
34
|
Herranz Pérez R, de la Morena López F, Majano Rodríguez PL, Molina Jiménez F, Vega Piris L, Santander Vaquero C. Molecular analysis of pancreatic cystic neoplasm in routine clinical practice. World J Gastrointest Endosc 2021; 13:56-71. [PMID: 33623640 PMCID: PMC7890406 DOI: 10.4253/wjge.v13.i2.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic pancreatic lesions consist of a wide variety of lesions that are becoming increasingly diagnosed with the growing use of imaging techniques. Of these, mucinous cysts are especially relevant due to their risk of malignancy. However, morphological findings are often suboptimal for their differentiation. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) with molecular analysis has been suggested to improve the diagnosis of pancreatic cysts.
AIM To determine the impact of molecular analysis on the detection of mucinous cysts and malignancy.
METHODS An 18-month prospective observational study of consecutive patients with pancreatic cystic lesions and an indication for EUS-FNA following European clinical practice guidelines was conducted. These cysts included those > 15 mm with unclear diagnosis, and a change in follow-up or with concerning features in which results might change clinical management. EUS-FNA with cytological, biochemical and glucose and molecular analyses with next-generation sequencing were performed in 36 pancreatic cysts. The cysts were classified as mucinous and non-mucinous by the combination of morphological, cytological and biochemical analyses when surgery was not performed. Malignancy was defined as cytology positive for malignancy, high-grade dysplasia or invasive carcinoma on surgical specimen, clinical or morphological progression, metastasis or death related to neoplastic complications during the 6-mo follow-up period. Next-generation sequencing results were compared for cyst type and malignancy.
RESULTS Of the 36 lesions included, 28 (82.4%) were classified as mucinous and 6 (17.6%) as non-mucinous. Furthermore, 5 (13.9%) lesions were classified as malignant. The amount of deoxyribonucleic acid obtained was sufficient for molecular analysis in 25 (69.4%) pancreatic cysts. The amount of intracystic deoxyribonucleic acid was not statistically related to the cyst fluid volume obtained from the lesions. Analysis of KRAS and/or GNAS showed 83.33% [95% confidence interval (CI): 63.34-100] sensitivity, 60% (95%CI: 7.06-100) specificity, 88.24% (95%CI: 69.98-100) positive predictive value and 50% (95%CI: 1.66-98.34) negative predictive value (P = 0.086) for the diagnosis of mucinous cystic lesions. Mutations in KRAS and GNAS were found in 2/5 (40%) of the lesions classified as non-mucinous, thus recategorizing those lesions as mucinous neoplasms, which would have led to a modification of the follow-up plan in 8% of the cysts in which molecular analysis was successfully performed. All 4 (100%) malignant cysts in which molecular analysis could be performed had mutations in KRAS and/or GNAS, although they were not related to malignancy (P > 0.05). None of the other mutations analyzed could detect mucinous or malignant cysts with statistical significance (P > 0.05).
CONCLUSION Molecular analysis can improve the classification of pancreatic cysts as mucinous or non-mucinous. Mutations were not able to detect malignant lesions.
