1
|
Lv J, Zhou Y, Tao C, Cai Y, Yang H, Xu J, Chen J, Sun R. Association between the triglyceride glucose index and the risk of acute respiratory failure in patients with acute pancreatitis. BMC Gastroenterol 2025; 25:182. [PMID: 40102760 PMCID: PMC11916307 DOI: 10.1186/s12876-025-03771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The triglyceride glucose (TyG) index serves as a dependable marker for insulin resistance and has shown a significant correlation with the severity of acute pancreatitis (AP). However, no research exists regarding the association between the TyG index and the development of acute respiratory failure (ARF) in AP. This study assesses the association between TyG index and ARF in patients with AP. METHODS Retrospective cohort analysis was conducted with the MIMIC-IV 2.2 critical care data. The endpoint focused on ARF during hospitalization. Statistical analysis encompassed univariate and multivariate logistic regressions, alongside restricted cubic spline (RCS) analysis to explore potential nonlinear associations. Receiver operating characteristic (ROC) curve analysis was employed to identify the optimal TyG index cutoff, leading to the classification of patients into Low TyG and High TyG groups. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were subsequently applied to minimize the influence of confounding factors, thereby further clarifying the relationship between the TyG index and ARF in patients with AP. RESULTS A total of 758 patients were involved in this study, the incidence of ARF was 21.64%. Logistic regression analyses demonstrated a significant association between the TyG index and the incidence of ARF in patients with AP. The RCS model illustrated a nonlinear relationship between a higher TyG index and an increased risk of ARF. The cutoff value of TyG index was 9.099 for ARF in patients with AP based on the ROC curve analysis. Furthermore, following PSM and IPTW, multivariate logistic regression analysis indicated that the High TyG group exhibited a significantly higher risk of ARF compared to the Low TyG group (P < 0.05). CONCLUSIONS The TyG index is associated with ARF risk in AP patients and may aid in early risk assessment.
Collapse
Affiliation(s)
- Jiao Lv
- Department of Gastroenterology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu Province, China
| | - Yuanjun Zhou
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Changyan Tao
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Yan Cai
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Hongfeng Yang
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Juan Xu
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Jun Chen
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China
| | - Ruxian Sun
- Department of Critical Care Medicine, Zhenjiang First People's Hospital, No. 8 Dian Li Road, Zhenjiang, Jiangsu Province, 212000, China.
| |
Collapse
|
2
|
Biswas A, Arshid S, Kristensen KK, Jørgensen TJD, Ploug M. Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1. J Lipid Res 2025; 66:100745. [PMID: 39814316 PMCID: PMC11869522 DOI: 10.1016/j.jlr.2025.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement. When the acidic tail was neutralized in gene-edited mice, LPL remained trapped in the sub-endothelial spaces triggering hypertriglyceridemia. Due to its disordered state, the crystal structure of LPL•GPIHBP1 provided no information on these electrostatic interactions between LPL and GPIHBP1 acidic tail. In the current study, we positioned the acidic tail on LPL using zero-length crosslinking. Acidic residues at positions 19-30 in GPIHBP1 mapped to Lys445, Lys441, Lys414, and Lys407 close to the interface between the C- and N-terminal domains in LPL. Modeling this interface revealed widespread polyelectrolyte interactions spanning both LPL domains, which explains why the acidic tail stabilizes LPL activity and protein conformation. In functional assays, we showed that the acidic cluster at 19-30 also had the greatest impact on preserving LPL activity, mitigating ANGPTL4-catalyzed LPL inactivation, preventing PSCK3-mediated LPL cleavage, and, importantly, displacing LPL from HSPGs. Our current study provides key insights into the biophysical mechanism(s) orchestrating intravascular compartmentalization of LPL activity-an intriguing pathway entailing competitive displacement of HSPG-bound LPL by a disordered acidic tail in GPIHBP1.
Collapse
Affiliation(s)
- Anamika Biswas
- Finsen Laboratory, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Samina Arshid
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Watts GF, Rosenson RS, Hegele RA, Goldberg IJ, Gallo A, Mertens A, Baass A, Zhou R, Muhsin M, Hellawell J, Leeper NJ, Gaudet D. Plozasiran for Managing Persistent Chylomicronemia and Pancreatitis Risk. N Engl J Med 2025; 392:127-137. [PMID: 39225259 DOI: 10.1056/nejmoa2409368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Persistent chylomicronemia is a genetic recessive disorder that is classically caused by familial chylomicronemia syndrome (FCS), but it also has multifactorial causes. The disorder is associated with the risk of recurrent acute pancreatitis. Plozasiran is a small interfering RNA that reduces hepatic production of apolipoprotein C-III and circulating triglycerides. METHODS In a phase 3 trial, we randomly assigned 75 patients with persistent chylomicronemia (with or without a genetic diagnosis) to receive subcutaneous plozasiran (25 mg or 50 mg) or placebo every 3 months for 12 months. The primary end point was the median percent change from baseline in the fasting triglyceride level at 10 months. Key secondary end points were the percent change in the fasting triglyceride level from baseline to the mean of values at 10 months and 12 months, changes in the fasting apolipoprotein C-III level from baseline to 10 months and 12 months, and the incidence of acute pancreatitis. RESULTS At baseline, the median triglyceride level was 2044 mg per deciliter. At 10 months, the median change from baseline in the fasting triglyceride level (the primary end point) was -80% in the 25-mg plozasiran group, -78% in the 50-mg plozasiran group, and -17% in the placebo group (P<0.001). The key secondary end points showed better results in the plozasiran groups than in the placebo group, including the incidence of acute pancreatitis (odds ratio, 0.17; 95% confidence interval, 0.03 to 0.94; P = 0.03). The risk of adverse events was similar across groups; the most common adverse events were abdominal pain, nasopharyngitis, headache, and nausea. Severe and serious adverse events were less common with plozasiran than with placebo. Hyperglycemia with plozasiran occurred in some patients with prediabetes or diabetes at baseline. CONCLUSIONS Patients with persistent chylomicronemia who received plozasiran had significantly lower triglyceride levels and a lower incidence of pancreatitis than those who received placebo. (Funded by Arrowhead Pharmaceuticals; PALISADE ClinicalTrials.gov number, NCT05089084.).
