1
|
Wang SY, Gao JC, Wu SD. Artificial intelligence for reducing missed detection of adenomas and polyps in colonoscopy: A systematic review and meta-analysis. World J Gastroenterol 2025; 31:105753. [DOI: 10.3748/wjg.v31.i21.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 05/19/2025] [Indexed: 06/06/2025] Open
Abstract
BACKGROUND Colorectal cancer has a high incidence and mortality rate, and the effectiveness of routine colonoscopy largely depends on the endoscopist’s expertise. In recent years, computer-aided detection (CADe) systems have been increasingly integrated into colonoscopy to improve detection accuracy. However, while most studies have focused on adenoma detection rate (ADR) as the primary outcome, the more sensitive adenoma miss rate (AMR) has been less frequently analyzed.
AIM To evaluate the effectiveness of CADe in colonoscopy and assess the advantages of AMR over ADR.
METHODS A comprehensive literature search was conducted in PubMed, Embase, and the Cochrane Central Register of Controlled Trials using predefined search strategies to identify relevant studies published up to August 2, 2024. Statistical analyses were performed to compare outcomes between groups, and potential publication bias was assessed using funnel plots. The quality of the included studies was evaluated using the Cochrane Risk of Bias tool and the Grading of Recommendations, Assessment, Development, and Evaluation approach.
RESULTS Five studies comprising 1624 patients met the inclusion criteria. AMR was significantly lower in the CADe-assisted group than in the routine colonoscopy group (147/927, 15.9% vs 345/960, 35.9%; P < 0.01). However, CADe did not provide a significant advantage in detecting advanced adenomas or lesions measuring 6-9 mm or ≥ 10 mm. The polyp miss rate (PMR) was also lower in the CADe-assisted group [odds ratio (OR), 0.35; 95% confidence interval (CI): 0.23-0.52; P < 0.01]. While the overall ADR did not differ significantly between groups, the ADR during the first-pass examination was higher in the CADe-assisted group (OR, 1.37; 95%CI: 1.10-1.69; P = 0.004). The level of evidence for the included randomized controlled trials was graded as moderate.
CONCLUSION CADe can significantly reduce AMR and PMR while improving ADR during initial detection, demonstrating its potential to enhance colonoscopy performance. These findings highlight the value of CADe in improving the detection of colorectal neoplasms, particularly small and histologically distinct adenomas.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- The Second Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jia-Cheng Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shuo-Dong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
2
|
Xu Z, Li Y, Su P, Zhong Z, Zeng Z, Chen M, Chen D, Lan C. Artificial intelligence system improves the quality of digestive endoscopy: A prospective pretest and post-test single-center clinical trial. Dig Liver Dis 2025:S1590-8658(25)00739-X. [PMID: 40345942 DOI: 10.1016/j.dld.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/10/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND With the assistance of ENDOANGEL, a study was conducted at Hainan General Hospital to evaluate the effect of artificial intelligence (AI) system on the detection of gastrointestinal precancerous lesions. METHODS The prospective, randomized, pretest and post-test, single-center clinical trial compared the detection rates of gastric precancerous lesions and intestinal adenomas between baseline and post-intervention phase among traditional digestive endoscopy (control groups i and ii, and experimental group i) and AI-assisted endoscopy (experimental group ii). Additionally, the effect of AI on the detection rate of different seniority physicians was analyzed. RESULTS AI assistance significantly increased the detection rates of intestinal metaplasia (experimental group ii vs control group ii: 14.23 % vs 9.15 %, P = 0.013), atrophy (experimental group ii vs control group ii: 22.76 % vs 17.28 %, P = 0.031) and intestinal adenomas (experimental group ii vs control group ii: 48.52 % vs 24.58 %, P < 0.001). The improvement was particularly notable among junior doctors, with significant enhancements in the detection rates of intestinal metaplasia (experimental group ii vs control group ii: 14.39 % vs 9.09 %, P = 0.008), atrophy (experimental group ii vs control group ii: 22.04 % vs 15.31 %, P = 0.004), and intestinal adenomas (experimental group ii vs control group ii: 45.18 % vs 29.27 %, P = 0.002). CONCLUSIONS AI systems have the potential to significantly improve the detection rates of precancerous conditions, particularly among less experienced endoscopists. This advancement can lead to more accurate and appropriate follow-up and review strategies for patients, ultimately reducing the risk of missed early cancer diagnoses.
Collapse
Affiliation(s)
- Zewen Xu
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yongrong Li
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Peiqiang Su
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhuangxia Zhong
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zuni Zeng
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Mingli Chen
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Di Chen
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Liu K, Sachar M, Popov V, Pei Z, Quarta G. Mucin 5AC as a Biomarker for Sessile Serrated Lesions: Results From a Systematic Review and Meta-Analysis. Clin Transl Gastroenterol 2025; 16:e00831. [PMID: 40110854 PMCID: PMC12101924 DOI: 10.14309/ctg.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Sessile serrated lesions (SSLs) are a class of colon polyps challenging to detect through current screening methods but highly associated with colon cancer. To improve detection, we sought a biomarker sensitive for SSLs. Recent endoscopic and histopathologic studies suggest that SSLs are associated with alterations in intestinal mucin expression, but the frequency with which this occurs is not known. METHODS We performed a meta-analysis of available pathologic studies comparing mucin expression on SSLs to normal colonic mucosa, tubular adenomas, villous adenomas, traditional serrated adenomas (TSAs), and hyperplastic polyps (HPs). We searched Medline, Pubmed, and Embase and found 440 publications in this topic, and 18 total studies met inclusion. RESULTS We found that MUC5AC expression was more common in SSLs compared to normal colonic mucosa (OR = 82.9, P < 0.01), tubular adenoma (OR = 11, P < 0.01), and TSAs (OR = 3.6, P = 0.04). We found no difference in MUC5AC expression between SSLs versus HPs (OR = 2.1, P = 0.09) and no difference in MUC5AC expression between left colon and right colon HPs, with an OR = 1.8, P = 0.23. DISCUSSION We found that MUC5AC expression was found commonly on villous adenoma, SSLs, and TSAs while the frequency on colon cancers declined. MUC5AC is also upregulated in inflammatory bowel disease and in response to intestinal infections. MUC5AC expression highlights the potential of mucins as useful biomarkers, though not specific to SSLs. Further research into the clinical utility of MUC5AC as a pathologic or fecal biomarker could enhance SSL detection.