Collapse
Affiliation(s)
- Raquel Herranz Pérez
- Department of Gastroenterology and Hepatology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid 28006, Spain
| | - Felipe de la Morena López
- Department of Gastroenterology and Hepatology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid 28006, Spain
| | - Pedro L Majano Rodríguez
- Molecular Biology Laboratory, Department of Gastroenterology and Hepatology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid 28006, Spain
| | - Francisca Molina Jiménez
- Molecular Biology Laboratory, Department of Gastroenterology and Hepatology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid 28006, Spain
| | - Lorena Vega Piris
- Methodological Support Unit, Department of Statistical Analysis, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, CP Madrid, Madrid 28006, Spain
| | - Cecilio Santander Vaquero
- Department of Gastroenterology and Hepatology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid 28006, Spain
| |
Collapse
|
35
|
Hou J, Li X, Xie KP. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication. Mol Cancer 2021; 20:34. [PMID: 33593396 PMCID: PMC7888169 DOI: 10.1186/s12943-021-01309-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Early detection and diagnosis are the key to successful clinical management of pancreatic cancer and improve the patient outcome. However, due to the absence of early symptoms and the aggressiveness of pancreatic cancer, its 5-year survival rate remains below 5 %. Compared to tissue samples, liquid biopsies are of particular interest in clinical settings with respect to minimal invasiveness, repeated sampling, complete representation of the entire or multi-site tumor bulks. The potential of liquid biopsies in pancreatic cancer has been demonstrated by many studies which prove that liquid biopsies are able to detect early emergency of pancreatic cancer cells, residual disease, and recurrence. More interestingly, they show potential to delineate the heterogeneity, spatial and temporal, of pancreatic cancer. However, the performance of liquid biopsies for the diagnosis varies largely across different studies depending of the technique employed and also the type and stage of the tumor. One approach to improve the detect performance of liquid biopsies is to intensively inspect circulome and to define integrated biomarkers which simultaneously profile circulating tumor cells and DNA, extracellular vesicles, and circulating DNA, or cell free DNA and proteins. Moreover, the diagnostic validity and accuracy of liquid biopsies still need to be comprehensively demonstrated and validated.
Collapse
Affiliation(s)
- Jun Hou
- The South China University of Technology School of Medicine, 510006, Guangzhou, China
| | - XueTao Li
- The South China University of Technology School of Medicine, 510006, Guangzhou, China
| | - Ke-Ping Xie
- The University of Texas MD Anderson Cancer Center Houston , Texas, USA.
| |
Collapse
|
36
|
Ideno N, Mori Y, Nakamura M, Ohtsuka T. Early Detection of Pancreatic Cancer: Role of Biomarkers in Pancreatic Fluid Samples. Diagnostics (Basel) 2020; 10:diagnostics10121056. [PMID: 33291257 PMCID: PMC7762187 DOI: 10.3390/diagnostics10121056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide. Most patients with PDAC present with symptomatic, surgically unresectable disease. Therefore, the establishment of strategies for the early detection is urgently needed. Molecular biomarkers might be useful in various phases of a strategy to identify high-risk individuals in the general population and to detect high-risk lesions during intense surveillance programs combined with imaging modalities. However, the low sensitivity and specificity of biomarkers currently available for PDAC, such as carbohydrate 19-9 (CA19-9), contribute to the late diagnosis of this deadly disease. Although almost all classes of biomarker assays have been studied, most of them are used in the context of symptomatic diseases. Compared to other body fluids, pancreatic juice and duodenal fluid are better sources of DNA, RNA, proteins, and exosomes derived from neoplastic cells and have the potential to increase the sensitivity/specificity of these biomarkers. The number of studies using duodenal fluid with or without secretin stimulation for DNA/protein marker tests have been increasing because of the less-invasiveness in comparison to pancreatic juice collection by endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Genomic analyses have been very well-studied, and based on PDAC progression model, mutations detected in pancreatic juice/duodenal fluid seem to indicate the presence of microscopic precursors and high-grade dysplasia/invasive cancer. In addition to known proteins overexpressed both in precursors and PDACs, such as CEA and S100P, comprehensive proteomic analysis of pancreatic juice from patients with PDAC identified many proteins which were not previously described. A novel technique to isolate exosomes from pancreatic juice was recently invented and identification of exosomal microRNA’s 21 and 155 could be biomarkers for diagnosis of PDAC. Since many studies have explored biomarkers in fluid samples containing pancreatic juice and reported excellent diagnostic accuracy, we need to discuss how these biomarker assays can be validated and utilized in the strategy of early detection of PDAC.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Yasuhisa Mori
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8520, Japan
- Correspondence: ; Tel.: +81-99-275-5361