Collapse
Affiliation(s)
- Gerald F Watts
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Robert S Rosenson
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Robert A Hegele
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Ira J Goldberg
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Antonio Gallo
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Ann Mertens
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Alexis Baass
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Rong Zhou
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Ma'an Muhsin
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Jennifer Hellawell
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Nicholas J Leeper
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| | - Daniel Gaudet
- From the School of Medicine, University of Western Australia, and the Department of Cardiology, Royal Perth Hospital - both in Perth, Australia (G.F.W.); the Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai (R.S.R.), and New York University (NYU) Grossman School of Medicine, NYU Langone Health (I.J.G) - both in New York; Robarts Research Institute, London, ON (R.A.H.), and the Department of Medicine, McGill University, and the Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute (A.B.) and Université de Montréal and ECOGENE-21 (D.G.), Montreal - all in Canada; Sorbonne University, INSERM UMR1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris (A.G.); the Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium (A.M.); and Arrowhead Pharmaceuticals, Pasadena (R.Z., M.M., J.H.), and Stanford University, Palo Alto (N.J.L.) - both in California
| |
Collapse
|
4
|
Guay SP, Gagnon E, Paquette M, Thériault S, Arsenault BJ, Baass A. Pancreatitis polygenic risk score is independently associated with all-cause acute pancreatitis risk in the UK Biobank. J Gastroenterol Hepatol 2024; 39:2639-2644. [PMID: 39385584 DOI: 10.1111/jgh.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM Acute pancreatitis (AP) is a complex disease most commonly caused by gallstones, alcohol intake, or hypertriglyceridemia. Even in subjects with hypertriglyceridemia, the risk of AP is heterogeneous. Identifying individuals with a high genetic susceptibility to AP could contribute to a better risk stratification in the clinic. This study aimed to determine if a weighted polygenic risk score (PRS) of common variants in pancreatitis susceptibility genes can independently predict all-cause AP incidence in the general population. METHODS A weighted PRS was calculated for 484 932 individuals from the UK Biobank, including 3346 individuals who developed AP during follow-up. The PRS included eight single nucleotide polymorphisms in known pancreatitis susceptibility genes. RESULTS Individuals with a pancreatitis PRS above the 90th percentile had a 1.21-fold (1.03-1.43; P = 0.02) increased risk of AP compared with those with a pancreatitis PRS below the 90th percentile. When comparing individuals in the third tertile versus the first tertile, the risk of AP was 1.13-fold (1.00-1.28; P = 0.06) higher. Individuals with both a high triglyceride (TG) level and a high pancreatitis PRS (third tertile) had a 2.31-fold (1.83-2.93; P = 3.4 × 10-12) increased risk of AP compared with those with a low pancreatitis PRS and a low TG level (first tertile). Overall, the association between pancreatitis PRS and incident AP was independent of baseline TG level. CONCLUSIONS Results of this study suggest that the accumulation of common variants in pancreatitis susceptibility genes is associated with all-cause AP incidence. Pancreatitis PRS could help clinicians identify patients who may be at higher risk of AP and who may benefit from more aggressive treatment.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
| | - Martine Paquette
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Alexis Baass
- Genetic Dyslipidemia Clinic, Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Division of Experimental Medicine and Medical Biochemistry, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Liu R, Wang K, Guo X, Wang Q, Zhang X, Peng K, Lu W, Chen Z, Cao F, Wang Z, Wen L. A causal relationship between distinct immune features and acute or chronic pancreatitis: results from a mendelian randomization analysis. Pancreatology 2024; 24:1219-1228. [PMID: 39419750 DOI: 10.1016/j.pan.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES This study aimed to thoroughly examining the causal link between immune traits and four types of pancreatitis, using mendelian randomization. METHODS Data on 731 immune traits were collected from the genome-wide association study (GWAS) database as exposure. Information regarding acute pancreatitis (AP), alcohol-induced acute pancreatitis (AAP), chronic pancreatitis (CP), and alcohol-induced chronic pancreatitis (ACP) were acquired from the FinnGen Consortium as outcomes. Mendelian randomization (MR) using inverse variance weighting (IVW) evaluated the links between immune traits and pancreatitis. We evaluated the robustness of the IVW results through sensitivity analyses and validated them using meta-analysis with AP and CP data from the UK Biobank in the GWAS catalog. RESULTS A total of 36 immune traits showed significant associations with susceptibility of four types of pancreatitis, including AP (7 traits), AAP (8 traits), CP (14 traits), and ACP (7 traits). Twenty characteristics were found to be potential risk factors for pancreatitis, identified in B Cells (5 traits), conventional dendritic cells (cDCs, 2 traits), maturation stage of T cells (2 traits), monocytes (2 traits), myeloid cells (2 traits), T cells, B cells, natural killer cells (TBNK, 2 traits), and regulatory T cells (Treg cells, 5 traits). Multiple sensitivity analyses confirmed the validity of the findings. Meta-analysis confirmed a solid causal relationship between CX3CR1 on CD14- CD16-of monocyte panel and the susceptibility of CP. CONCLUSIONS Our MR study identified immune traits causally linked to acute and chronic pancreatitis, offering new insights for early clinical intervention and immune cell-targeted therapies.
Collapse
Affiliation(s)
- Rujuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China; Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Guo
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kaixin Peng
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wanyi Lu
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhigao Chen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China.
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Ding L, Li S, Cao L, Wang L, Zhou J, Mao W, Li W, Zhu Y, Ke L. Recurrence of hypertriglyceridemia-associated acute pancreatitis: A multicenter, prospective cohort study. Eur J Intern Med 2024; 125:98-103. [PMID: 38538416 DOI: 10.1016/j.ejim.2024.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES There are scarce prospective data on recurrent hypertriglyceridemia-associated acute pancreatitis (HTG-AP). This study aimed to investigate the incidence, potential prognostic factors, and clinical relevance of recurrent HTG-AP. METHODS This study is a multicenter, prospective cohort study. Adult patients with the first HTG-AP attack enrolled in the PERFORM registry between November 2020 and December 2021 were involved. All the study patients were followed up for more than two years with a two-round schedule. The Cox proportional-hazards model was applied to analyze the potential factors. Quality of life was evaluated using the EuroQol five-dimensional five-level health scale (EQ-5D-5L). RESULTS A total of 184 patients from 25 sites were included in the study, and 161 patients completed the two-round follow-up. Among them, the mean follow-up time for the study patients was 31±4 months, and the incidence rate of recurrent HTG-AP attack was 23 % (37/161). All patients with recurrent episodes required readmission to the hospital. The EQ visual analog scale (VAS) score was significantly lower in patients with recurrent episodes compared to those without (76±10 vs. 82±12; P = 0.02) at the latest follow-up. Age <40 years old (hazard ratio [HR], 3.6; 95 % confidence interval [CI], 1.5-8.7; P = 0.004) and a history of diabetes (HR, 2.6; 95 %CI, 1.3-5.1; P = 0.005) were identified as potential predictor factors for recurrence. CONCLUSIONS Recurrence of HTG-AP is common, especially for younger patients with diabetes. Recurrence necessitated additional hospital readmissions and was associated with compromised quality of life.
Collapse
Affiliation(s)
- Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, No. 17 Yong Waizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Shuai Li
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China
| | - Longxiang Cao
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China
| | - Lanting Wang
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China
| | - Jing Zhou
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Weiqin Li
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China; Department of Critical Care Medicine, Jinling Hospital, Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China; National Institute of Healthcare Data Science, Nanjing University, Nanjing, Jiangsu 210010, China; Research Institute of Critical Care Medicine and Emergency Rescue at Nanjing University, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, No. 17 Yong Waizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Lu Ke
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 Zhongshan East Road, Nanjing Jiangsu 210002, China; Department of Critical Care Medicine, Jinling Hospital, Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China; National Institute of Healthcare Data Science, Nanjing University, Nanjing, Jiangsu 210010, China; Research Institute of Critical Care Medicine and Emergency Rescue at Nanjing University, China.
