1
|
Ferrante M, D'Haens G, Jairath V, Danese S, Chen M, Ghosh S, Hisamatsu T, Kierkus J, Siegmund B, Bragg SM, Crandall W, Durand F, Hon E, Lin Z, Lopes MU, Morris N, Protic M, Carlier H, Sands BE. Efficacy and safety of mirikizumab in patients with moderately-to-severely active Crohn's disease: a phase 3, multicentre, randomised, double-blind, placebo-controlled and active-controlled, treat-through study. Lancet 2024; 404:2423-2436. [PMID: 39581202 DOI: 10.1016/s0140-6736(24)01762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mirikizumab, a humanised monoclonal antibody that inhibits IL-23p19, is effective in moderate-to-severe ulcerative colitis. We aimed to evaluate the efficacy and safety of mirikizumab in patients with moderately-to-severely active Crohn's disease. METHODS VIVID-1 was a global phase 3, randomised, double-blind, double-dummy, placebo-controlled and active-controlled, treat-through study. The study enrolled adult patients at 324 sites (hospitals or medical centres, clinical practices, and clinical research sites) in 33 countries across Europe, Asia, North America, Central America, South America, and Australia. Adult patients with moderately-to-severely active Crohn's disease and previous inadequate response, loss of response, or intolerance to one or more approved biological therapies or conventional therapies were randomly assigned 6:3:2 to receive mirikizumab 900 mg intravenously at weeks 0, 4, and 8, then 300 mg subcutaneously every 4 weeks from weeks 12 to 52; ustekinumab about 6 mg/kg intravenously at week 0, then 90 mg subcutaneously every 8 weeks from weeks 8 to 52; or placebo. The coprimary endpoints assessing superiority of mirikizumab over placebo were composite endpoints: patient-reported outcome (PRO) clinical response at week 12 and endoscopic response at week 52 (endoscopic response-composite), and PRO clinical response at week 12 and Crohn's Disease Activity Index (CDAI) clinical remission at week 52 (CDAI clinical remission-composite). The adjusted risk differences were calculated, and the comparison was performed by the Cochran-Mantel-Haenszel test. Non-responder imputation was used. VIVID-1 was registered on ClinicalTrials.gov, NCT03926130, and is now complete. FINDINGS Between July 23, 2019, and Aug 23, 2023, 1150 patients were randomly assigned and received study treatment (safety population); 1065 patients were included in the efficacy population and received mirikizumab (n=579), ustekinumab (n=287), or placebo (n=199). Both coprimary endpoints were met: endoscopic response-composite was reached in 220 (38·0%) of 579 patients on mirikizumab versus 18 (9·0%) of 199 on placebo (99·5% CI 20·6-36·8; p<0·0001); CDAI clinical remission-composite was reached in 263 (45·4%) of 579 patients on mirikizumab versus 39 (19·6%) of 199 patients on placebo (99·5% CI 15·9-35·6; p<0·0001). The incidence rates of overall adverse events and discontinuations in patients treated with mirikizumab were lower compared with placebo. The most common adverse event across the three groups was COVID-19. Serious adverse events were reported in 65 (10·3%) of 630 patients on mirikizumab, 33 (10·7%) of 309 patients on ustekinumab, and 36 (17·1%) of 211 patients on placebo. There were three deaths during VIVID-1, one in the ustekinumab group, and two in the placebo group, including one in a placebo non-responder who switched to mirikizumab after week 12. None of the deaths were considered related to the study drug. The safety of mirikizumab in Crohn's disease was consistent with its known favourable profile. INTERPRETATION Mirikizumab was safe and effective as induction and maintenance treatment for patients with moderately-to-severely active Crohn's disease who had intolerance, inadequate response, or loss of response to standard therapy. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| | - Geert D'Haens
- Inflammatory Bowel Disease Centre, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada
| | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Minhu Chen
- Division of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | | | | | | | - Emily Hon
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Zhantao Lin
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Bruce E Sands
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Liu Y, Wang Y, Ren T, Yu G, Meng X, Feng L, Li F, Zhang J, Wang C. Unraveling the long-term gastrointestinal impact of perinatal perfluorobutane sulfonate exposure on rat offspring: Intestinal barrier dysfunction and Th17/Treg imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176858. [PMID: 39414058 DOI: 10.1016/j.scitotenv.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), especially long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are increasingly acknowledged as a potential inflammatory bowel diseases (IBD) risk factor. Perfluorobutane sulfonate (PFBS), one kind of shorter chain alternative, has been reported to exhibit similar health hazards to those long-chain PFAS. However, the underlying mechanism underpinning PFBS-induced colonic inflammation has not been sufficiently elucidated. The T-helper-17 (Th17)/regulatory T (Treg) imbalance is a crucial event for the pathogenesis of colonic inflammation. In this study, we aimed to reveal whether and how perinatal PFBS exposure leads to the Th17/Treg imbalance and colonic inflammation in offspring. We firstly demonstrated in vivo that early-life PFBS exposure (0.5 mg/kg, 5 mg/kg) led to increased intestinal permeability and colonic inflammation accompanied by decreased expressions of tight junction protein 1 (Tjp1) and claudin-4 (Cldn4) and increased expressions of interleukin 17A (IL-17A) in colon of rat offspring. Further results indicated that PFBS exposure induces the Th17/Treg imbalance through upregulating the expression of retinoic acid receptor-related orphan receptor gamma t (Ror-γt) and transforming growth factor beta (TGF-β) and downregulating of forkhead box protein 3 (Foxp3) and IL-10 in colon. Moreover, metabolomics analyses indicated that bile secretion metabolism was significantly altered under PFBS exposure. The reduction of lithocholic acid and deoxycholic acid was closely related to the changes of TGF-β and IL-10 in colon, and may contribute to the perturbation of Th17/Treg balance and colonic inflammation. These results provide evidences for the immunotoxicity of PFBS and reveal the potential contribution to colonic inflammation, which raises concern on the health effects and risk assessment of short-chain PFAS.