| |
Collapse
|
37
|
Matsubayashi H, Ishiwatari H, Sasaki K, Uesaka K, Ono H. Detecting Early Pancreatic Cancer: Current Problems and Future Prospects. Gut Liver 2020; 14:30-36. [PMID: 31009958 PMCID: PMC6974337 DOI: 10.5009/gnl18491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
The number of patients with pancreatic cancer (PC) is currently increasing in both Korea and Japan. The 5-year survival rate of patients with PC 13.0%; however, resection with minimal invasion (tumor size: ≤10 mm) increases the 5-year survival rate to 80%. For this reason, early detection is essential, but most patients with early-stage PC are asymptomatic. Early detection of PC has been reported to require screening of high-risk individuals (HRIs), such as those with a family history of PC, inherited cancer syndromes, intraductal papillary mucinous neoplasm, or chronic pancreatitis. Studies on screening of these HRIs have confirmed a significantly better prognosis among patients with PC who were screened than for patients with PC who were not screened. However, to date in Japan, most patients with early-stage PC diagnosed in routine clinics were not diagnosed during annual health checks or by surveillance; rather, PC was detected in these patients by incidental findings during examinations for other diseases. We need to increase the precision of the PC screening and diagnostic processes by introducing new technologies, and we need to pay greater attention to incidental clinical findings.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan.,Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Keiko Sasaki
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
38
|
Survival Outcomes of Pancreatic Intraepithelial Neoplasm (PanIN) versus Intraductal Papillary Mucinous Neoplasm (IPMN) Associated Pancreatic Adenocarcinoma. J Clin Med 2020; 9:jcm9103102. [PMID: 32992976 PMCID: PMC7600023 DOI: 10.3390/jcm9103102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic intraepithelial neoplasms (PanINs) and intraductal papillary mucinous neoplasms (IPMNs) are common pancreatic adenocarcinoma precursor lesions. However, data regarding their respective associations with survival rate and prognosis are lacking. We retrospectively evaluated 72 pancreatic adenocarcinoma tumor resection patients at the University of Kansas Hospital between August 2009 and March 2019. Patients were divided into one of two groups, PanIN or IPMN, based on the results of the surgical pathology report. We compared baseline characteristics, overall survival (OS), and progression free survival (PFS) between the two groups, as well as OS and PFS based on local or distant tumor recurrence for both groups combined. 52 patients had PanINs and 20 patients had IPMNs. Patients who had an IPMN precursor lesion had better median PFS and OS when compared to patients with PanIN precursor lesions. However, the location of tumor recurrence (local or distant) did not show a statistically significant difference in OS.
Collapse
|
39
|
Advances in the management of pancreatic cystic neoplasms. Curr Probl Surg 2020; 58:100879. [PMID: 34144739 DOI: 10.1016/j.cpsurg.2020.100879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
|
40
|
Canto MI, Kerdsirichairat T, Yeo CJ, Hruban RH, Shin EJ, Almario JA, Blackford A, Ford M, Klein AP, Javed AA, Lennon AM, Zaheer A, Kamel IR, Fishman EK, Burkhart R, He J, Makary M, Weiss MJ, Schulick RD, Goggins MG, Wolfgang CL. Surgical Outcomes After Pancreatic Resection of Screening-Detected Lesions in Individuals at High Risk for Developing Pancreatic Cancer. J Gastrointest Surg 2020; 24:1101-1110. [PMID: 31197699 PMCID: PMC6908777 DOI: 10.1007/s11605-019-04230-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Screening high-risk individuals (HRI) can detect potentially curable pancreatic ductal adenocarcinoma (PDAC) and its precursors. We describe the outcomes of high-risk individuals (HRI) after pancreatic resection of screen-detected neoplasms. METHODS Asymptomatic HRI enrolled in the prospective Cancer of the Pancreas Screening (CAPS) studies from 1998 to 2014 based on family history or germline mutations undergoing surveillance for at least 6 months were included. Pathologic diagnoses, hospital length of stay, incidence of diabetes mellitus, operative morbidity, need for repeat operation, and disease-specific mortality were determined. RESULTS Among 354 HRI, 48 (13.6%) had 57 operations (distal pancreatectomy (31), Whipple (20), and total pancreatectomy (6)) for suspected pancreatic neoplasms presenting as a solid mass (22), cystic lesion(s) (25), or duct stricture (1). The median length of stay was 7 days (IQR 5-11). Nine of the 42 HRI underwent completion pancreatectomy for a new lesion after a median of 3.8 years (IQR 2.5-7.6). Postoperative complications developed in 17 HRI (35%); there were no perioperative deaths. New-onset diabetes mellitus after partial resection developed in 20% of HRI. Fourteen PDACs were diagnosed, 11 were screen-detected, 10 were resectable, and 9 had an R0 resection. Metachronous PDAC developed in remnant pancreata of 2 HRI. PDAC-related mortality was 4/10 (40%), with 90% 1-year survival and 60% 5-year survival, respectively. CONCLUSIONS Screening HRI can detect PDAC with a high resectability rate. Surgical treatment is associated with a relatively short length of stay and low readmission rate, acceptable morbidity, zero 90-day mortality, and significant long-term survival. CLINICAL TRIAL REGISTRATION NUMBER NCT2000089.