Collapse
Affiliation(s)
- Kevin Liu
- The Mount Sinai Hospital, New York, New York, USA
| | - Moniyka Sachar
- RWJ Barnabas Jersey City Medical Center, Jersey City, New Jersey, USA
| | - Violeta Popov
- NYU Grossman School of Medicine, New York, New York, USA
| | - Ziheng Pei
- NYU Grossman School of Medicine, New York, New York, USA
| | - Giulio Quarta
- Gastroenterology Associates of New Jersey, 925 Clifton Avenue, Suite 101, Clifton, NJ 07013
| |
Collapse
|
4
|
El-Sayed A, Lovat LB, Ahmad OF. Clinical Implementation of Artificial Intelligence in Gastroenterology: Current Landscape, Regulatory Challenges, and Ethical Issues. Gastroenterology 2025:S0016-5085(25)00538-4. [PMID: 40127785 DOI: 10.1053/j.gastro.2025.01.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 03/26/2025]
Abstract
Artificial intelligence (AI) is set to rapidly transform gastroenterology, particularly in the field of endoscopy, where algorithms have demonstrated efficacy in addressing human operator variability. However, implementing AI in clinical practice presents significant challenges. The regulatory landscape for AI as a medical device continues to evolve with areas of uncertainty. More robust studies generating real-world evidence are required to ultimately demonstrate impacts on patient outcomes. Cost-effectiveness data and reimbursement models will be pivotal for widespread adoption. Novel challenges are posed by emerging technologies, such as generative AI. Ethical and medicolegal concerns exist relating to data governance, patient harm, liability, and bias. This review provides an overview for clinical implementation of AI in gastroenterology and offers potential solutions to current barriers.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Laurence B Lovat
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Omer F Ahmad
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom; Department of Gastrointestinal Services, University College London Hospital, London, United Kingdom.
| |
Collapse
|
5
|
Jahn B, Bundo M, Arvandi M, Schaffner M, Todorovic J, Sroczynski G, Knudsen A, Fischer T, Schiller-Fruehwirth I, Öfner D, Renner F, Jonas M, Kuchin I, Kruse J, Santamaria J, Ferlitsch M, Siebert U. One in three adenomas could be missed by white-light colonoscopy - findings from a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:170. [PMID: 40082770 PMCID: PMC11908064 DOI: 10.1186/s12876-025-03679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND White light (conventional) colonoscopy (WLC) is widely used for colorectal cancer screening, diagnosis and surveillance but endoscopists may fail to detect adenomas. Our goal was to assess and synthesize overall and subgroup-specific adenoma miss rates (AMR) of WLC in daily practice. METHODS We conducted a systematic review in MEDLINE, EMBASE, Cochrane Library, and grey literature on studies evaluating diagnostic WLC accuracy in tandem studies with novel-colonoscopic technologies (NCT) in subjects undergoing screening, diagnostic or surveillance colonoscopy. Information on study design, AMR overall and specific for adenoma size, histology, location, morphology and further outcomes were extracted and reported in standardized evidence tables. Study quality was assessed using the QUADAS-2 tool. Random-effects meta-analyses and meta-regression were performed to estimate pooled estimates for AMR with 95% confidence intervals (95% CI) and to explain heterogeneity. RESULTS Out of 5,963 identified studies, we included sixteen studies with 4,101 individuals in our meta-analysis. One in three adenomas (34%; 95% CI: 30-38%) was missed by WLC in daily practice individuals. Subgroup analyses showed significant AMR differences by size (36%, adenomas 1-5 mm; 27%, adenomas 6-9 mm; 12%, adenomas ≥ 10 mm), histology (non-advanced: 42%, advanced: 21%), morphology (flat: 50%, polypoid: 27%), but not by location (distal: 36%, proximal: 36%). CONCLUSIONS Based on our meta-analysis, one in three adenomas could be missed by WLC. This may significantly contribute to interval cancers. Our results should be considered in health technology assessment when interpreting sensitivity of fecal occult blood or other screening tests derived from studies using WLC as "gold standard".
Collapse
Affiliation(s)
- Beate Jahn
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Marvin Bundo
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Marjan Arvandi
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Monika Schaffner
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Jovan Todorovic
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Gaby Sroczynski
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Amy Knudsen
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timo Fischer
- Main Association of Austrian Social Security Institutions, Vienna, Austria
| | | | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael Jonas
- Medical Association of Vorarlberg, Dornbirn, Austria
| | - Igor Kuchin
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Julia Kruse
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Júlia Santamaria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
| | - Monika Ferlitsch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Uwe Siebert
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria.
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Technology Assessment and Bioinformatics, ONCOTYROL - Center for Personalized Cancer Medicine, Innsbruck, Austria.