| |
Collapse
|
7
|
Wang Z, Liu T, Cao D, Luo H, Yang Z, Kang X, Pan Y. The associations between functional dyspepsia and potential risk factors: A comprehensive Mendelian randomization study. PLoS One 2024; 19:e0302809. [PMID: 38718064 PMCID: PMC11078438 DOI: 10.1371/journal.pone.0302809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Previous cross-sectional studies have identified multiple potential risk factors for functional dyspepsia (FD). However, the causal associations between these factors and FD remain elusive. Here we aimed to fully examine the causal relationships between these factors and FD utilizing a two-sample MR framework. METHODS A total of 53 potential FD-related modifiable factors, including those associated with hormones, metabolism, disease, medication, sociology, psychology, lifestyle and others were obtained through a comprehensive literature review. Independent genetic variants closely linked to these factors were screened as instrumental variables from genome-wide association studies (GWASs). A total of 8875 FD cases and 320387 controls were available for the analysis. The inverse variance weighted (IVW) method was employed as the primary analytical approach to assess the relationship between genetic variants of risk factors and the FD risk. Sensitivity analyses were performed to evaluate the consistency of the findings using the weighted median model, MR-Egger and MR-PRESSO methods. RESULTS Genetically predicted depression (OR 1.515, 95% confidence interval (CI) 1.231 to 1.865, p = 0.000088), gastroesophageal reflux disease (OR 1.320, 95%CI 1.153 to 1.511, p = 0.000057) and years of education (OR 0.926, 95%CI 0.894 to 0.958, p = 0.00001) were associated with risk for FD in univariate MR analyses. Multiple medications, alcohol consumption, poultry intake, bipolar disorder, mood swings, type 1 diabetes, elevated systolic blood pressure and lower overall health rating showed to be suggestive risk factors for FD (all p<0.05 while ≥0.00167). The positive causal relationship between depression, years of education and FD was still significant in multivariate MR analyses. CONCLUSIONS Our comprehensive MR study demonstrated that depression and lower educational attainment were causal factors for FD at the genetic level.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Tangyi Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Dan Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Hui Luo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Ze Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Xiaoyu Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| | - Yanglin Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi an, China
| |
Collapse
|
8
|
Chen C, Zhang Y, Ding Z, Zhu S. Fatty Liver, Statin Therapy, and the Risk of Hypertriglyceridemic Acute Pancreatitis: A Retrospective Study. Pancreas 2024; 53:e323-e329. [PMID: 38345924 DOI: 10.1097/mpa.0000000000002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
OBJECTIVES Identifying patients with severe hypertriglyceridemia (HTG) who are prone to developing hypertriglyceridemic pancreatitis (HTGP) is essential for facilitating preventative interventions. This research aims to explore which part of the HTG patients is easy to develop into HTGP. MATERIALS AND METHODS An observational cohort study was conducted in patients with serum triglycerides (TGs) ≥ 5.65 mmol/L. Propensity score matching (PSM) and logistic regression were used to adjust for potential confounding factors. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive potential for HTGP. RESULTS A total of 283 patients were included finally with a PSM cohort consisting of 55 HTGP matched with 77 non-HTGP. In multivariate logistic regression analysis, fatty liver (FL) (odds ratio, 2.535; P = 0.019) showed statistically significant association with HTGP, whereas statin use was correlated with a lower rate of HTGP (odds ratio, 0.203; P = 0.009). Finally, the ROC analysis showed that the TGs threshold thought to be causal of HTGP in patients with FL was significantly lower (9.31 vs 14.67 mmol/L) than that in patients without FL. CONCLUSIONS Although with lower TGs levels, patients with FL are much more prone to generate HTGP, and our findings suggest a potential role of statin as protective agents against HTGP.
Collapse
Affiliation(s)
| | - Yu Zhang
- Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | | | | |
Collapse
|
9
|
Gobeil É, Bourgault J, Mitchell PL, Houessou U, Gagnon E, Girard A, Paulin A, Manikpurage HD, Côté V, Couture C, Marceau S, Bossé Y, Thériault S, Mathieu P, Vohl MC, Tchernof A, Arsenault BJ. Genetic inhibition of angiopoietin-like protein-3, lipids, and cardiometabolic risk. Eur Heart J 2024; 45:707-721. [PMID: 38243829 PMCID: PMC10906986 DOI: 10.1093/eurheartj/ehad845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND AND AIMS RNA-based, antibody-based, and genome editing-based therapies are currently under investigation to determine if the inhibition of angiopoietin-like protein-3 (ANGPTL3) could reduce lipoprotein-lipid levels and atherosclerotic cardiovascular disease (ASCVD) risk. Mendelian randomisation (MR) was used to determine whether genetic variations influencing ANGPTL3 liver gene expression, blood levels, and protein structure could causally influence triglyceride and apolipoprotein B (apoB) levels as well as coronary artery disease (CAD), ischaemic stroke (IS), and other cardiometabolic diseases. METHODS RNA sequencing of 246 explanted liver samples and genome-wide genotyping was performed to identify single-nucleotide polymorphisms (SNPs) associated with liver expression of ANGPTL3. Genome-wide summary statistics of plasma protein levels of ANGPTL3 from the deCODE study (n = 35 359) were used. A total of 647 carriers of ANGPTL3 protein-truncating variants (PTVs) associated with lower plasma triglyceride levels were identified in the UK Biobank. Two-sample MR using SNPs that influence ANGPTL3 liver expression or ANGPTL3 plasma protein levels as exposure and cardiometabolic diseases as outcomes was performed (CAD, IS, heart failure, non-alcoholic fatty liver disease, acute pancreatitis, and type 2 diabetes). The impact of rare PTVs influencing plasma triglyceride levels on apoB levels and CAD was also investigated in the UK Biobank. RESULTS In two-sample MR studies, common genetic variants influencing ANGPTL3 hepatic or blood expression levels of ANGPTL3 had a very strong effect on plasma triglyceride levels, a more modest effect on low-density lipoprotein cholesterol, a weaker effect on apoB levels, and no effect on CAD or other cardiometabolic diseases. In the UK Biobank, the carriers of rare ANGPTL3 PTVs providing lifelong reductions in median plasma triglyceride levels [-0.37 (interquartile range 0.41) mmol/L] had slightly lower apoB levels (-0.06 ± 0.32 g/L) and similar CAD event rates compared with non-carriers (10.2% vs. 10.9% in carriers vs. non-carriers, P = .60). CONCLUSIONS PTVs influencing ANGPTL3 protein structure as well as common genetic variants influencing ANGPTL3 hepatic expression and/or blood protein levels exhibit a strong effect on circulating plasma triglyceride levels, a weak effect on circulating apoB levels, and no effect on ASCVD. Near-complete inhibition of ANGPTL3 function in patients with very elevated apoB levels may be required to reduce ASCVD risk.