Collapse
Affiliation(s)
- Marcia Irene Canto
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tossapol Kerdsirichairat
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Charles J. Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Eun Ji Shin
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jose Alejandro Almario
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Amanda Blackford
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Madeline Ford
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ammar A. Javed
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Anne Marie Lennon
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Atif Zaheer
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ihab R. Kamel
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elliot K. Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard Burkhart
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin Makary
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Matthew J. Weiss
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Michael G. Goggins
- Departments of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland,Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher L. Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
41
|
Dhayat SA, Yang Z. Impact of circulating tumor DNA in hepatocellular and pancreatic carcinomas. J Cancer Res Clin Oncol 2020; 146:1625-1645. [PMID: 32338295 PMCID: PMC7256092 DOI: 10.1007/s00432-020-03219-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) and pancreatic cancer (PC) belong to the most lethal malignancies worldwide. Despite advances in surgical techniques and perioperative multidisciplinary management, the prognosis of both carcinoma entities remains poor mainly because of rapid tumor progression and early dissemination with diagnosis in advanced tumor stages with poor sensitivity to current therapy regimens. Both highly heterogeneous visceral carcinomas exhibit unique somatic alterations, but share common driver genes and mutations as well. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as non-invasive biomarker in early diagnosis and prognosis. CtDNA released from necrotic or apoptotic cells of primary tumors, metastasis, and circulating tumor cells can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. In this article, we focus on clinical impact of ctDNA as potential biomarker in patients with HCC and PC.
Collapse
Affiliation(s)
- Sameer A Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Munster, Germany.
| | - Zixuan Yang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Munster, Germany
| |
Collapse
|
42
|
Matsubayashi H, Notohara K, Hruban RH, Satoh T, Kaneko J, Sato J, Ishiwatari H, Ashida R, Uesaka K, Kiyozumi Y, Ono H. Multiple Carcinomas and Intraepithelial Neoplasms in a Case of Familial Pancreatic Cancer: Rapid Morphological Changes in the Pancreatic Cyst and Pathological Lesions Undetected by Clinical Images. Intern Med 2020; 59:1041-1046. [PMID: 31915314 PMCID: PMC7205531 DOI: 10.2169/internalmedicine.3882-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 69-year-old woman with a family history of pancreatic cancer was referred because of imaging changes of a pancreas cyst. Magnetic resonance cholangiopancreatography showed a faintly dilated main pancreatic duct and a pancreas body cyst that had changed rapidly over the past year. Computed tomography demonstrated an emerging enhancing lesion in the pancreatic cyst. Endoscopic ultrasonography revealed an irregular-margined, heterogeneous-echoic pancreatic mass, without findings of early chronic pancreatitis. She underwent distal pancreatectomy. A histologic examination of the resected specimen revealed invasive adenocarcinoma with numerous multicentric foci of pancreatic intraepithelial neoplasia (PanIN), including high-grade PanIN, apparently separate from the main cancer.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Endoscopy, Shizuoka Cancer Center, Japan