- Center for Health Decision Science, Departments of Epidemiology and Health Policy & Management, Harvard T. H. Chan School of Public Health, Boston, USA.
| |
Collapse
|
6
|
Zhou N, Yuan X, Liu W, Luo Q, Liu R, Hu B. Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions. Chin Med J (Engl) 2025:00029330-990000000-01442. [PMID: 40008787 DOI: 10.1097/cm9.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 02/27/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Collapse
Affiliation(s)
- Nuoya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianglei Yuan
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruide Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Al Sulais E, AlAmeel T, Alenzi M, Shehab M, AlMutairdi A, Al-Bawardy B. Colorectal Neoplasia in Inflammatory Bowel Disease. Cancers (Basel) 2025; 17:665. [PMID: 40002259 PMCID: PMC11853504 DOI: 10.3390/cancers17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Patients with inflammatory bowel disease (IBD), including ulcerative colitis and colonic Crohn's disease, are at an increased risk of developing colonic dysplasia and neoplasia. Multiple risk factors have been identified that increase the risk of colonic neoplasia in IBD, including but not limited to underlying disease extent, severity, duration, and concomitant primary sclerosing cholangitis. The overall risk of colonic neoplasia in IBD is decreasing but surveillance is still warranted in patients with high-risk features. In this review, we will discuss the epidemiology, pathogenesis, risk factors, approach to surveillance, and management of colonic neoplasia in IBD.
Collapse
Affiliation(s)
- Eman Al Sulais
- Department of Medicine, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia; (E.A.S.)
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia; (E.A.S.)
| | - Maram Alenzi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mohammad Shehab
- Division of Gastroenterology, Department of Internal Medicine, Mubarak Alkabeer University Hospital, Kuwait University, Aljabreyah 47060, Kuwait
| | - Abdulelah AlMutairdi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, King Faisal Specialist Hospital and Research Center, Riyadh 11121, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, King Faisal Specialist Hospital and Research Center, Riyadh 11121, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Spadaccini M, Hassan C, Mori Y, Massimi D, Correale L, Facciorusso A, Patel HK, Rizkala T, Khalaf K, Ramai D, Rondonotti E, Maselli R, Rex DK, Bhandari P, Sharma P, Repici A. Variability in computer-aided detection effect on adenoma detection rate in randomized controlled trials: A meta-regression analysis. Dig Liver Dis 2025:S1590-8658(25)00205-1. [PMID: 39924430 DOI: 10.1016/j.dld.2025.01.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Computer-aided detection (CADe) systems may increase adenoma detection rate (ADR) during colonoscopy. However, the variable results of CADe effects in different RCTs warrant investigation into factors influencing these results. AIMS Investigate the different variables possibly affecting the impact of CADe-assisted colonoscopy and its effect on ADR. METHODS We searched MEDLINE, EMBASE, and Scopus databases until July 2023 for RCTs reporting performance of CADe systems in the detection of colorectal neoplasia. The main outcome was pooled ADR. A random-effects meta-analysis was performed to obtain the pooled risk ratios (RR) with 95 % confidence intervals (CI)). To explore sources of heterogeneity, we conducted a meta-regression analysis using both univariable and multivariable mixed-effects models. Potential explanatory variables included factors influencing adenoma prevalence, such as patient gender, age, and colonoscopy indication. We also included both key (ADR), and minor (Withdrawal time) performance measures considered as quality indicators for colonoscopy. RESULTS Twenty-three randomized controlled trials (RCTs) on 19,077 patients were include. ADR was higher in the CADe group (46 % [95 % CI 39-52]) than in the standard colonoscopy group (38 % [95 % CI 31-46]) with a risk ratio of 1.22 [95 % CI 1.14-1.29]); and a substantial level of heterogeneity (I2 = 67.69 %). In the univariable meta-regression analysis, patient age, ADR in control arms, and withdrawal time were the strongest predictors of CADe effect on ADR (P < .001). In multivariable meta-regression, ADR in control arms, and withdrawal time were simultaneous significant predictors of the proportion of the CADe effect on ADR. CONCLUSION The substantial level of heterogeneity found appeared to be associated with variability in colonoscopy quality performances across the studies, namely ADR in control arm, and withdrawal time.
Collapse
Affiliation(s)
- Marco Spadaccini
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy.
| | - Cesare Hassan
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Yuichi Mori
- University of Oslo, Clinical Effectiveness Research Group, Oslo, Norway; Showa University Northern Yokohama Hospital, Digestive Disease Center, Yokohama, Japan
| | - Davide Massimi
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Loredana Correale
- Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Antonio Facciorusso
- University of Oslo, Clinical Effectiveness Research Group, Oslo, Norway; University of Salento, Gastroenterology Unit, Department of Experimental Medicine, Lecce, Italy
| | - Harsh K Patel
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, United States
| | - Tommy Rizkala
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| | - Kareem Khalaf
- St. Michael's Hospital, University of Toronto, Division of Gastroenterology, Toronto, Ontario, Canada
| | - Daryl Ramai
- University of Utah Health, Gastroenterology and Hepatology, Salt Lake City, UT, USA
| | | | - Roberta Maselli
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Douglas K Rex
- Indiana University School of Medicine, Division of Gastroenterology, Indianapolis, Indiana, USA
| | - Pradeep Bhandari
- Queen Alexandra Hospital, Department of Gastroenterology, Portsmouth, UK
| | - Prateek Sharma
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, United States
| | - Alessandro Repici
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| |
Collapse
|
9
|
Babu B, Singh J, Salazar González JF, Zalmai S, Ahmed A, Padekar HD, Eichemberger MR, Abdallah AI, Ahamed S I, Nazir Z. A Narrative Review on the Role of Artificial Intelligence (AI) in Colorectal Cancer Management. Cureus 2025; 17:e79570. [PMID: 40144438 PMCID: PMC11940584 DOI: 10.7759/cureus.79570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The role of artificial intelligence (AI) tools and deep learning in medical practice in the management of colorectal cancer has gathered significant attention in recent years. Colorectal cancer, being the third most common type of malignancy, requires an innovative approach to augment early detection and advanced surgical techniques to reduce morbidity and mortality. With its emerging potential, AI improves colorectal cancer management by assisting with accuracy in screening, pathology evaluation, precision, and postoperative care. Evidence suggests that AI minimizes missed cases during colorectal cancer screening, plays a promising role in pathology and imaging diagnoses, and facilitates accurate staging. In surgical management, AI demonstrates comparable or superior outcomes to laparoscopic approaches, with reduced hospital stays and conversion rates. However, these outcomes are influenced by clinical expertise and other dependable factors, including expertise in implementing AI-based software and detecting possible errors. Despite these advancements, limited multicenter studies and randomized trials restrict the comprehensive evaluation of AI's true potential and integration into standard practice. We used Pubmed, Google Scholar, Cochrane Library, and Scopus databases for this review. The final number of articles selected, depending on inclusion and exclusion criteria, is 122. We included papers published in the English language, literature published in the last 10 years, and adult patient populations above 35 years with colorectal cancer. We thoroughly included randomized controlled trials, cohort studies, meta-analyses, systematic reviews, narrative reviews, and case-control studies. The use of AI paves the way for the adoption of more personalized medicine. This review highlights the advantages of AI at various disease stages for colorectal cancer patients and evaluates its potential for cost-effective implementation in clinical practice.