Collapse
Affiliation(s)
- Yongjie Liu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China; Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yong Wang
- School of Architecture and Engineering, Yan'an University, Yan'an 716000, China
| | - Tai Ren
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guoqi Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xi Meng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Fei Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Cuiping Wang
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Kosorínová D, Suchá P, Havlíčeková Z, Pršo M, Dvoran P, Bánovčin P. Pharmacogenetics in personalized treatment in pediatric patients with inflammatory bowel disease (IBD). ČESKO-SLOVENSKÁ PEDIATRIE 2024; 79:213-219. [DOI: 10.55095/cspediatrie2024/008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wang M, Shi J, Yu C, Zhang X, Xu G, Xu Z, Ma Y. Emerging strategy towards mucosal healing in inflammatory bowel disease: what the future holds? Front Immunol 2023; 14:1298186. [PMID: 38155971 PMCID: PMC10752988 DOI: 10.3389/fimmu.2023.1298186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
For decades, the therapeutic goal of conventional treatment among inflammatory bowel disease (IBD) patients is alleviating exacerbations in acute phase, maintaining remission, reducing recurrence, preventing complications, and increasing quality of life. However, the persistent mucosal/submucosal inflammation tends to cause irreversible changes in the intestinal structure, which can barely be redressed by conventional treatment. In the late 1990s, monoclonal biologics, mainly anti-TNF (tumor necrosis factor) drugs, were proven significantly helpful in inhibiting mucosal inflammation and improving prognosis in clinical trials. Meanwhile, mucosal healing (MH), as a key endoscopic and histological measurement closely associated with the severity of symptoms, has been proposed as primary outcome measures. With deeper comprehension of the mucosal microenvironment, stem cell niche, and underlying mucosal repair mechanisms, diverse potential strategies apart from monoclonal antibodies have been arising or undergoing clinical trials. Herein, we elucidate key steps or targets during the course of MH and review some promising treatment strategies capable of promoting MH in IBD.
Collapse
Affiliation(s)
- Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyan Shi
- Medical School, Nanjing University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyi Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyan Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Alshammary SA, Boumarah DN. Hepatic Abscess in Inflammatory Bowel Disease: A Systematic Scoping Review of an Overlooked Entity. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2023; 11:267-274. [PMID: 37970456 PMCID: PMC10634461 DOI: 10.4103/sjmms.sjmms_545_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/24/2023] [Accepted: 07/05/2023] [Indexed: 11/17/2023]
Abstract
Background Liver abscess is one of the hepatobiliary manifestations of inflammatory bowel disease (IBD) that has been scarcely described in the literature. Objectives To conduct a scoping review to provide a detailed description of the occurrence of hepatic abscess in patients with IBD and summarize the observed clinical features. Methodology Searches were carried out using relevant keywords in Medline (via PubMed) and Web of Science from inception until June 13, 2022. Only articles that reported the occurrence of hepatic abscess in patients with IBD were included. Results Forty-eight publications (40 case reports and 8 case series) were included, representing 73 patients with IBD who were radiologically or intraoperatively diagnosed with hepatic abscess. Patients with Crohn's disease were more predisposed to developing hepatic abscess than patients with ulcerative colitis (79.5% vs. 20.5%, respectively). Furthermore, pyogenic liver abscess was found to be more prevalent (57.9%) compared with aseptic (38.7%) and amebic (3.2%) abscesses. No clear relation was found between death or prolonged hospital stay in terms of the clinical presentation or management plan, as mortality was reported in different age groups with different managements. Conclusion To date, there is no consensus regarding the appropriate management of hepatic abscess as an extraintestinal manifestation of IBD. However, the condition shares several features with liver abscess diagnosed among the general population.