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Japan
| | - Kenji Notohara
- Department of Anatomic Pathology, Kurashiki Central Hospital, Japan
| | - Ralph H Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical University, USA
| | | | | | - Junya Sato
- Division of Endoscopy, Shizuoka Cancer Center, Japan
| | | | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Japan
| | - Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Japan
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Japan
| |
Collapse
|
43
|
Majumder S, Raimondo M, Taylor WR, Yab TC, Berger CK, Dukek BA, Cao X, Foote PH, Wu CW, Devens ME, Mahoney DW, Smyrk TC, Pannala R, Chari ST, Vege SS, Topazian MD, Petersen BT, Levy MJ, Rajan E, Gleeson FC, Dayyeh BA, Nguyen CC, Faigel DO, Woodward TA, Wallace MB, Petersen G, Allawi HT, Lidgard GP, Kisiel JB, Ahlquist DA. Methylated DNA in Pancreatic Juice Distinguishes Patients With Pancreatic Cancer From Controls. Clin Gastroenterol Hepatol 2020; 18:676-683.e3. [PMID: 31323382 PMCID: PMC6984349 DOI: 10.1016/j.cgh.2019.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Precursors of pancreatic cancer arise in the ductal epithelium; markers exfoliated into pancreatic juice might be used to detect high-grade dysplasia (HGD) and cancer. Specific methylated DNA sequences in pancreatic tissue have been associated with adenocarcinoma. We analyzed these methylated DNA markers (MDMs) in pancreatic juice samples from patients with pancreatic ductal adenocarcinomas (PDACs) or intraductal papillary mucinous neoplasms (IPMNs) with HGD (cases), and assessed their ability to discriminate these patients from individuals without dysplasia or with IPMNs with low-grade dysplasia (controls). METHODS We obtained pancreatic juice samples from 38 patients (35 with biopsy-proven PDAC or pancreatic cystic lesions with invasive cancer and 3 with HGD) and 73 controls (32 with normal pancreas and 41 with benign disease), collected endoscopically from the duodenum after secretin administration from February 2015 through November 2016 at 3 medical centers. Samples were analyzed for the presence of 14 MDMs (in the genes NDRG4, BMP3, TBX15, C13orf18, PRKCB, CLEC11A, CD1D, ELMO1, IGF2BP1, RYR2, ADCY1, FER1L4, EMX1, and LRRC4), by quantitative allele-specific real-time target and signal amplification. We performed area under the receiver operating characteristic curve analyses to determine the ability of each marker, and panels of markers, to distinguish patients with HGD and cancer from controls. MDMs were combined to form a panel for detection using recursive partition trees. RESULTS We identified a group of 3 MDMs (at C13orf18, FER1L4, and BMP3) in pancreatic juice that distinguished cases from controls with an area under the receiver operating characteristic value of 0.90 (95% CI, 0.83-0.97). Using a specificity cut-off value of 86%, this group of MDMs distinguished patients with any stage of pancreatic cancer from controls with 83% sensitivity (95% CI, 66%-93%) and identified patients with stage I or II PDAC or IPMN with HGD with 80% sensitivity (95% CI, 56%-95%). CONCLUSIONS We identified a group of 3 MDMs in pancreatic juice that identify patients with pancreatic cancer with an area under the receiver operating characteristic value of 0.90, including patients with early stage disease or advanced precancer. These DNA methylation patterns might be included in algorithms for early detection of pancreatic cancer, especially in high-risk cohorts. Further optimization and clinical studies are needed.