Collapse
Affiliation(s)
- Bijily Babu
- Clinical Research, Network Cancer Aid and Research Foundation, Cochin, IND
| | - Jyoti Singh
- Department of Medicine, American University of Barbados, Bridgetown, BRB
| | | | - Sadaf Zalmai
- Emergency Medicine, New York Presbyterian Hospital, New York, USA
| | - Adnan Ahmed
- Medicine and Surgery, York University, Bradford, CAN
| | - Harshal D Padekar
- General Surgery, Grant Medical College and Sir Jamshedjee Jeejeebhoy Group of Hospitals, Mumbai, IND
| | | | - Abrar I Abdallah
- Medicine and Surgery, Sulaiman Al Rajhi University, Al Bukayriyah, SAU
| | - Irshad Ahamed S
- General Surgery, Pondicherry Institute of Medical Sciences, Pondicherry, IND
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
10
|
Debellotte O, Dookie RL, Rinkoo F, Kar A, Salazar González JF, Saraf P, Aflahe Iqbal M, Ghazaryan L, Mukunde AC, Khalid A, Olumuyiwa T. Artificial Intelligence and Early Detection of Breast, Lung, and Colon Cancer: A Narrative Review. Cureus 2025; 17:e79199. [PMID: 40125138 PMCID: PMC11926462 DOI: 10.7759/cureus.79199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Artificial intelligence (AI) is revolutionizing early cancer detection by enhancing the sensitivity, efficiency, and precision of screening programs for breast, colorectal, and lung cancers. Deep learning algorithms, such as convolutional neural networks, are pivotal in improving diagnostic accuracy by identifying patterns in imaging data that may elude human radiologists. AI has shown remarkable advancements in breast cancer detection, including risk stratification and treatment planning, with models achieving high specificity and precision in identifying invasive ductal carcinoma. In colorectal cancer screening, AI-powered systems significantly enhance polyp detection rates during colonoscopies, optimizing the adenoma detection rate and improving diagnostic workflows. Similarly, low-dose CT scans integrated with AI algorithms are transforming lung cancer screening by increasing the sensitivity and specificity of early-stage cancer detection, while aiding in accurate lesion segmentation and classification. This review highlights the potential of AI to streamline cancer diagnosis and treatment by analyzing vast datasets and reducing diagnostic variability. Despite these advancements, challenges such as data standardization, model generalization, and integration into clinical workflows remain. Addressing these issues through collaborative research, enhanced dataset diversity, and improved explainability of AI models will be critical for widespread adoption. The findings underscore AI's potential to significantly impact patient outcomes and reduce cancer-related mortality, emphasizing the need for further validation and optimization in diverse healthcare settings.
Collapse
Affiliation(s)
- Omofolarin Debellotte
- Internal Medicine, Brookdale Hospital Medical Center, One Brooklyn Health, Brooklyn, USA
| | | | - Fnu Rinkoo
- Medicine and Surgery, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Akankshya Kar
- Internal Medicine, SRM Medical College Hospital and Research Centre, Chennai, IND
| | | | - Pranav Saraf
- Internal Medicine, SRM Medical College and Hospital, Chennai, IND
| | - Muhammed Aflahe Iqbal
- Internal Medicine, Muslim Educational Society (MES) Medical College Hospital, Perinthalmanna, IND
- General Practice, Naseem Medical Center, Doha, QAT
| | | | - Annie-Cheilla Mukunde
- Internal Medicine, Escuela de Medicina de la Universidad de Montemorelos, Montemorelos, MEX
| | - Areeba Khalid
- Respiratory Medicine, Sikkim Manipal Institute of Medical Sciences, Gangtok, IND
| | | |
Collapse
|
11
|
Parikh M, Tejaswi S, Girotra T, Chopra S, Ramai D, Tabibian JH, Jagannath S, Ofosu A, Barakat MT, Mishra R, Girotra M. Use of Artificial Intelligence in Lower Gastrointestinal and Small Bowel Disorders: An Update Beyond Polyp Detection. J Clin Gastroenterol 2025; 59:121-128. [PMID: 39774596 DOI: 10.1097/mcg.0000000000002115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Machine learning and its specialized forms, such as Artificial Neural Networks and Convolutional Neural Networks, are increasingly being used for detecting and managing gastrointestinal conditions. Recent advancements involve using Artificial Neural Network models to enhance predictive accuracy for severe lower gastrointestinal (LGI) bleeding outcomes, including the need for surgery. To this end, artificial intelligence (AI)-guided predictive models have shown promise in improving management outcomes. While much literature focuses on AI in early neoplasia detection, this review highlights AI's role in managing LGI and small bowel disorders, including risk stratification for LGI bleeding, quality control, evaluation of inflammatory bowel disease, and video capsule endoscopy reading. Overall, the integration of AI into routine clinical practice is still developing, with ongoing research aimed at addressing current limitations and gaps in patient care.