Collapse
Affiliation(s)
- Émilie Gobeil
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Jérôme Bourgault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Patricia L Mitchell
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Ursula Houessou
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Eloi Gagnon
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Arnaud Girard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Audrey Paulin
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Hasanga D Manikpurage
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Valérie Côté
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Christian Couture
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Simon Marceau
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Yohan Bossé
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Sébastien Thériault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Patrick Mathieu
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Marie-Claude Vohl
- School of Nutrition, Université Laval, Québec, Canada
- Centre Nutrition, santé et société, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Canada
| | - André Tchernof
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- School of Nutrition, Université Laval, Québec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, 2725 chemin Ste-Foy, Québec, QC G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Li G, Liu L, Lu T, Sui Y, Zhang C, Wang Y, Zhang T, Xie Y, Xiao P, Zhao Z, Cheng C, Hu J, Chen H, Xue D, Chen H, Wang G, Kong R, Tan H, Bai X, Li Z, McAllister F, Li L, Sun B. Gut microbiota aggravates neutrophil extracellular traps-induced pancreatic injury in hypertriglyceridemic pancreatitis. Nat Commun 2023; 14:6179. [PMID: 37794047 PMCID: PMC10550972 DOI: 10.1038/s41467-023-41950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Hypertriglyceridemic pancreatitis (HTGP) is featured by higher incidence of complications and poor clinical outcomes. Gut microbiota dysbiosis is associated with pancreatic injury in HTGP and the mechanism remains unclear. Here, we observe lower diversity of gut microbiota and absence of beneficial bacteria in HTGP patients. In a fecal microbiota transplantation mouse model, the colonization of gut microbiota from HTGP patients recruits neutrophils and increases neutrophil extracellular traps (NETs) formation that exacerbates pancreatic injury and systemic inflammation. We find that decreased abundance of Bacteroides uniformis in gut microbiota impairs taurine production and increases IL-17 release in colon that triggers NETs formation. Moreover, Bacteroides uniformis or taurine inhibits the activation of NF-κB and IL-17 signaling pathways in neutrophils which harness NETs and alleviate pancreatic injury. Our findings establish roles of endogenous Bacteroides uniformis-derived metabolic and inflammatory products on suppressing NETs release, which provides potential insights of ameliorating HTGP through gut microbiota modulation.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Dongbo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhibo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| |
Collapse
|
11
|
Hansen SEJ, Varbo A, Nordestgaard BG, Langsted A. Hypertriglyceridemia-Associated Pancreatitis: New Concepts and Potential Mechanisms. Clin Chem 2023; 69:1132-1144. [PMID: 37530032 DOI: 10.1093/clinchem/hvad094] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/17/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Triglycerides are a major source of energy, while high plasma triglycerides are a risk factor for various diseases and premature death. Severely elevated plasma triglycerides are a well-established cause of acute pancreatitis with high mortality, likely due to the presence of elevated levels of chylomicrons and large very low-density lipoproteins in plasma. As markedly elevated levels of these very large lipoproteins are not generally found in mild to moderate hypertriglyceridemia, this was previously not regarded as a cause or marker of increased risk of acute pancreatitis. However, mild to moderate hypertriglyceridemia may identify individuals who at a later timepoint develop severe hypertriglyceridemia and acute pancreatitis. CONTENT We describe measurement of plasma triglycerides and studies on plasma triglycerides and risk of acute pancreatitis. Further, we summarize current European and American guidelines for the prevention of acute pancreatitis and, finally, the potential for future prevention of acute pancreatitis through lowering of plasma triglycerides. SUMMARY Recent observational and genetic studies indicate that mild to moderate hypertriglyceridemia is causally related to increased risk of acute pancreatitis, most likely as a marker of future severe hypertriglyceridemia. Current guidelines do not mention individuals with mild to moderate hypertriglyceridemia, even though newer evidence suggests an unmet medical need. Treatment could include plasma triglyceride-lowering therapy targeting the pathway for lipoprotein lipase as the main triglyceride degrading enzyme in plasma. Angiopoietin-like 3 and apolipoproteinC-III are inhibitors of lipoprotein lipase, and blocking of these 2 inhibitors is showing promising results in relation to marked triglyceride-lowering and could perhaps be used to prevent acute pancreatitis in the future.
Collapse
Affiliation(s)
- Signe E J Hansen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Varbo
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Li Y, Cai H, Lin Y, Huang Z, Zhou A, Huang T, Zeng YE, Ye M, Guo G, Huang Z. Association of Apolipoprotein A5 Gene Variants with Hyperlipidemic Acute Pancreatitis in Southeastern China. Genet Test Mol Biomarkers 2023; 27:284-289. [PMID: 37768328 PMCID: PMC10541917 DOI: 10.1089/gtmb.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Background: Apolipoprotein A5 (APOA5) is involved in serum triglyceride (TG) regulation. Several studies have reported that the rs651821 locus in the APOA5 gene is associated with serum TG levels in the Chinese population. However, no research has been performed regarding the association between the variants of rs651821 and the risk of hyperlipidemic acute pancreatitis (HLAP). Methods: A case-control study was conducted and is reported following the STROBE guidelines. We enrolled a total of 88 participants in this study (60 HLAP patients and 28 controls). APOA5 was genotyped using PCR and Sanger sequencing. Logistic regression models were conducted to calculate odds ratios and a 95% confidence interval. Results: The genotype distribution of the rs651821 alleles in both groups follow the Hardy-Weinberg distribution. The frequency of the "C" allele in rs651821 was increased in HLAP patients compared to controls. In the recessive model, subjects with the "CC" genotype had an 8.217-fold higher risk for HLAP (OR = 8.217, 95% CI: 1.023-66.01, p = 0.046) than subjects with the "TC+TT" genotypes. After adjusting for sex, the association remained significant (OR = 9.898, 95% CI: 1.176-83.344, p = 0.035). Additionally, the "CC" genotype was related to an increased TG/apolipoprotein B (APOB) ratio and fasting plasma glucose (FPG) levels. Conclusions: Our findings suggest that the C allele of rs651821 in APOA5 increases the risk of HLAP in persons from Southeastern China.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Hehui Cai
- Clinical Laboratory, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yancheng Lin
- HI. Q Biomedical Laboratory, Taiwan Investment Zone, Quanzhou, China
| | - Zhipeng Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Apei Zhou
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Tianhao Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yue-e Zeng
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Meizhen Ye
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Guiyuan Guo
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zicheng Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
13
|
Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflamm Res 2023:10.1007/s00011-023-01753-9. [PMID: 37300585 DOI: 10.1007/s00011-023-01753-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) belongs to the angiopoietin-like protein family and mediates the inhibition of lipoprotein lipase activity. Emerging evidence suggests that ANGPTL4 has pleiotropic functions with anti- and pro-inflammatory properties. METHODS A thorough search on PubMed related to ANGPTL4 and inflammation was performed. RESULTS Genetic inactivation of ANGPTL4 can significantly reduce the risk of developing coronary artery disease and diabetes. However, antibodies against ANGPTL4 result in several undesirable effects in mice or monkeys, such as lymphadenopathy and ascites. Based on the research progress on ANGPTL4, we systematically discussed the dual role of ANGPTL4 in inflammation and inflammatory diseases (lung injury, pancreatitis, heart diseases, gastrointestinal diseases, skin diseases, metabolism, periodontitis, and osteolytic diseases). This may be attributed to several factors, including post-translational modification, cleavage and oligomerization, and subcellular localization. CONCLUSION Understanding the potential underlying mechanisms of ANGPTL4 in inflammation in different tissues and diseases will aid in drug discovery and treatment development.
Collapse
Affiliation(s)
- Yuyue Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
14
|
Guan L, Ding L, Wan J, Xia L, He W, Xiong H, Luo L, Lu N, Zhu Y. Serum triglyceride levels are associated with recurrence in patients with acute hypertriglyceridemic pancreatitis. Front Med (Lausanne) 2023; 10:1079637. [PMID: 37007797 PMCID: PMC10050706 DOI: 10.3389/fmed.2023.1079637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
AimTo analyze the clinical profile of patients with acute hypertriglyceridemic pancreatitis (HTGP) and explore risk factors for recurrence.MethodsA retrospective observational study was conducted in patients who experienced an attack of HTGP for the first time. Patients were followed until the recurrence of acute pancreatitis (AP) or 1 year. The detailed clinical profile was compared between patients with or without recurrence. Multivariate logistic regression analysis was conducted to explore independent risk factors for recurrence.ResultsA total of 108 HTGP patients were included in this study with 73.1% being male, and the median age being 37 (interquartile range, IQR, 30.3–44.8) years. Recurrence occurred in 70 patients (64.8%). Compared with the nonrecurrent group, serum triglyceride (TG) levels before discharge [4.1 (2.8,6.3) mmol/L vs. 2.9 (2.2,4.2) mmol/L; p = 0.002], at 1 month [3.7 (2.3,9.7) mmol/L vs. 2.0 (1.4,2.7) mmol/L; p = 0.001], at 6 months [6.1 (3.1,13.1) mmol/L vs. 2.5 (1.1,3.5) mmol/L; p = 0.003] and 12 months [9.6 (3.5,20.0) mmol/L vs. 2.7 (1.6,5.5) mmol/L; p = 0.001] after discharge were higher in the recurrent group. Poor control of TG levels (TG > 3.1 mmol/l) at the 1-month follow-up after discharge and a high Charlson’s Comorbidity Index score (≥ 2 points) increased the risk of recurrence of HTGP.ConclusionHigh TG levels during follow-up and Charlson’s Comorbidity Index score were independently associated with recurrence in patients with HTGP.