Collapse
Affiliation(s)
- Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Massimo Raimondo
- Division of Gastroenterology & Hepatology Mayo Clinic Jacksonville, FL
| | - William R. Taylor
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Tracy C. Yab
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Calise K. Berger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Brian A. Dukek
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Xiaoming Cao
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Patrick H. Foote
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Chung Wah Wu
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Mary E. Devens
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Douglas W. Mahoney
- Department of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Thomas C. Smyrk
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Rahul Pannala
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | - Suresh T. Chari
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | | | - Mark D. Topazian
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Bret T. Petersen
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Michael J. Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Elizabeth Rajan
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Ferga C. Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Barham Abu Dayyeh
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Cuong C. Nguyen
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | - Douglas O. Faigel
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | | | | | - Gloria Petersen
- Department of Health Sciences Research Mayo Clinic, Rochester, MN
| | | | | | - John B. Kisiel
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - David A. Ahlquist
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
44
|
van Huijgevoort NCM, Del Chiaro M, Wolfgang CL, van Hooft JE, Besselink MG. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines. Nat Rev Gastroenterol Hepatol 2019; 16:676-689. [PMID: 31527862 DOI: 10.1038/s41575-019-0195-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic cystic neoplasms (PCN) are a heterogeneous group of pancreatic cysts that include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystic neoplasms and other rare cystic lesions, all with different biological behaviours and variable risk of progression to malignancy. As more pancreatic cysts are incidentally discovered on routine cross-sectional imaging, optimal surveillance for patients with PCN is becoming an increasingly common clinical problem, highlighting the need to balance cancer prevention with the risk of (surgical) overtreatment. This Review summarizes the latest developments in the diagnosis and management of PCN, including the quality of available evidence. Also discussed are the most important differences between the PCN guidelines from the American Gastroenterological Association, the International Association of Pancreatology and the European Study Group on Cystic Tumours of the Pancreas, including diagnostic and follow-up strategies and indications for surgery. Finally, new developments in the management of patients with PCN are addressed.
Collapse
Affiliation(s)
- Nadine C M van Huijgevoort
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
45
|
Fischer CG, Wood LD. From somatic mutation to early detection: insights from molecular characterization of pancreatic cancer precursor lesions. J Pathol 2019; 246:395-404. [PMID: 30105857 DOI: 10.1002/path.5154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer arises from noninvasive precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), which are curable if detected early enough. Recently, these types of precursor lesions have been extensively characterized at the molecular level, defining the timing of critical genetic alterations in tumorigenesis pathways. The results of these studies deepen our understanding of tumorigenesis in the pancreas, providing novel insights into tumor initiation and progression. Perhaps more importantly, they also provide a rational foundation for early detection approaches that could allow clinical intervention prior to malignant transformation. In this review, we summarize the results of comprehensive molecular characterization of PanINs, IPMNs, and MCNs and discuss the implications for cancer biology as well as early detection. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Lorenzo D, Rebours V, Maire F, Palazzo M, Gonzalez JM, Vullierme MP, Aubert A, Hammel P, Lévy P, Mestier LD. Role of endoscopic ultrasound in the screening and follow-up of high-risk individuals for familial pancreatic cancer. World J Gastroenterol 2019; 25:5082-5096. [PMID: 31558858 PMCID: PMC6747297 DOI: 10.3748/wjg.v25.i34.5082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Managing familial pancreatic cancer (FPC) is challenging for gastroenterologists, surgeons and oncologists. High-risk individuals (HRI) for pancreatic cancer (PC) (FPC or with germline mutations) are a heterogeneous group of subjects with a theoretical lifetime cumulative risk of PC over 5%. Screening is mainly based on annual magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS). The goal of screening is to identify early-stage operable cancers or high-risk precancerous lesions (pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasms with high-grade dysplasia). In the literature, target lesions are identified in 2%-5% of HRI who undergo screening. EUS appears to provide better identification of small solid lesions (0%-46% of HRI) and chronic-pancreatitis-like parenchymal changes (14%-77% of HRI), while MRI is probably the best modality to identify small cystic lesions (13%-49% of HRI). There are no specific studies in HRI on the use of contrast-enhanced harmonic EUS. EUS can also be used to obtain tissue samples. Nevertheless, there is still limited evidence on the accuracy of imaging procedures used for screening or agreement on which patients to treat. The cost-effectiveness of screening is also unclear. Certain new EUS-related techniques, such as searching for DNA abnormalities or protein markers in pancreatic fluid, appear to be promising.