Collapse
Affiliation(s)
- Shadi Abdullah Alshammary
- Department of Surgery, College of Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dhuha Nahar Boumarah
- Department of Surgery, College of Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Otte ML, Lama Tamang R, Papapanagiotou J, Ahmad R, Dhawan P, Singh AB. Mucosal healing and inflammatory bowel disease: Therapeutic implications and new targets. World J Gastroenterol 2023; 29:1157-1172. [PMID: 36926666 PMCID: PMC10011951 DOI: 10.3748/wjg.v29.i7.1157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and protecting against injury and infections. Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair. However, when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results, particularly inflammatory bowel disease (IBD). Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions, with the mechanisms of regulation just beginning to be understood. Consequently, there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes, so tissue damage in the gastrointestinal tract of patients, even those in clinical remission, persists. With increased understanding of the molecular mechanisms of IBD and MH, tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response. In this review, we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH.
Collapse
Affiliation(s)
- Megan Lynn Otte
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Julia Papapanagiotou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
7
|
Autologous Bioactive Compound Concentrated Growth Factor Ameliorates Fistula Healing of Anal Fistula in a Pig Model and Promotes Proliferation and Migration of Human Skin Fibroblasts via Regulating the MEK/ERK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7660118. [PMID: 36281422 PMCID: PMC9587676 DOI: 10.1155/2022/7660118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Recent evidence suggested that autologous concentrated growth factor (CGF), a new bioactive compound from autologous blood is used widely as an ingenious biomaterial in tissue regeneration with anti-inflammatory properties. This study investigated whether CGF could be involved in the treatment of fistula healing in the anal fistula. For this purpose, the porcine anal fistula model was conducted using the rubber band ligation method and collected pig autogenic CGF to treat the fistulas. CGF treatment promoted fistula healing, which was reflected in the downregulation of inflammatory factors, upregulation of growth factors, and promoted epithelial-mesenchymal transition with increased collagen synthesis. Besides, 16S rRNA gene sequencing analysis of fistula tissues between the control and CGF groups showed that the microbial populations exhibiting significant differences were VadinCA02, Blastomonas, Deinococcus, Devosia, Sphingomonas, Rubrobacteria, and GW_34. CGF of volunteers were collected to process small interfering RNA- (siRNA-) ERK or siRNA-negative control transfected human skin fibroblasts (HSF). The results showed that CGF also promoted the proliferation and extracellular matrix-related functions in HSF, as well as activated the MEK/ERK pathway in vitro and in vivo. Finally, knockdown ERK reversed the effects of CGF in promoting wound healing in HSF. Collectively, our results suggest that the CGF as the bioactive compound from autologous blood exhibited great potential for repairing fistulas as well as promoting the proliferation and migration of human skin fibroblasts by triggering MEK/ERK signaling. These findings provided a fresh perspective for understanding the role of CGF in the management of fistulas.
Collapse
|
8
|
Sazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, et alSazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, Sheikh SZ, Silverberg MS, Simmons A, Skeiceviciene J, Sokol H, Solomonson M, Somineni H, Sun D, Targan S, Turner D, Uhlig HH, van der Meulen AE, Vermeire S, Verstockt S, Voskuil MD, Winter HS, Young J, Duerr RH, Franke A, Brant SR, Cho J, Weersma RK, Parkes M, Xavier RJ, Rivas MA, Rioux JD, McGovern DPB, Huang H, Anderson CA, Daly MJ. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility. Nat Genet 2022; 54:1275-1283. [PMID: 36038634 PMCID: PMC9700438 DOI: 10.1038/s41588-022-01156-2] [Show More Authors] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.