Collapse
|
15
|
Mao X, Mao S, Sun H, Huang F, Wang Y, Zhang D, Wang Q, Li Z, Zou W, Liao Z. Causal associations between modifiable risk factors and pancreatitis: A comprehensive Mendelian randomization study. Front Immunol 2023; 14:1091780. [PMID: 36999014 PMCID: PMC10043332 DOI: 10.3389/fimmu.2023.1091780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe pathogenesis of pancreatitis involves diverse environmental risk factors, some of which have not yet been clearly elucidated. This study systematically investigated the causal effects of genetically predicted modifiable risk factors on pancreatitis using the Mendelian randomization (MR) approach.MethodsGenetic variants associated with 30 exposure factors were obtained from genome-wide association studies. Summary-level statistical data for acute pancreatitis (AP), chronic pancreatitis (CP), alcohol-induced AP (AAP) and alcohol-induced CP (ACP) were obtained from FinnGen consortia. Univariable and multivariable MR analyses were performed to identify causal risk factors for pancreatitis.ResultsGenetic predisposition to smoking (OR = 1.314, P = 0.021), cholelithiasis (OR = 1.365, P = 1.307E-19) and inflammatory bowel disease (IBD) (OR = 1.063, P = 0.008) as well as higher triglycerides (OR = 1.189, P = 0.016), body mass index (BMI) (OR = 1.335, P = 3.077E-04), whole body fat mass (OR = 1.291, P = 0.004) and waist circumference (OR = 1.466, P = 0.011) were associated with increased risk of AP. The effect of obesity traits on AP was attenuated after correcting for cholelithiasis. Genetically-driven smoking (OR = 1.595, P = 0.005), alcohol consumption (OR = 3.142, P = 0.020), cholelithiasis (OR = 1.180, P = 0.001), autoimmune diseases (OR = 1.123, P = 0.008), IBD (OR = 1.066, P = 0.042), type 2 diabetes (OR = 1.121, P = 0.029), and higher serum calcium (OR = 1.933, P = 0.018), triglycerides (OR = 1.222, P = 0.021) and waist-to-hip ratio (OR = 1.632, P = 0.023) increased the risk of CP. Cholelithiasis, triglycerides and the waist-to-hip ratio remained significant predictors in the multivariable MR. Genetically predicted alcohol drinking was associated with increased risk of AAP (OR = 15.045, P = 0.001) and ACP (OR = 6.042, P = 0.014). After adjustment of alcohol drinking, genetic liability to IBD had a similar significant causal effect on AAP (OR = 1.137, P = 0.049), while testosterone (OR = 0.270, P = 0.002) a triglyceride (OR = 1.610, P = 0.001) and hip circumference (OR = 0.648, P = 0.040) were significantly associated with ACP. Genetically predicted higher education and household income levels could lower the risk of pancreatitis.ConclusionsThis MR study provides evidence of complex causal associations between modifiable risk factors and pancreatitis. These findings provide new insights into potential therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Shenghan Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hongxin Sun
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Fuquan Huang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yuanchen Wang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Qiwen Wang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wenbin Zou
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Zhuan Liao, ; Wenbin Zou,
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Zhuan Liao, ; Wenbin Zou,
| |
Collapse
|
16
|
Kiss L, Fűr G, Pisipati S, Rajalingamgari P, Ewald N, Singh V, Rakonczay Z. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol (Oxf) 2023; 237:e13916. [PMID: 36599412 DOI: 10.1111/apha.13916] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Hypertriglyceridemia (HTG) is a metabolic disorder, defined when serum or plasma triglyceride concentration (seTG) is >1.7 mM. HTG can be categorized as mild to very severe groups based on the seTG value. The risk of acute pancreatitis (AP), a serious disease with high mortality and without specific therapy, increases with the degree of HTG. Furthermore, even mild or moderate HTG aggravates AP initiated by other important etiological factors, including alcohol or bile stone. This review briefly summarizes the pathophysiology of HTG, the epidemiology of HTG-induced AP and the clinically observed effects of HTG on the outcomes of AP. Our main focus is to discuss the pathophysiological mechanisms linking HTG to AP. HTG is accompanied by an increased serum fatty acid (FA) concentration, and experimental results have demonstrated that these FAs have the most prominent role in causing the consequences of HTG during AP. FAs inhibit mitochondrial complexes in pancreatic acinar cells, induce pathological elevation of intracellular Ca2+ concentration, cytokine release and tissue injury, and reduce the function of pancreatic ducts. Furthermore, high FA concentrations can induce respiratory, kidney, and cardiovascular failure in AP. All these effects may contribute to the observed increased AP severity and frequent organ failure in patients. Importantly, experimental results suggest that the reduction of FA production by lipase inhibitors can open up new therapeutic options of AP. Overall, investigating the pathophysiology of HTG-induced AP or AP in the presence of HTG and determining possible treatments are needed.
Collapse
Affiliation(s)
- Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Sailaja Pisipati
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Prasad Rajalingamgari
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Nils Ewald
- Institute for Endocrinology, Diabetology and Metabolism, University Hospital Minden, Minden, Germany.,Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Vijay Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Mao X, Huang C, Wang Y, Mao S, Li Z, Zou W, Liao Z. Association between Dietary Habits and Pancreatitis among Individuals of European Ancestry: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:nu15051153. [PMID: 36904153 PMCID: PMC10004739 DOI: 10.3390/nu15051153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Dietary factors are believed to potentially influence the risk of pancreatitis. Here, we systematically investigated the causal relationships between dietary habits and pancreatitis by using two-sample Mendelian randomization (MR). Large-scale genome-wide association study (GWAS) summary statistics for dietary habits were obtained from the UK Biobank. GWAS data for acute pancreatitis (AP), chronic pancreatitis (CP), alcohol-induced AP (AAP) and alcohol-induced CP (ACP) were from the FinnGen consortium. We performed univariable and multivariable MR analyses to evaluate the causal association between dietary habits and pancreatitis. Genetically driven alcohol drinking was associated with increased odds of AP, CP, AAP and ACP (all with p < 0.05). Genetic predisposition to higher dried fruit intake was associated with reduced risk of AP (OR = 0.280, p = 1.909 × 10-5) and CP (OR = 0.361, p = 0.009), while genetic predisposition to fresh fruit intake was associated with reduced risk of AP (OR = 0.448, p = 0.034) and ACP (OR = 0.262, p = 0.045). Genetically predicted higher consumption of pork (OR = 5.618, p = 0.022) or processed meat (OR = 2.771, p = 0.007) had a significant causal association with AP, and genetically predicted higher processed meat intake increased the risk of CP (OR = 2.463, p = 0.043). Our MR study showed that fruit intake may be protective against pancreatitis, whereas dietary intake of processed meat has potential adverse impacts. These findings may inform prevention strategies and interventions directed toward dietary habits and pancreatitis.
Collapse
Affiliation(s)
- Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Chunyou Huang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Yuanchen Wang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shenghan Mao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Wenbin Zou
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
- Correspondence: (W.Z.); (Z.L.)