Collapse
Affiliation(s)
- Diane Lorenzo
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
| | - Vinciane Rebours
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
- INSERM, UMR1149, Paris 92110, France
| | - Frédérique Maire
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
| | - Maxime Palazzo
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
| | - Jean-Michel Gonzalez
- Departement of Gastroenterology, Aix Marseille university - APHM - Hôpital Nord, Marseille 13000, France
| | - Marie-Pierre Vullierme
- Radiology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 92110, France
| | - Alain Aubert
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
| | - Pascal Hammel
- Oncology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 92110, France
| | - Philippe Lévy
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
| | - Louis de Mestier
- Pancreatology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, and Paris Diderot University, Paris 75013, France
- INSERM, UMR1149, Paris 92110, France
| |
Collapse
|
47
|
Vestrup Rift C, Melchior LC, Kovacevic B, Toxvaerd A, Klausen P, Karstensen JG, Kalaitzakis E, Storkholm J, Palnaes Hansen C, Vilmann P, Preuss Hasselby J. Next-generation sequencing of endoscopic ultrasound guided microbiopsies from pancreatic cystic neoplasms. Histopathology 2019; 75:767-771. [PMID: 31278869 DOI: 10.1111/his.13949] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
Abstract
AIMS Interpretation of cytology samples from pancreatic cysts is challenging. A novel microbiopsy forceps used during endoscopic ultrasound examinations offers new opportunities for histological examination of tissue from pancreatic cysts as well as next-generation sequencing. The aim of this study was to analyse the results of next-generation sequencing of microbiopsies from pancreatic cysts. METHODS AND RESULTS Microbiopsies from 27 patients were obtained, 23 of which were subjected to next-generation sequencing. Sixteen intraductal papillary mucinous neoplasms harboured mutations in genes regulating cell cycle and repair, and three were without mutations. Most frequent mutations were found in the KRAS and GNAS genes, and these were often concomitant. Three serous cystic neoplasms were without mutations, while with regard to histology, a non-diagnostic microbiopsy harboured a KRAS and a TP53 mutation and was deemed malignant after clinical follow-up. Three patients underwent surgery, and the point mutations detected in the microbiopsies were confirmed in the resected specimens. We identified one resected sample with an additional GNAS mutation which was not identified in the microbiopsy. CONCLUSIONS Next-generation sequencing of microbiopsies may have the potential to improve diagnostic decision-making.
Collapse
Affiliation(s)
- Charlotte Vestrup Rift
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Linea C Melchior
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bojan Kovacevic
- Gastro Unit, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Anders Toxvaerd
- Department of Pathology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Pia Klausen
- Gastro Unit, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - John G Karstensen
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Jan Storkholm
- Department of Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Palnaes Hansen
- Department of Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Vilmann
- Gastro Unit, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
Mutational Patterns in Pancreatic Juice of Intraductal Papillary Mucinous Neoplasms and Concomitant Pancreatic Cancer. Pancreas 2019; 48:1032-1040. [PMID: 31404021 DOI: 10.1097/mpa.0000000000001371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The aims of this study were to identify genetic characteristics of intraductal papillary mucinous neoplasm (IPMN)-associated pancreatic ductal carcinoma (PDC) and to detect these markers using pancreatic juice. METHODS From 76 cases, 102 tissues were obtained: 29 cases were noninvasive IPMN, 18 were PDC derived from IPMN (D-PDC; noninvasive part, n = 16; invasive part, n = 18), and 29 were PDC concomitant with IPMN (C-PDC; IPMN part, n = 10; PDC part, n = 29). Moreover, pancreatic juice samples from 28 cases were obtained (noninvasive IPMN, n = 13; D-PDC, n = 7; C-PDC, n = 8). Fifty-one cancer-related genes were analyzed by next-generation sequencing. RESULTS TP53 mutation rates in D-PDC, C-PDC, and noninvasive IPMN were 67%, 66%, and 10%, respectively. Moreover, KRAS mutational patterns between 2 simultaneous tumors differed in 1 (6.3%) of the 16 D-PDC cases and in 8 (80%) of the 10 C-PDC cases (P = 0.0006). TP53 or multiple KRAS mutations were detected using pancreatic juice more frequently in C-PDC cases than in noninvasive IPMN cases (75% and 23%, respectively, P = 0.03). CONCLUSIONS Multiple KRAS mutations along with TP53 mutation are genetic markers for C-PDC, which could be detected using pancreatic juice preoperatively.