Collapse
Affiliation(s)
- Aleksejs Sazonovs
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christine R Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brandon Avila
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria T Abreu
- Crohn's and Colitis Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Matthieu Allez
- Hopital Saint-Louis, APHP, Universite de Paris, INSERM U1160, Paris, France
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Crohn's and Colitis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gil Atzmon
- Department for Human Biology, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Jeffrey C Barrett
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The Institute for Aging Research, The Nathan Shock Center of Excellence in the Basic Biology of Aging and the Paul F. Glenn Center for the Biology of Human Aging Research at Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Laurent Beaugerie
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Alain Bitton
- McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernd Bokemeyer
- Department of Internal Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA
| | | | | | - Jacques Cosnes
- Professeur Chef de Service chez APHP and Universite Paris-6, Paris, France
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Allan Daly
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noor Dawany
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- University of Rome Sapienza, Rome, Italy
- IRGB - CNR, Cagliari, Italy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Ellinghaus
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Laura Fachal
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kyle Gettler
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Philippe Goyette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marc Hoeppner
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Peter Irving
- Department of Gastroenterology, Guys and Saint Thomas Hospital, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Vivek Iyer
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chaim Jalas
- Director of Genetic Resources and Services, Center for Rare Jewish Genetic Disorders, Bonei Olam, Brooklyn, NY, USA
| | - Judith Kelsen
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Barbara S Kirschner
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Subra Kugathasan
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Chloé Lévesque
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - James D Lewis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Crohn's and Colitis Foundation, New York, NY, USA
| | | | - Britt-Sabina Loescher
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - John Mansfield
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra May
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Myriam Mni
- University of Liège, ULG, Liège, Belgium
| | | | | | | | | | - David T Okou
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Institut National de Sante Publique (INSP), Abidjan, Côte d'Ivoire
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harry Ostrer
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aarno Palotie
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jean Paquette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Joel Pekow
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Natalie Prescott
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - Ann E Pulver
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel L Rice
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Bruce Sands
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Stefan Schreiber
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | - Philippe Seksik
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Rasha Shawky
- IBD BioResource, NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Alison Simmons
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skeiceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Matthew Solomonson
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dylan Sun
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Turner
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Andrea E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Séverine Vermeire
- University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Andre Franke
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Crohn's Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick and Piscataway, NJ, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Miles Parkes
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Kurt Isselbacher Professor of Medicine at Harvard Medical School, Cambridge, MA, USA
- Core Institute Member, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Immunology Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John D Rioux
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Carl A Anderson
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Mark J Daly
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Butera A, Quaranta MT, Crippa L, Spinello I, Saulle E, Di Carlo N, Campanile D, Boirivant M, Labbaye C. CD147 Targeting by AC-73 Induces Autophagy and Reduces Intestinal Fibrosis Associated with TNBS Chronic Colitis. J Crohns Colitis 2022; 16:1751-1761. [PMID: 35833587 PMCID: PMC9683082 DOI: 10.1093/ecco-jcc/jjac084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of inflammatory bowel diseases. Medical treatment of intestinal fibrosis is an unmet therapeutic need. CD147 overexpression can induce myofibroblast differentiation associated with extracellular matrix deposition, favouring the development of fibrosis. To understand whether CD147 may promote intestinal fibrosis, we analysed its expression and blocked its function by using its specific inhibitor AC-73 [3-{2-[([1,1'-biphenyl]-4-ylmethyl) amino]-1-hydroxyethyl} phenol] in the murine TNBS [trinitrobenzenesulfonic acid]-chronic colitis model associated with intestinal fibrosis. METHODS TNBS chronic colitis was induced by weekly intrarectal administration of escalating doses of TNBS. Ethanol-treated and untreated mice were used as controls. Separated groups of TNBS, ethanol-treated or untreated mice received AC-73 or vehicle administered intraperitoneally from day 21 to day 49. At day 49, mice were killed, and colons collected for histological analysis, protein and RNA extraction. CD147, α-SMA and activated TGF-β1 protein levels, CD147/ERK/STAT3 signalling pathway and autophagy were assessed by Western blot, collagen and inflammatory/fibrogenic cytokines mRNA tissue content by quantitative PCR. RESULTS In mice with chronic TNBS colitis, CD147 protein level increased during fibrosis development in colonic tissue, as compared to control mice. CD147 inhibition by AC-73 treatment reduced intestinal fibrosis, collagen and cytokine mRNA tissue content, without significant modulation of activated TGF-β1 protein tissue content. AC-73 inhibited CD147/ERK1/2 and STAT3 signalling pathway activation and induced autophagy. CONCLUSIONS CD147 is a potential new target for controlling intestinal fibrosis and its inhibitor, AC-73, might represent a potential new anti-fibrotic therapeutic option in IBD.