Collapse
Affiliation(s)
| | - Sooraj Tejaswi
- University of California, Davis
- Sutter Health, Sacramento
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Duan C, Sheng J, Ma X. Innovative approaches in colorectal cancer screening: advances in detection methods and the role of artificial intelligence. Therap Adv Gastroenterol 2025; 18:17562848251314829. [PMID: 39898356 PMCID: PMC11783499 DOI: 10.1177/17562848251314829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer globally and poses a significant health threat, making early detection crucial. This review paper explored emerging detection methods for early screening of CRC, including gut microbiota, metabolites, genetic markers, and artificial intelligence (AI)-based technologies. Current screening methods have their respective advantages and limitations, particularly in detecting precursors. First, the importance of the gut microbiome in CRC progression is discussed, highlighting how specific microbial alterations can serve as biomarkers for early detection, potentially enhancing diagnostic accuracy when combined with traditional screening methods. Next, research on metabolic reprogramming illustrates the relationship between metabolic changes and CRC, with studies developing metabolite-based detection models that show good sensitivity for early diagnosis. In terms of genetic markers, methylated DNA markers like SEPTIN9 have demonstrated high sensitivity, although further validation across diverse populations is necessary. Lastly, AI technology has shown immense potential in improving adenoma detection rates, significantly enhancing the quality of colonoscopic examinations through image recognition techniques. This review aims to provide a comprehensive perspective on new strategies for CRC screening, emphasizing the potential of noninvasive detection technologies and the prospects of AI and genomics in clinical applications. Despite several challenges, this review advocates for future large-scale prospective studies to validate the effectiveness and cost-effectiveness of these new screening methods while promoting the implementation of screening protocols tailored to individual characteristics.
Collapse
Affiliation(s)
- Changwei Duan
- Medical School of Chinese PLA, Beijing, China Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Beijing 100853, China Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Beijing 100700, China
| | - Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100700, China
| |
Collapse
|
13
|
Morimoto S, Tanaka H, Takehara Y, Yamamoto N, Tanino F, Kamigaichi Y, Yamashita K, Takigawa H, Urabe Y, Kuwai T, Oka S. Efficiency of Real-time Computer-aided Polyp Detection during Surveillance Colonoscopy: A Pilot Study. J Anus Rectum Colon 2025; 9:127-133. [PMID: 39882234 PMCID: PMC11772792 DOI: 10.23922/jarc.2024-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/26/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Studies have suggested that computer-aided polyp detection using artificial intelligence improves adenoma identification during colonoscopy. However, its real-world effectiveness remains unclear. Therefore, this study evaluated the usefulness of computer-aided detection during regular surveillance colonoscopy. Methods Consecutive patients who underwent surveillance colonoscopy with computer-aided detection between January and March 2023 and had undergone colonoscopy at least twice during the past 3 years were recruited. The clinicopathological findings of lesions identified using computer-aided detection were evaluated. The detection ability was sub-analyzed based on the expertise of the endoscopist and the presence of diminutive adenomas (size ≤5 mm). Results A total of 78 patients were included. Computer-aided detection identified 46 adenomas in 28 patients; however, no carcinomas were identified. The mean withdrawal time was 824 ± 353 s, and the mean tumor diameter was 3.3 mm (range, 2-8 mm). The most common gross type was 0-Is (70%), followed by 0-Isp (17%) and 0-IIa (13%). The most common tumor locations were the ascending colon and sigmoid colon (28%), followed by the transverse colon (26%), cecum (7%), descending colon (7%), and rectum (4%). Overall, 34.1% and 38.2% of patients with untreated diminutive adenomas and those with no adenomas, respectively, had newly detected adenomas. Endoscopist expertise did not affect the results. Conclusions Computer-aided detection may help identify adenomas during surveillance colonoscopy for patients with untreated diminutive adenomas and those with a history of endoscopic resection.