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
- Correspondence: (W.Z.); (Z.L.)
| |
Collapse
|
18
|
Wadström BN, Pedersen KM, Wulff AB, Nordestgaard BG. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur Heart J 2023; 44:1432-1445. [PMID: 36631967 DOI: 10.1093/eurheartj/ehac822] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
AIMS Cholesterol carried in triglyceride-rich lipoproteins, also called remnant cholesterol, is being increasingly acknowledged as an important causal risk factor for atherosclerosis. Elevated remnant cholesterol, marked by elevated plasma triglycerides, is associated causally with an increased risk of atherosclerotic cardiovascular disease. The association with cause-specific mortality is, however, unclear. The aim of this study was to test the hypothesis that elevated remnant cholesterol and plasma triglycerides are associated with increased mortality from cardiovascular disease, cancer, and other causes. METHODS AND RESULTS Using a contemporary population-based cohort, 87 192 individuals from the Copenhagen General Population Study aged 20-69 years at baseline in 2003-2015 were included. During up to 13 years of follow-up, 687 individuals died from cardiovascular disease, 1594 from cancer, and 856 from other causes, according to the National Danish Causes of Death Registry. In individuals with remnant cholesterol ≥1.0 mmol/L (≥39 mg/dL; 22% of the population) compared with those with levels <0.5 mmol/L (<19 mg/dL), multivariable-adjusted mortality hazard ratios were 2.2 (95% confidence interval 1.3-3.5) for cardiovascular disease, 1.0 (0.7-1.3) for cancer, and 2.1 (1.4-3.3) for other causes. Exploratory analysis of the cause of death subcategories showed corresponding hazard ratios of 4.4 (1.6-11) for ischemic heart disease, 8.4 (2.0-34) for infectious diseases, and 9.1 (1.9-43) for endocrinological diseases. Results for plasma triglycerides >2 vs. <1 mmol/L (>177 vs. <89 mg/dL) were similar. CONCLUSION Remnant cholesterol of ≥1 mmol/L (39 mg/dL), present in 22% of the population, and plasma triglycerides of ≥2 mmol/L (177 mg/dL), present in 28% of the population, were associated with two-fold mortality from cardiovascular and other causes, but not from cancer. This novel finding should be confirmed in other cohorts.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, elevator 7, DK-2730, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, elevator 7, DK-2730, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, elevator 7, DK-2730, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, elevator 7, DK-2730, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark
| |
Collapse
|
19
|
Ding L, Guan L, Li X, Xu X, Zou Y, He C, Hu Y, Wan J, Huang X, Lei Y, He W, Xia L, Xiong H, Luo L, Lu N, Zhu Y. Recurrence for patients with first episode of hypertriglyceridemia-induced acute pancreatitis: A prospective cohort study. J Clin Lipidol 2023; 17:94-102. [PMID: 36697323 DOI: 10.1016/j.jacl.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Data on recurrent hypertriglyceridemia-induced acute pancreatitis (HTG-AP) are scarce. OBJECTIVE To investigate the incidence and risk factors for recurrence of HTG-AP, and the effect of triglyceride (TG) lowering drugs post index attack on recurrence. METHODS This study was a prospective cohort study of adult patients with first episode of HTG-AP from December 2019 to February 2021 who were followed until recurrence or death, or February 2022. The cumulative incidence function and Fine and Gray's competing-risk model were applied to the analyses. RESULTS A total of 317 patients were enrolled, and the 12-month and 18-month cumulative recurrence incidences were 8% and 22%, respectively. The cumulative recurrence incidence was 2 times higher in patients whose serum TG levels post index attack were ≥5.65 mmol/L (subdistribution hazard ratio [SHR], 2.00; 95% confidence interval [CI], 1.05-3.80; P = 0.034) compared to patients with TG <5.65 mmol/L. The recurrence rate was 3.3 times higher in patients whose glucose levels post index attack were ≥7.0 mmol/L (SHR, 3.31; 95% CI, 1.56-7.03; P = 0.002) than in patients with glucose <7.0 mmol/L). Compared to TG lowering drugs for less than 1 month post index attack, treatment for longer than 12 months decreased the incidence of recurrence by 75% (SHR, 0.25; 95% CI, 0.08-0.80; P = 0.019). CONCLUSIONS The HTG-AP recurrence incidence is high and closely associated with high levels of TGs and glucose post index attack. Long-term TG lowering drugs treatment significantly decreases this recurrence.
Collapse
Affiliation(s)
- Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Langyi Guan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xueyang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yaoyu Zou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jianhua Wan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin Huang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yupeng Lei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wenhua He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang Xia
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Huifang Xiong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lingyu Luo
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nonghua Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
20
|
Smoking as the most important risk factor for chronic pancreatitis in the general population. Eur J Epidemiol 2023; 38:95-107. [PMID: 36593333 DOI: 10.1007/s10654-022-00945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/13/2022] [Indexed: 01/04/2023]
Abstract
We tested the hypothesis that six toxic risk factors from the TIGAR-O classification system are equally important for risk of chronic pancreatitis, at the level of the individual patient and in the general population. 108,438 women and men aged 20-100 years participating in the Copenhagen General Population Study from 2003 to 2015 were included. Associations of smoking, alcohol intake, waist/hip ratio, kidney function, plasma triglycerides, plasma Ca2+, and diseases within the causal pathway with risk of chronic pancreatitis, and corresponding population attributable risks were estimated. Information on chronic pancreatitis was from national Danish health registries. During median 9 years (range: 0-15) of follow-up, 313 individuals had a first diagnosis of chronic pancreatitis; the incidence of chronic pancreatitis per 10,000 person-years were 3.1 overall, 2.8 in women, and 3.5 in men. Of the six toxic risk factors and relative to individuals with low values, individuals in the top 5% had hazard ratios for chronic pancreatitis of 3.1(95% CI 2.1-4.5) for pack-years smoked, 2.5(1.5-4.0) for alcohol intake, and 1.6(1.1-2.6) for plasma triglycerides. Corresponding values versus those without the baseline disease were 12.6 (7.9-20.2) for acute pancreatitis, 1.9 (1.2-2.8) for gallstone disease, and 1.9 (1.3-2.7) for diabetes mellitus. The highest population attributable fractions were for women (1) ever smoking (31%), (2) gallstone disease (5%), and (3) diabetes mellitus (4%), and for men (1) ever smoking (38%), (2) acute pancreatitis (7%)/high alcohol intake (7%), and (3) high plasma triglycerides (5%). Smoking is the most important risk factor for chronic pancreatitis in the general population.
Collapse
|
21
|
Taşkin E, Bağci H, Turan MK. Investigation of associations between apolipoprotein A5 and C3 gene polymorphisms with plasma triglyceride and lipid levels. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:415-420. [PMID: 36921196 PMCID: PMC10004291 DOI: 10.1590/1806-9282.20221016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The aim of this study was to determine frequency and associations between APOA5 c.56C>G, -1131T>C, c.553G>T, and APOC3 -482C>T and SstI gene polymorphisms with hypertriglyceridemia. METHODS Under a case-control study model, 135 hypertriglyceridemic and 178 normotriglyceridemic control participants were recruited. Polymerase chain reaction and restriction fragment length polymorphism methods were utilized for genotyping. Statistical calculations were performed by comparing allele and genotype frequencies between groups. Clinical characteristics were compared between groups and intra-group genotypes. RESULTS APOC3 gene -482C>T and SstI polymorphic genotypes and allele frequencies were significantly higher in hypertriglyceridemic group (genotype frequencies, p=0.035, p=0.028, respectively). Regression analysis under unadjusted model confirmed that APOC3 -482C>T and SstI polymorphisms were significantly contributing to have hypertriglyceridemia (p=0.02, odds ratio [OR]=1.831 (95% confidence interval [CI] 1.095-3.060); p=0.04, OR=1.812 (1.031-3.183), respectively). APOA5 c.56C>G was in complete linkage disequilibrium with APOA5 c.553G>T polymorphism (D'=1). CONCLUSION For the first time in a population sample from Turkey, among the five polymorphisms of APOA5 and APOC3 genes investigated, APOC3 -482C>T and SstI polymorphisms were associated with elevated serum TG levels, while APOA5 c.56C>G, -1131T>C, and c.553G>T polymorphisms were not.