Collapse
Affiliation(s)
| | | | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Nazzareno Di Carlo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Doriana Campanile
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Boirivant
- Corresponding authors: Monica Boirivant, MD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902976; E-mail:
| | - Catherine Labbaye
- Catherine Labbaye, PhD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902418; E-mail:
| |
Collapse
|
10
|
Liu Q, Zhang X, Ko HM, Stocker D, Ellman J, Chen J, Hao Y, Bhardwaj S, Liang Y, Cho J, Colombel JF, Taouli B, Harpaz N. Constrictive and Hypertrophic Strictures in Ileal Crohn's Disease. Clin Gastroenterol Hepatol 2022; 20:e1292-e1304. [PMID: 34400338 DOI: 10.1016/j.cgh.2021.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Strictures in Crohn's disease (CD) are classically attributed to fibromuscular hypertrophy of the intestinal wall. We have identified and characterized CD-related ileal strictures that result instead from mural constriction (ie, reduced external circumference). METHODS Twenty-four strictures and internal controls from 17 adults with obstructive CD were analyzed by cross-sectional morphometry. RESULTS The stricture-to-control circumference ratios (CRs) ranged from 0.53 to 1.7. Six strictures with CR ≥1.0, designated hypertrophic, had concentrically thickened walls, mean 3-fold increases in cross-sectional area and stainable fibromucular tissue, and high transmural inflammation scores. In contrast, 18 strictures with CR <1.0, designated constrictive, had thin, pliant walls, cross-sectional areas and stainable fibromuscular tissue comparable with control values, and low transmural inflammation scores. Eight mildly constrictive strictures also showed mild fibromuscular mural expansion that fell short of statistical significance. Twelve of 18 constrictive strictures (67%) occurred multiply (2-4 strictures per specimen) in contrast with hypertrophic strictures, all of which occurred singly (P = .01). Constriction correlated quantitatively with circumferential serosal fat wrapping (P = .003) and was associated with myenteric lymphocytic plexitis (P = .02). Disease duration was shortest among subjects with constrictive strictures and correlated with increasing circumference (CR ≤0.8, 6.3 ± 6.2 years; CR >0.8, 8.7 ± 6.4 years; and CR ≥1.00, 13.7 ± 5.0 years, respectively; P = .03). CONCLUSIONS Constrictive ileal strictures in CD differ pathologically and clinically from hypertrophic strictures, featuring little or no fibromuscular mural expansion, frequent multiplicity, and earlier onset. Mesenteric fat wrapping and myenteric plexitis may contribute to their pathogenesis. Pathologic manifestations of constriction and hypertrophy can coexist, suggesting that stricture heterogeneity may be shaped in part by the dynamics of constrictive and hypertrophic processes.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaofei Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Huaibin Mabel Ko
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Dr Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Stocker
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan Ellman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joyce Chen
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yansheng Hao
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Swati Bhardwaj
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yuanxin Liang
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judy Cho
- Dr Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean Frederic Colombel
- Dr Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bachir Taouli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noam Harpaz
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Dr Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
11
|
How Gut Bacterial Dysbiosis Can Promote Candida albicans Overgrowth during Colonic Inflammation. Microorganisms 2022; 10:microorganisms10051014. [PMID: 35630457 PMCID: PMC9147621 DOI: 10.3390/microorganisms10051014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a commensal opportunistic yeast, which is capable of colonising many segments of the human digestive tract. Excessive C. albicans overgrowth in the gut is associated with multiple risk factors such as immunosuppression, antibiotic treatment associated with changes to the gut microbiota and digestive mucosa that support C. albicans translocation across the digestive intestinal barrier and haematogenous dissemination, leading to invasive fungal infections. The C. albicans cell wall contains mannoproteins, β-glucans, and chitin, which are known to trigger a wide range of host cell activities and to circulate in the blood during fungal infection. This review describes the role of C. albicans in colonic inflammation and how various receptors are involved in the immune defence against C. albicans with a special focus on the role of mannose-binding lectin (MBL) and TLRs in intestinal homeostasis and C. albicans sensing. This review highlights gut microbiota dysbiosis during colonic inflammation in a dextran sulphate sodium (DSS)-induced colitis murine model and the effect of fungal glycan fractions, in particular β-glucans and chitin, on the modification of the gut microbiota, as well as how these glycans modulate the immuno-inflammatory response of the host.
Collapse
|
12
|
Pierre N, Salée C, Vieujean S, Bequet E, Merli AM, Siegmund B, Meuwis MA, Louis E. Review article: distinctions between ileal and colonic Crohn's disease: from physiology to pathology. Aliment Pharmacol Ther 2021; 54:779-791. [PMID: 34297423 DOI: 10.1111/apt.16536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/15/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ileal and colonic Crohn's disease seem to be two separate entities. AIMS To describe the main physiological distinctions between the small and the large intestine and to analyse the differences between ileal and colonic Crohn's disease. METHODS The relevant literature was critically examined and synthesised. RESULTS The small and large intestine have fundamental distinctions (anatomy, cellular populations, immune defence, microbiota). The differences between ileal and colonic Crohn's disease are highlighted by a heterogeneous body of evidence including clinical features (natural history of the disease, efficacy of treatments, and monitoring), epidemiological data (smoking status, age, gender) and biological data (genetics, microbiota, immunity, mesenteric fat). However, the contribution of these factors to disease location remains poorly understood. CONCLUSION The classification of ileal and colonic Crohn's disease as distinct subphenotypes is well supported by the literature. Understanding of these differences could be exploited to develop more individualised patient care.