Collapse
Affiliation(s)
- Shin Morimoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yudai Takehara
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumiaki Tanino
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Kamigaichi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshio Kuwai
- Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
14
|
Liu J, Zhou R, Liu C, Liu H, Cui Z, Guo Z, Zhao W, Zhong X, Zhang X, Li J, Wang S, Xing L, Zhao Y, Ma R, Ni J, Li Z, Li Y, Zuo X. Automatic Quality Control System and Adenoma Detection Rates During Routine Colonoscopy: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2457241. [PMID: 39883463 PMCID: PMC11783196 DOI: 10.1001/jamanetworkopen.2024.57241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025] Open
Abstract
Importance High-quality colonoscopy reduces the risks of colorectal cancer by increasing the adenoma detection rate. Routine use of an automatic quality control system (AQCS) to assist in colorectal adenoma detection should be considered. Objective To evaluate the effect of an AQCS on the adenoma detection rate among colonoscopists who were moderate- and low-level detectors during routine colonoscopy. Design, Setting, and Participants This multicenter, single-blind, randomized clinical trial was conducted at 6 centers in China from August 1, 2021, to September 30, 2022. Data were analyzed from March 1 to June 30, 2023. Individuals aged 18 to 80 years were enrolled. Exclusion criteria were a history of inflammatory bowel disease, advanced colorectal cancer, and polyposis syndromes; known colorectal polyps without complete removal previously; a history of colorectal surgery; known stenosis or obstruction with contraindication for biopsy or prior failed colonoscopy; pregnancy or lactation; and refusal to participate. Intention-to-treat and per-protocol analysis was used. Interventions Standard colonoscopy or AQCS-assisted colonoscopy. Main Outcomes and Measures Adenoma detection rate. Results A total of 1254 participants (mean [SD] age, 51.21 [12.10] years; 674 [53.7%] male) were randomized (627 standard colonoscopy, 627 AQCS-assisted colonoscopy). Intention-to-treat analysis showed a significantly higher adenoma detection rate in the AQCS-assisted group vs standard colonoscopy group (32.7% vs 22.6%; relative risk [RR], 1.60; 95% CI, 1.23-2.09; P < .001). The adenoma detection rates were significantly higher in the AQCS group when considering pathology (nonadvanced adenomas, 30.1% vs 21.2%; RR, 1.52; 95% CI, 1.16-1.99; P = .002), and morphology (flat or sessile, 29.3% vs 20.4%, RR, 1.52; 95% CI, 1.16-2.00; P = .003). Use of AQCS significantly increased the adenoma detection rate of both the lower-level detectors (30.0% vs 20.0%; RR, 1.71; 95% CI, 1.24-2.35; P = .001) and the medium-level detectors (38.1% vs 27.7%; RR, 1.61; 95% CI, 1.07-2.43; P = .02). Similar increases were found for adenoma detection rates in the academic and nonacademic centers (academic: 29.3% vs 20.8%; RR, 1.58; 95% CI, 1.10-2.29; P = .01; nonacademic: 36.1% vs 24.5%; RR, 1.74; 95% CI, 1.23-2.46; P = .002). The number of adenomas per colonoscopy was significantly higher in the AQCS-assisted group (0.86 vs 0.48; RR, 1.50; 95% CI, 1.17-1.91; P = .001). The mean withdrawal time without intervention was slightly increased with AQCS assistance (6.78 vs 6.46 minutes; RR, 1.38; 95% CI, 1.26-1.52; P < .001). No serious adverse events were reported. Conclusions and Relevance In this randomized clinical trial, AQCS assistance during routine colonoscopy increased adenoma detection rates and several related polyp parameters compared with standard colonoscopy in the lower- and medium-level detectors in academic and nonacademic settings. Routine use of AQCS to assist in colorectal adenoma detection and quality improvement should be considered. Trial Registration ClinicalTrials.gov Identifier: NCT04901130.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haiyan Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, China
| | - Zhenqin Cui
- Department of Gastroenterology, Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Zhuang Guo
- Department of Gastroenterology, Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Weidong Zhao
- Department of Gastroenterology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Xiaoqin Zhong
- Department of Gastroenterology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Linyi People’s Hospital, Dezhou, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Linyi People’s Hospital, Dezhou, Shandong, China
| | - Shihuan Wang
- Department of Gastroenterology, The People’s Hospital of Zhaoyuan City, Yantai, Shandong, China
| | - Li Xing
- Department of Gastroenterology, The People’s Hospital of Zhaoyuan City, Yantai, Shandong, China
| | - Yusha Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiekun Ni
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Maida M, Marasco G, Maas MHJ, Ramai D, Spadaccini M, Sinagra E, Facciorusso A, Siersema PD, Hassan C. Effectiveness of artificial intelligence assisted colonoscopy on adenoma and polyp miss rate: A meta-analysis of tandem RCTs. Dig Liver Dis 2025; 57:169-175. [PMID: 39322447 DOI: 10.1016/j.dld.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND AND AIMS One-fourth of colorectal neoplasia is missed at screening colonoscopy, representing the leading cause of interval colorectal cancer (I-CRC). This systematic review and meta-analysis summarizes the efficacy of computer-aided colonoscopy (CAC) compared to white-light colonoscopy (WLC) in reducing lesion miss rates. METHODS Major databases were systematically searched through May 2024 for tandem-design RCTs comparing lesion miss rates in CAC-first followed by WLC vs WLC-first followed by CAC. The primary outcomes were adenoma miss rate (AMR) and polyp miss rate (PMR). The secondary outcomes were advanced AMR (aAMR) and sessile serrated lesion miss rate (SMR). RESULTS Six RCTs (1718 patients) were included. AMR was significantly lower for CAC compared to WLC (RR = 0.46; 95 %CI [0.38-0.55]; P < 0.001). PMR was also lower for CAC compared to WLC (RR = 0.44; 95 %CI [0.33-0.60]; P < 0.001). No significant difference in aAMR (RR = 1.28; 95 %CI [0.34-4.83]; P = 0.71) and SMR (RR = 0.44; 95 %CI [0.15-1.28]; P = 0.13) were observed. Sensitivity analysis including only RCTs performed in CRC screening and surveillance setting confirmed lower AMR (RR = 0.48; 95 %CI [0.39-0.58]; P < 0.001) and PMR (RR = 0.50; 95 %CI [0.37-0.66]; P < 0.001), also showing significantly lower SMR (RR = 0.28; 95 %CI [0.11-0.70]; P = 0.007) for CAC compared to WLC. CONCLUSIONS CAC results in significantly lower AMR and PMR compared to WLC overall, and significantly lower AMR, PMR and SMR in the screening/surveillance setting, potentially reducing the incidence of I-CRC.