Collapse
Affiliation(s)
- Emre Taşkin
- Bandırma Onyedi Eylül Üniversitesi, Medical Faculty, Department of Medical Genetics – Bandırma, Turkey
- Corresponding author:
| | - Hasan Bağci
- Ondokuz Mayıs Üniversitesi, Medical Faculty, Department of Medical Biology – Samsun, Turkey
| | - Muhammed Kamil Turan
- Karabük Üniversitesi, Medical Faculty, Department of Medical Biology – Samsun, Turkey
| |
Collapse
|
22
|
Perera SD, Wang J, McIntyre AD, Dron JS, Hegele RA. The longitudinal triglyceride phenotype in heterozygotes with LPL pathogenic variants. J Clin Lipidol 2023; 17:87-93. [PMID: 36476373 DOI: 10.1016/j.jacl.2022.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Biallelic pathogenic variants in lipoprotein lipase (LPL) cause familial chylomicronemia syndrome with severe hypertriglyceridemia (HTG), defined as plasma triglycerides (TG) > 10 mmol/L (> 885 mg/dL). TG levels in individuals with one copy of a pathogenic LPL gene variant is less familiar; some assume that the phenotype is intermediate between homozygotes and controls. OBJECTIVE We undertook an evaluation of the longitudinal TG phenotype of individuals heterozygous for pathogenic LPL variants. METHODS Medically stable outpatients were evaluated based on having: (1) a single copy of a rare pathogenic LPL variant; and (2) serial fasting TG measurements obtained over > 1.5 years of follow-up. RESULTS Fifteen patients with a single pathogenic LPL variant were followed for a mean of 10.3 years (range 1.5 to 30.3 years). TG levels varied widely both within and between patients. One patient had normal TG levels < 2.0 mmol/L (< 175 mg/dL) continuously, while four patients had at least one normal TG level. Most patients fluctuated between mild-to-moderate and severe HTG: five patients had only mild-to-moderate HTG, with TG levels ranging from 2.0 to 9.9 mmol/L (175 to 885 mg/dL), while 6 patients had at least one instance of severe HTG. Of the 203 total TG measurements from these patients, 14.8%, 67.0% and 18.2% were in the normal, mild-to-moderate and severe HTG ranges, respectively. CONCLUSION The heterozygous LPL deficient phenotype is highly variable both within and between patients. Heterozygosity confers susceptibility to a wide range of TG phenotypes, with severity likely depending on secondary factors.
Collapse
Affiliation(s)
- Shehan D Perera
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, Ontario N6A 5B7, Canada (Perera, Wang, McIntyre and Hegele); Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (Perera and Hegele)
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, Ontario N6A 5B7, Canada (Perera, Wang, McIntyre and Hegele)
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, Ontario N6A 5B7, Canada (Perera, Wang, McIntyre and Hegele)
| | - Jacqueline S Dron
- Center for Genomic Medicine, Massachusetts General Hopsital, Boston, Massachusetts, USA (Dron)
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, Ontario N6A 5B7, Canada (Perera, Wang, McIntyre and Hegele); Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (Perera and Hegele); Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (Hegele).
| |
Collapse
|
23
|
Deshotels MR, Hadley TD, Roth M, Agha AM, Pulipati VP, Nugent AK, Virani SS, Nambi V, Moriarty PM, Davidson MH, Ballantyne CM. Genetic Testing for Hypertriglyceridemia in Academic Lipid Clinics: Implications for Precision Medicine-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:1461-1467. [PMID: 36325899 DOI: 10.1161/atvbaha.122.318445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia is often caused by variants in genes of triglyceride metabolism. These variants include rare, heterozygous pathogenic variants (PVs), or multiple common, small-effect single nucleotide polymorphisms that can be quantified using a polygenic risk score (PRS). The role of genetic testing to examine PVs and PRS in predicting risk for pancreatitis and severity of hypertriglyceridemia is unknown. METHODS We examined the relationship of PVs and PRSs associated with hypertriglyceridemia with the highest recorded plasma triglyceride level and risk for acute pancreatitis in 363 patients from 3 academic lipid clinics who underwent genetic testing (GBinsight's Dyslipidemia Comprehensive Panel). Categories of hypertriglyceridemia included: normal triglyceride (<200 mg/dL), moderate (200-499 mg/dL), severe (500-999 mg/dL), or very severe (≥1000 mg/dL). RESULTS PVs and high PRSs were identified in 37 (10%) and 59 (16%) individuals, respectively. Patients with both had increased risk for very severe hypertriglyceridemia compared with those with neither genetic risk factor. Risk for acute pancreatitis was also increased in individuals with both genetic risk factors (odds ratio, 5.1 [P=0.02] after controlling for age, race, sex, body mass index, and highest triglyceride level), but not in individuals with PV or high PRS alone. CONCLUSIONS The presence of both PV and high PRS significantly increased risk for very severe hypertriglyceridemia and acute pancreatitis, whereas PV or PRS alone only modestly increased risk. Genetic testing may help identify patients with hypertriglyceridemia who have the greatest risk for developing pancreatitis and may derive the greatest benefit from novel triglyceride-lowering therapies.
Collapse
Affiliation(s)
- Matthew R Deshotels
- Sections of Cardiovascular Research and Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (M.R.D., T.D.H., A.M.A., S.S.V., V.N., C.M.B.)
| | - Trevor D Hadley
- Sections of Cardiovascular Research and Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (M.R.D., T.D.H., A.M.A., S.S.V., V.N., C.M.B.)
| | | | - Ali M Agha
- Sections of Cardiovascular Research and Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (M.R.D., T.D.H., A.M.A., S.S.V., V.N., C.M.B.)
| | - Vishnu Priya Pulipati
- Section of Cardiology, Department of Medicine, University of Chicago, IL (V.P.P., M.H.D.)
| | - Anne K Nugent
- Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City (A.K.N., P.M.M.)
| | - Salim S Virani
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX (S.S.V., V.N.)
| | - Vijay Nambi
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX (S.S.V., V.N.)
| | - Patrick M Moriarty
- Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City (A.K.N., P.M.M.)
| | - Michael H Davidson
- Section of Cardiology, Department of Medicine, University of Chicago, IL (V.P.P., M.H.D.)
| | - Christie M Ballantyne
- Sections of Cardiovascular Research and Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (M.R.D., T.D.H., A.M.A., S.S.V., V.N., C.M.B.)
| |
Collapse
|
24
|
Zhang X, Li Z, Liu W, Du J, Liu Y, Yu N, Liu C, Zeng M, Zhang X. The Complement and Coagulation Cascades Pathway is Associated with Acute Necrotizing Pancreatitis by Genomics and Proteomics Analysis. J Inflamm Res 2022; 15:2349-2363. [PMID: 35444447 PMCID: PMC9014310 DOI: 10.2147/jir.s351416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Xinyu Zhang
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Zenghui Li
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Wei Liu
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Juanjuan Du
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Yun Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Ningjun Yu
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Chao Liu
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Mei Zeng
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
- Mei Zeng, Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan, 637000, People’s Republic of China, Tel +86 13990807850, Email
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
- Correspondence: Xiaoming Zhang, Medical Imaging Key Laboratory of Sichuan Province and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Nanchong, Sichuan, 637000, People’s Republic of China, Tel +86 13808271001, Email
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Lipoprotein lipase (LPL) is the rate-limiting enzyme for intravascular processing of circulating triglyceride-rich lipoproteins (TRLs). One emerging strategy for therapeutic lowering of plasma triglyceride levels aims at increasing the longevity of LPL activity by attenuating its inhibition from angiopoietin-like proteins (ANGPTL) 3, 4 and 8. This mini-review focuses on recent insights into the molecular mechanisms underpinning the regulation of LPL activity in the intravascular unit by ANGPTLs with special emphasis on ANGPTL4. RECENT FINDINGS Our knowledge on the molecular interplays between LPL, its endothelial transporter GPIHBP1, and its inhibitor(s) ANGPTL4, ANGPTL3 and ANGPTL8 have advanced considerably in the last 2 years and provides an outlined on how these proteins regulate the activity and compartmentalization of LPL. A decisive determinant instigating this control is the inherent protein instability of LPL at normal body temperature, a property that is reciprocally impacted by the binding of GPIHBP1 and ANGPTLs. Additional layers in this complex LPL regulation is provided by the different modulation of ANGPTL4 and ANGPTL3 activities by ANGPTL8 and the inhibition of ANGPTL3/8 complexes by apolipoprotein A5 (APOA5). SUMMARY Posttranslational regulation of LPL activity in the intravascular space is essential for the differential partitioning of TRLs across tissues and their lipolytic processing in response to nutritional cues.