Collapse
Affiliation(s)
- Nicolas Pierre
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Catherine Salée
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Sophie Vieujean
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| | - Emeline Bequet
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Liège University Hospital, Liège, Belgium
| | - Angela-Maria Merli
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| |
Collapse
|
13
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World J Gastroenterol 2020; 26:4055-4075. [PMID: 32821070 PMCID: PMC7403801 DOI: 10.3748/wjg.v26.i28.4055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in patients with active UC, it failed in patients with Crohn's disease (CD). This finding strongly hints at a different contribution of JAK signaling in both entities. Here, we review the current knowledge on the interplay between the JAK/signal transducer and activator of transcription (STAT) pathway and inflammatory bowel diseases (IBD). In particular, we provide a detailed overview of the differences and similarities of JAK/STAT-signaling in UC and CD, highlight the impact of the JAK/STAT pathway in experimental colitis models and summarize the published evidence on JAK/STAT-signaling in immune cells of IBD as well as the genetic association between the JAK/STAT pathway and IBD. Finally, we describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD and comment on the limitations and challenges of the new drug class.
Collapse
Affiliation(s)
- Friederike Cordes
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - John Nik Ding
- Department of Gastroenterology, St. Vincent’s Hospital, Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, East Melbourne 3002, Australia
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| |
Collapse
|
15
|
Cucchiara S, D'Arcangelo G, Isoldi S, Aloi M, Stronati L. Mucosal healing in Crohn's disease: new insights. Expert Rev Gastroenterol Hepatol 2020; 14:335-345. [PMID: 32315209 DOI: 10.1080/17474124.2020.1759416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Traditional management of patients with Crohn's disease includes symptoms and quality of life improvement. With the advent of biological agents, mucosal healing has become an achievable goal, documented through endoscopy. However, due to the transmural nature of inflammation, the prevention of bowel damage should be included in the aims of a targeted therapeutic strategy. AREAS COVERED Updated literature has been searched in PubMed from 2008 to 2020. This review focuses on the state of the art in the innovative therapeutic goals in Crohn's disease, also considering still controversial aspects and future research topics in the management of Crohn's disease. EXPERT OPINION Although a widely agreed view supports the notion that mucosal healing and bowel damage control may promote beneficial outcomes (i.e. reduction in hospitalization and surgical rates, avoidance of steroids), long-term robust data are still missing. On the other hand, the development of -omics techniques has expanded our knowledge of the pathogenetic mechanism underlying inflammatory bowel disease and opened up new horizons in precision or personalized medicine.
Collapse
Affiliation(s)
- Salvatore Cucchiara
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome , Rome, Italy
| | - Giulia D'Arcangelo
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome , Rome, Italy
| | - Sara Isoldi
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome , Rome, Italy
| | - Marina Aloi
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome , Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome , Rome, Italy
| |
Collapse
|
16
|
Succinate Activates EMT in Intestinal Epithelial Cells through SUCNR1: A Novel Protagonist in Fistula Development. Cells 2020; 9:cells9051104. [PMID: 32365557 PMCID: PMC7290938 DOI: 10.3390/cells9051104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of Crohn’s disease-associated fibrostenosis and fistulas imply the epithelial-to-mesenchymal transition (EMT) process. As succinate and its receptor (SUCNR1) are involved in intestinal inflammation and fibrosis, we investigated their relevance in EMT and Crohn’s disease (CD) fistulas. Succinate levels and SUCNR1-expression were analyzed in intestinal resections from non-Inflammatory Bowel Disease (non-IBD) subjects and CD patients with stenosing-B2 or penetrating-B3 complications and in a murine heterotopic-transplant model of intestinal fibrosis. EMT, as increased expression of Snail1, Snail2 and vimentin and reduction in E-cadherin, was analyzed in tissues and succinate-treated HT29 cells. The role played by SUCNR1 was studied by silencing its gene. Succinate levels and SUCNR1 expression are increased in B3-CD patients and correlate with EMT markers. SUCNR1 is detected in transitional cells lining the fistula tract and in surrounding mesenchymal cells. Grafts from wild type (WT) mice present increased succinate levels, SUCNR1 up-regulation and EMT activation, effects not observed in SUCNR1−/− tissues. SUCNR1 activation induces the expression of Wnt ligands, activates WNT signaling and induces a WNT-mediated EMT in HT29 cells. In conclusion, succinate and its receptor are up-regulated around CD-fistulas and activate Wnt signaling and EMT in intestinal epithelial cells. These results point to SUCNR1 as a novel pharmacological target for fistula prevention.