Collapse
|
49
|
Novel Methylated DNA Markers Discriminate Advanced Neoplasia in Pancreatic Cysts: Marker Discovery, Tissue Validation, and Cyst Fluid Testing. Am J Gastroenterol 2019; 114:1539-1549. [PMID: 31306149 PMCID: PMC7294458 DOI: 10.14309/ajg.0000000000000284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Pancreatic cystic lesions (PCLs) may be precancerous. Those likely to harbor high-grade dysplasia (HGD) or pancreatic cancer (PC) are targets for surgical resection. Current algorithms to predict advanced neoplasia (HGD/PC) in PCLs lack diagnostic accuracy. In pancreatic tissue and cyst fluid (CF) from PCLs, we sought to identify and validate novel methylated DNA markers (MDMs) that discriminate HGD/PC from low-grade dysplasia (LGD) or no dysplasia (ND). METHODS From an unbiased whole-methylome discovery approach using predefined selection criteria followed by multistep validation on case (HGD or PC) and control (ND or LGD) tissues, we identified discriminant MDMs. Top candidate MDMs were then assayed by quantitative methylation-specific polymerase chain reaction on archival CF from surgically resected PCLs. RESULTS Of 25 discriminant MDMs identified in tissue, 13 were selected for validation in 134 CF samples (21 cases [8 HGD, 13 PC], 113 controls [45 ND, 68 LGD]). A tree-based algorithm using 2 CF-MDMs (TBX15, BMP3) achieved sensitivity and specificity above 90%. Discrimination was significantly better by this CF-MDM panel than by mutant KRAS or carcinoembryonic antigen, with areas under the receiver operating characteristic curve of 0.93 (95% confidence interval: 0.86-0.99), 0.71 (0.57-0.85), and 0.72 (0.60-0.84), respectively. Cutoffs for the MDM panel applied to an independent CF validation set (31 cases, 56 controls) yielded similarly high discrimination, areas under the receiver operating characteristic curve = 0.86 (95% confidence interval: 0.77-0.94, P = 0.2). DISCUSSION Novel MDMs discovered and validated in tissue accurately identify PCLs harboring HGD/PC. A panel of 2 MDMs assayed in CF yielded results with potential to enhance current risk prediction algorithms. Prospective studies are indicated to optimize and further evaluate CF-MDMs for clinical use.
Collapse
|
50
|
Durkin C, Krishna SG. Advanced diagnostics for pancreatic cysts: Confocal endomicroscopy and molecular analysis. World J Gastroenterol 2019; 25:2734-2742. [PMID: 31235996 PMCID: PMC6580353 DOI: 10.3748/wjg.v25.i22.2734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Technological advances and the widespread use of medical imaging have led to an increase in the identification of pancreatic cysts in patients who undergo cross-sectional imaging. Current methods for the diagnosis and risk-stratification of pancreatic cysts are suboptimal, resulting in both unnecessary surgical resection and overlooked cases of neoplasia. Accurate diagnosis is crucial for guiding how a pancreatic cyst is managed, whether with surveillance for low-risk lesions or surgical resection for high-risk lesions. This review aims to summarize the current literature on confocal endomicroscopy and cyst fluid molecular analysis for the evaluation of pancreatic cysts. These recent technologies are promising adjuncts to existing approaches with the potential to improve diagnostic accuracy and ultimately patient outcomes.
Collapse
Affiliation(s)
- Claire Durkin
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|