Collapse
Affiliation(s)
- Michael Ploug
- Finsen Laboratory, Rigshospitalet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Mi J, Liu Z, Jiang L, Li M, Wu X, Zhao N, Wan Z, Bai X, Feng Y. Mendelian randomization in blood metabolites identifies triglycerides and fatty acids saturation level as associated traits linked to pancreatitis risk. Front Nutr 2022; 9:1021942. [PMID: 36299997 PMCID: PMC9589364 DOI: 10.3389/fnut.2022.1021942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is very limited evidence on the causal effects of blood metabolites on pancreatitis risks. To reveal the causal associations between plasma metabolites and pancreatitis risks, we performed two-sample Mendelian randomization (MR) and Bayesian model averaging (MR-BMA) analyses in European ancestry. Methods The summary-level statistics from two genome-wide association studies with 249 and 123 metabolic traits derived from two separate cohorts involving ~115,000 (UK Biobank) and ~25,000 individuals from European ancestry were used for the analyses. The summary statistics of four pancreatitis datasets from FinnGen R5 and two pancreatitis datasets from UK Biobank were exploited as the outcome. We first performed univariable MR analysis with different metabolic GWAS data on multiple pancreatitis datasets to demonstrate the association pattern among different metabolites categories. Next, we exploited the MR-BMA method to pinpoint the dominating factors on the increased risk of pancreatitis. Results In the primary analysis with 249 traits, we found that plasma triglycerides were positively associated with pancreatitis risk. Intriguingly, a large number of traits associated with saturation or unsaturation of fatty acids also demonstrated causal associations. The replication study analyzing 123 metabolic traits suggested that bisallylic groups levels and omega-3 fatty acids were inversely correlated with pancreatitis risk. MR-BMA analyses indicated that the ratio of triglycerides to total lipid in various HDL particles played leading roles in pancreatitis susceptibility. In addition, the degree of unsaturation, the ratio of polyunsaturated fatty acids to monounsaturated fatty acids and the level of monounsaturated fatty acids showed causal associations with either decreased or increased pancreatitis susceptibility. Conclusions Our MR study provided an atlas of causal associations of genetically predicted blood metabolites on pancreatitis, and offered genetic insights showing intervention in triglycerides and the supplementation of unsaturated fatty acids are potential strategies in the primary prevention of pancreatitis.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Master Programme of Biomedicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhengye Liu
- School of Clinical Medicine, Zhejiang University, Hangzhou, China
| | - Lingjuan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meizi Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xia Wu
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Nan Zhao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ziqi Wan
- Department of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Abstract
INTRODUCTION Familial chylomicronemia syndrome (FCS) is a rare subtype of severe hypertriglyceridemia that affects ~1 in 100, 000 to 1,000,000 individuals. The major risk to health is acute pancreatitis. FCS is defined by biallelic loss-of-function mutations in one of five canonical genes that encode proteins critical to lipolysis of large triglyceride-rich lipoprotein particles. Unlike the vast majority of patients with severe hypertriglyceridemia, FCS patients lack any lipolytic capacity and are thus resistant to standard medications. AREAS COVERED This review focuses on a mechanism that effectively reduces elevated triglyceride levels in FCS, namely interference of synthesis of apolipoprotein (apo) C-III. Volanesorsen is an antisense RNA drug administered subcutaneously that knocks down apo C-III, resulting in dramatic reductions in triglyceride levels both in FCS patients and in the wider population of subjects with severe hypertriglyceridemia. EXPERT OPINION Volanesorsen is a highly effective treatment to reduce elevated triglycerides in FCS patients, providing proof-of-concept of the validity of targeting apo C-III. However, off target effects of volanesorsen, including thrombocytopenia, may ultimately limit its use. Nonetheless, building on the knowledge derived from the volanesorsen experience, there is intensified interest in promising newer agents that also target apo C-III but have technical modifications that limit potential off target adverse effects.
Collapse
Affiliation(s)
- Julieta Lazarte
- Departments of Medicine, Medicine and Dentistry, Western University, London, Canada.,Biochemistry, Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Departments of Medicine, Medicine and Dentistry, Western University, London, Canada.,Biochemistry, Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
29
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Blackburn NB, Meikle PJ, Peralta JM, Kumar S, Leandro AC, Bellinger MA, Giles C, Huynh K, Mahaney MC, Göring HHH, VandeBerg JL, Williams-Blangero S, Glahn DC, Duggirala R, Blangero J, Michael LF, Curran JE. Identifying the Lipidomic Effects of a Rare Loss-of-Function Deletion in ANGPTL3. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003232. [PMID: 33887960 DOI: 10.1161/circgen.120.003232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (β=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Ana C Leandro
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA (D.C.G.).,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT (D.C.G.)
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Joanne E Curran
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| |
Collapse
|
31
|
The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proc Natl Acad Sci U S A 2021; 118:2026650118. [PMID: 33723082 DOI: 10.1073/pnas.2026650118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL's α/β-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL's catalytic site, including β2, β3-α3, and the lid. Using pulse-labeling hydrogen‒deuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on β3-α3 and progress to β5 and β4-α4, ultimately leading to the irreversible unfolding of regions that form LPL's catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL's α/β-hydrolase domain (T m of 34.8 °C). GPIHBP1 binding dramatically increases LPL stability (T m of 57.6 °C), while ANGPTL4 lowers the onset of LPL unfolding by ∼20 °C, both for LPL and LPL•GPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 °C but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism.
Collapse
|
32
|
Weiss FU, Laemmerhirt F, Lerch MM. Acute Pancreatitis: Genetic Risk and Clinical Implications. J Clin Med 2021; 10:E190. [PMID: 33430357 PMCID: PMC7825757 DOI: 10.3390/jcm10020190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological indications for emergency admittance and hospitalization. Gallstones, alcohol consumption or the presence of additional initiating factors give rise to a disease with a diverse clinical appearance and a hard-to predict course of progression. One major challenge in the treatment of AP patients is the early identification of patients at risk for the development of systemic complications and organ failure. In addition, 20%-30% of patients with a first episode of AP later experience progress to recurrent or chronic disease. Complex gene-environment interactions have been identified to play a role in the pathogenesis of pancreatitis, but so far no predictive genetic biomarkers could be implemented into the routine clinical care of AP patients. The current review explains common and rare etiologies of acute pancreatitis with emphasis on underlying genetic aberrations and ensuing clinical management.
Collapse
Affiliation(s)
- Frank U. Weiss
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany; (F.L.); (M.M.L.)
| | | | | |
Collapse
|