Collapse
|
17
|
Yoo JH, Holubar S, Rieder F. Fibrostenotic strictures in Crohn's disease. Intest Res 2020; 18:379-401. [PMID: 32259917 PMCID: PMC7609387 DOI: 10.5217/ir.2019.09148] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
The use of biologic agents including anti-tumor necrosis factor monoclonal antibodies followed by anti-integrins and anti-interleukins has drastically changed the treatment paradigm of Crohn’s disease (CD) by improving clinical symptoms and mucosal healing. However, up to 70% of CD patients still eventually undergo surgery mainly due to fibrostenotic strictures. There are no specific anti-fibrotic drugs yet. This review comprehensively addresses the mechanism, prediction, diagnosis and treatment of the fibrostenotic strictures in CD. We also introduce promising anti-fibrotic agents which may be available in the near future and summarize challenges in developing novel therapies to treat fibrostenotic strictures in CD.
Collapse
Affiliation(s)
- Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Stefan Holubar
- Department of Colorectal Surgery, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
18
|
Pierre N, Salée C, Massot C, Blétard N, Mazzucchelli G, Smargiasso N, Morsa D, Baiwir D, De Pauw E, Reenaers C, Van Kemseke C, Loly JP, Delvenne P, Meuwis MA, Louis E. Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn's Disease. J Crohns Colitis 2020; 14:205-215. [PMID: 31282946 DOI: 10.1093/ecco-jcc/jjz130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Based on genetics and natural history, Crohn's disease can be separated into two entities, an ileal and a colonic disease. Protein-based approaches are needed to elucidate whether such subphenotypes are related to distinct pathophysiological processes. METHODS The proteome of ulcer edges was compared with that of paired control tissue samples [n = 32 biopsies] by differential proteomics in the ileum and the colon of Crohn's disease patients [n = 16]. The results were analysed using a hypothesis-driven approach [based on the literature] and a hypothesis-free approach [pathway enrichment analyses] to determine common and segment-specific pathophysiological processes associated with ileal and colonic CD ulcer edges. To confirm the involvement of a key pathway highlighted by proteomics, two proteins were also studied by immunochemistry. RESULTS In the ileum and the colon, 4428 and 5204 proteins, respectively, were identified and quantified. Ileal and colonic ulcer edges differed in having a distinct distribution of proteins associated with epithelial-mesenchymal transition, neutrophil degranulation, and ribosomes. Ileal and colonic ulcer edges were similarly characterized by an increase in the proteins implicated in the endoplasmic reticulum protein-processing pathway and a decrease in mitochondrial proteins. Immunochemistry confirmed the presence of endoplasmic reticulum stress in the mucosa of ileal and colonic ulcer edges. CONCLUSION This study provides protein-based evidence for partially distinct pathophysiological processes being associated with ileal and colonic ulcer edges in Crohn's disease patients. This could constitute a first step toward the development of gut segment-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Nicolas Pierre
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Catherine Salée
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Charlotte Massot
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium
| | - Noëlla Blétard
- Department of Anatomy and Pathology, GIGA Institute, Liège University Hospital CHU, Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Denis Morsa
- GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | | | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Chemistry Department, University of Liège, Liège, Belgium
| | - Catherine Reenaers
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Catherine Van Kemseke
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Jean-Philippe Loly
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Philippe Delvenne
- Department of Anatomy and Pathology, GIGA Institute, Liège University Hospital CHU, Liège, Belgium
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, GIGA Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital CHU, Liège, Belgium
| |
Collapse
|
19
|
El Ouali S, Click B, Holubar SD, Rieder F. Natural history, diagnosis and treatment approach to fibrostenosing Crohn's disease. United European Gastroenterol J 2020; 8:263-270. [PMID: 32213020 DOI: 10.1177/2050640620901960] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stricturing Crohn's disease (CD) is a significant clinical problem. The presence of a stricture may be suggested by clinical symptoms. Cross-sectional imaging using computed tomography or magnetic resonance enterography is essential in diagnosing strictures as it allows further characterization and evaluation for complications such as abscess, fistulizing disease or malignancy. Managing small bowel stricturing CD should be approached in a multidisciplinary fashion. Medical therapy can be considered in strictures which are not associated with complications, with most of the data supporting anti-TNF strategies in this setting. If the disease is refractory to medical therapy, endoscopic therapy or surgery should be performed. Endoscopic balloon dilation (EBD) is an option for short, uncomplicated and straight strictures that are within reach of a colonoscope. Although EBD has good short-term outcomes, repeat dilation is often required. Surgical options mainly include resection and strictureplasty. Strictures refractory to medical therapy, not amenable or refractory to EBD, or associated with complications or malignancy should be managed surgically. However, surgery may also be considered at an earlier stage depending on disease characteristics and patient preference. Postoperative recurrence is common, highlighting the importance of careful monitoring of the patient postoperatively and optimization of medical management accordingly. There is a pressing need to develop anti-fibrotics for the treatment of stricturing CD. This requires the development of standardized diagnostic criteria, patient-reported outcome measures and validation of endpoints in fibrostenotic CD. The STAR consortium is pioneering this effort in order to allow development and testing of anti-fibrotics in future clinical trials.