Collapse
Affiliation(s)
- M Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy.
| | - G Marasco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - M H J Maas
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - D Ramai
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Spadaccini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Hospital, IRCCS, Rozzano, Italy
| | - E Sinagra
- Gastroenterology Unit, Fondazione Istituto San Raffaele Giglio, Cefalù, Italy
| | - A Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - P D Siersema
- Depatment of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - C Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Hospital, IRCCS, Rozzano, Italy
| |
Collapse
|
16
|
Makar J, Abdelmalak J, Con D, Hafeez B, Garg M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis. Gastrointest Endosc 2025; 101:68-81.e8. [PMID: 39216648 DOI: 10.1016/j.gie.2024.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Artificial intelligence (AI) is increasingly used to improve adenoma detection during colonoscopy. This meta-analysis aimed to provide an updated evaluation of computer-aided detection (CADe) systems and their impact on key colonoscopy quality indicators. METHODS We searched the EMBASE, PubMed, and MEDLINE databases from inception until February 15, 2024, for randomized control trials (RCTs) comparing the performance of CADe systems with routine unassisted colonoscopy in the detection of colorectal adenomas. RESULTS Twenty-eight RCTs were selected for inclusion involving 23,861 participants. Random-effects meta-analysis demonstrated a 20% increase in adenoma detection rate (risk ratio [RR], 1.20; 95% confidence interval [CI], 1.14-1.27; P < .01) and 55% decrease in adenoma miss rate (RR, 0.45; 95% CI, 0.37-0.54; P < .01) with AI-assisted colonoscopy. Subgroup analyses involving only expert endoscopists demonstrated a similar effect size (RR, 1.19; 95% CI, 1.11-1.27; P < .001), with similar findings seen in analysis of differing CADe systems and healthcare settings. CADe use also significantly increased adenomas per colonoscopy (weighted mean difference, 0.21; 95% CI, 0.14-0.29; P < .01), primarily because of increased diminutive lesion detection, with no significant difference seen in detection of advanced adenomas. Sessile serrated lesion detection (RR, 1.10; 95% CI, 0.93-1.30; P = .27) and miss rates (RR, 0.44; 95% CI, 0.16-1.19; P = .11) were similar. There was an average 0.15-minute prolongation of withdrawal time with AI-assisted colonoscopy (weighted mean difference, 0.15; 95% CI, 0.04-0.25; P = .01) and a 39% increase in the rate of non-neoplastic resection (RR, 1.39; 95% CI, 1.23-1.57; P < .001). CONCLUSIONS AI-assisted colonoscopy significantly improved adenoma detection but not sessile serrated lesion detection irrespective of endoscopist experience, system type, or healthcare setting.
Collapse
Affiliation(s)
- Jonathan Makar
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Abdelmalak
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia; Department of Gastroenterology, Alfred Hospital, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Danny Con
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Bilal Hafeez
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mayur Garg
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, Northern Health, Epping, Victoria, Australia
| |
Collapse
|
17
|
Parasa S, Berzin T, Leggett C, Gross S, Repici A, Ahmad OF, Chiang A, Coelho-Prabhu N, Cohen J, Dekker E, Keswani RN, Kahn CE, Hassan C, Petrick N, Mountney P, Ng J, Riegler M, Mori Y, Saito Y, Thakkar S, Waxman I, Wallace MB, Sharma P. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology. Gastrointest Endosc 2025; 101:2-9.e1. [PMID: 38639679 DOI: 10.1016/j.gie.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND AIMS The American Society for Gastrointestinal Endoscopy (ASGE) AI Task Force along with experts in endoscopy, technology space, regulatory authorities, and other medical subspecialties initiated a consensus process that analyzed the current literature, highlighted potential areas, and outlined the necessary research in artificial intelligence (AI) to allow a clearer understanding of AI as it pertains to endoscopy currently. METHODS A modified Delphi process was used to develop these consensus statements. RESULTS Statement 1: Current advances in AI allow for the development of AI-based algorithms that can be applied to endoscopy to augment endoscopist performance in detection and characterization of endoscopic lesions. Statement 2: Computer vision-based algorithms provide opportunities to redefine quality metrics in endoscopy using AI, which can be standardized and can reduce subjectivity in reporting quality metrics. Natural language processing-based algorithms can help with the data abstraction needed for reporting current quality metrics in GI endoscopy effortlessly. Statement 3: AI technologies can support smart endoscopy suites, which may help optimize workflows in the endoscopy suite, including automated documentation. Statement 4: Using AI and machine learning helps in predictive modeling, diagnosis, and prognostication. High-quality data with multidimensionality are needed for risk prediction, prognostication of specific clinical conditions, and their outcomes when using machine learning methods. Statement 5: Big data and cloud-based tools can help advance clinical research in gastroenterology. Multimodal data are key to understanding the maximal extent of the disease state and unlocking treatment options. Statement 6: Understanding how to evaluate AI algorithms in the gastroenterology literature and clinical trials is important for gastroenterologists, trainees, and researchers, and hence education efforts by GI societies are needed. Statement 7: Several challenges regarding integrating AI solutions into the clinical practice of endoscopy exist, including understanding the role of human-AI interaction. Transparency, interpretability, and explainability of AI algorithms play a key role in their clinical adoption in GI endoscopy. Developing appropriate AI governance, data procurement, and tools needed for the AI lifecycle are critical for the successful implementation of AI into clinical practice. Statement 8: For payment of AI in endoscopy, a thorough evaluation of the potential value proposition for AI systems may help guide purchasing decisions in endoscopy. Reliable cost-effectiveness studies to guide reimbursement are needed. Statement 9: Relevant clinical outcomes and performance metrics for AI in gastroenterology are currently not well defined. To improve the quality and interpretability of research in the field, steps need to be taken to define these evidence standards. Statement 10: A balanced view of AI technologies and active collaboration between the medical technology industry, computer scientists, gastroenterologists, and researchers are critical for the meaningful advancement of AI in gastroenterology. CONCLUSIONS The consensus process led by the ASGE AI Task Force and experts from various disciplines has shed light on the potential of AI in endoscopy and gastroenterology. AI-based algorithms have shown promise in augmenting endoscopist performance, redefining quality metrics, optimizing workflows, and aiding in predictive modeling and diagnosis. However, challenges remain in evaluating AI algorithms, ensuring transparency and interpretability, addressing governance and data procurement, determining payment models, defining relevant clinical outcomes, and fostering collaboration between stakeholders. Addressing these challenges while maintaining a balanced perspective is crucial for the meaningful advancement of AI in gastroenterology.