Collapse
Affiliation(s)
- Sara El Ouali
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Benjamin Click
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
20
|
Van Kruiningen HJ, Tonelli P. Elephantiasis and the Origins of Chronic Bowel Damage in Crohn's Disease. Clin Gastroenterol Hepatol 2019; 17:2622-2623. [PMID: 31100451 DOI: 10.1016/j.cgh.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
|
21
|
Benmoussa A, Diallo I, Salem M, Michel S, Gilbert C, Sévigny J, Provost P. Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis. Sci Rep 2019; 9:14661. [PMID: 31601878 PMCID: PMC6787204 DOI: 10.1038/s41598-019-51092-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication and modulation of numerous physiological and pathological processes. EVs are found in large quantities in milk and contain several inflammation- and immunity-modulating proteins and microRNAs, through which they exert beneficial effects in several inflammatory disease models. Here, we investigated the effects of two EV subsets, concentrated from commercial cow's milk, on a murine model of colitis induced with dextran sodium sulfate (DSS). P35K EVs, isolated by ultracentrifugation at 35,000 g, and P100K EVs, isolated at 100,000 g, were previously characterized and administered by gavage to healthy and DSS-treated mice. P35K EVs and, to a lesser extent, P100K EVs improved several outcomes associated to DSS-induced colitis, modulated the gut microbiota, restored intestinal impermeability and replenished mucin secretion. Also, P35K EVs modulated innate immunity, while P100K EVs decreased inflammation through the downregulation of colitis-associated microRNAs, especially miR-125b, associated with a higher expression of the NFκB inhibitor TNFAIP3 (A20). These results suggest that different milk EV subsets may improve colitis outcomes through different, and possibly complementary, mechanisms. Further unveiling of these mechanisms might offer new opportunities for improving the life of patients with colitis and be of importance for milk processing, infant milk formulation and general public health.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Idrissa Diallo
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Mabrouka Salem
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Sara Michel
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Caroline Gilbert
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jean Sévigny
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
22
|
Prasanphanich AF, Johnson CT, Krasnopeyev A, Cantara S, Roach C, Gumber S, Chinnadurai R, Galipeau J, Brewster L, Prologo JD. Image-Guided Transarterial Directed Delivery of Human Mesenchymal Stem Cells for Targeted Gastrointestinal Therapies in a Swine Model. J Vasc Interv Radiol 2019; 30:1128-1134.e5. [PMID: 30852052 DOI: 10.1016/j.jvir.2018.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate the feasibility of catheter-directed intra-arterial stem cell delivery of human mesenchymal stem cells (MSCs) to the small bowel in a porcine model. MATERIALS AND METHODS The cranial mesenteric artery of 6 Yucatan minipigs was selectively catheterized under fluoroscopic guidance following cut-down and carotid artery access. A proximal jejunal branch artery was selectively catheterized for directed delivery of embolic microspheres (100-300 μm) or MSCs (0.1-10 million cells). The pigs were euthanized after 4 hours and specimens collected from the proximal duodenum and the targeted segment of the jejunum. The Chiu/Park system for scoring intestinal ischemia was used to compare hematoxylin and eosin-stained sections of jejunum and duodenum. RESULTS Successful delivery of microspheres or MSCs in a proximal jejunal branch artery of the cranial mesenteric artery was achieved in all subjects. Radiopaque microspheres and post-delivery angiographic evidence of stasis in the targeted vessels were observed on fluoroscopy after delivery of embolics. Preserved blood flow was observed after MSC delivery in the targeted vessel. The Chiu/Park score for intestinal ischemia in the targeted proximal jejunal segments were similar for microspheres (4, 4; n = 2) and MSCs (4, 4, 4, 3; n = 4), indicating moderate ischemic effects that were greater than for control duodenal tissue (3, 1; 0, 0, 3, 3). CONCLUSIONS Selective arteriographic deployment of MSCs in swine is feasible for study of directed intestinal stem cell delivery. In this study, directed therapy resulted in intestinal ischemia.
Collapse
Affiliation(s)
- Adam F Prasanphanich
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Christopher T Johnson
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Andrey Krasnopeyev
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Shraddha Cantara
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Cristin Roach
- Division of Animal Resources, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | | | - Jacques Galipeau
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Luke Brewster
- Department of Surgery, Emory University, 201 Dowman Drive, Atlanta, GA 30322
| | - J David Prologo
- Department of Radiology and Imaging Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322.
| |
Collapse
|