Collapse
Affiliation(s)
| | | | | | - Seth Gross
- NYU Langone Health, New York, New York, USA
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56 20089 Rozzano, Milan, Italy
| | | | - Austin Chiang
- Medtronic Gastrointestinal, Santa Clara, California, USA
| | | | | | | | | | - Charles E Kahn
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56 20089 Rozzano, Milan, Italy
| | - Nicholas Petrick
- Center for Devices and Radiological Health, U.S. Food and Drug Administration
| | | | - Jonathan Ng
- Iterative Health, Boston, Massachusetts, USA
| | | | | | | | - Shyam Thakkar
- West Virginia University Medicine, Morgantown, West Virginia, USA
| | - Irving Waxman
- Rush University Medical Center, Chicago, Illinois, USA
| | | | | |
Collapse
|
18
|
Lee H, Chung JW, Kim KO, Kwon KA, Kim JH, Yun SC, Jung SW, Sheeraz A, Yoon YJ, Kim JH, Kayasseh MA. Validation of Artificial Intelligence Computer-Aided Detection of Colonic Neoplasm in Colonoscopy. Diagnostics (Basel) 2024; 14:2762. [PMID: 39682670 DOI: 10.3390/diagnostics14232762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Controlling colonoscopic quality is important in the detection of colon polyps during colonoscopy as it reduces the overall long-term colorectal cancer risk. Artificial intelligence has recently been introduced in various medical fields. In this study, we aimed to validate a previously developed artificial intelligence (AI) computer-aided detection (CADe) algorithm called ALPHAON® and compare outcomes with previous studies that showed that AI outperformed and assisted endoscopists of diverse levels of expertise in detecting colon polyps. METHODS We used the retrospective data of 500 still images, including 100 polyp images and 400 healthy colon images. In addition, we validated the CADe algorithm and compared its diagnostic performance with that of two expert endoscopists and six trainees from Gachon University Gil Medical Center. After a washing-out period of over 2 weeks, endoscopists performed polyp detection on the same dataset with the assistance of ALPHAON®. RESULTS The CADe algorithm presented a high capability in detecting colon polyps, with an accuracy of 0.97 (95% CI: 0.96 to 0.99), sensitivity of 0.91 (95% CI: 0.85 to 0.97), specificity of 0.99 (95% CI: 0.97 to 0.99), and AUC of 0.967. When evaluating and comparing the polyp detection ability of ALPHAON® with that of endoscopists with different levels of expertise (regarding years of endoscopic experience), it was found that ALPHAON® outperformed the experts in accuracy (0.97, 95% CI: 0.96 to 0.99), sensitivity (0.91, 95% CI: 0.85 to 0.97), and specificity (0.99, 95% CI: 0.97 to 0.99). After a washing-out period of over 2 weeks, the overall capability significantly improved for both experts and trainees with the assistance of ALPHAON®. CONCLUSIONS The high performance of the CADe algorithm system in colon polyp detection during colonoscopy was verified. The sensitivity of ALPHAON® led to it outperforming the experts, and it demonstrated the ability to enhance the polyp detection ability of both experts and trainees, which suggests a significant possibility of ALPHAON® being able to provide endoscopic assistance.
Collapse
Affiliation(s)
- Hannah Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Kyoung Oh Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Kwang An Kwon
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Sung-Cheol Yun
- Division of Biostatistics, Center for Medical Research and Information, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung Woo Jung
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | | | | | - Ji Hee Kim
- CAIMI Co., Ltd., Incheon 22004, Republic of Korea
| | - Mohd Azzam Kayasseh
- Division of Gastroenterology, Dr. Sulaiman AI Habib Medical Group, Dubai Healthcare City, Dubai 51431, United Arab Emirates
| |
Collapse
|
19
|
Huang L, Xu M, Li Y, Dong Z, Lin J, Wang W, Wu L, Yu H. Gastric neoplasm detection of computer-aided detection-assisted esophagogastroduodenoscopy changes with implement scenarios: a real-world study. J Gastroenterol Hepatol 2024; 39:2787-2795. [PMID: 39469909 DOI: 10.1111/jgh.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND AIM The implementation of computer-aided detection (CAD) devices in esophagogastroduodenoscopy (EGD) could autonomously identify gastric precancerous lesions and neoplasms and reduce the miss rate of gastric neoplasms in prospective trials. However, there is still insufficient evidence of their use in real-life clinical practice. METHODS A real-world, two-center study was conducted at Wenzhou Central Hospital (WCH) and Renmin Hospital of Wuhan University (RHWU). High biopsy rate and low biopsy rate strategies were adopted, and CAD devices were applied in 2019 and 2021 at WCH and RHWU, respectively. We compared differences in gastric precancerous and neoplasm detection of EGD before and after the use of CAD devices in the first half of the year. RESULTS A total of 33 885 patients were included and 32 886 patients were ultimately analyzed. In WCH of which biopsy rate >95%, with the implementation of CAD, more the number of early gastric cancer divided by all gastric neoplasm (EGC/GN) (0.35% vs 0.59%, P = 0.028, OR [95% CI] = 1.65 [1.0-2.60]) was found, while gastric neoplasm detection rate (1.39% vs 1.36%, P = 0.897, OR [95% CI] = 0.98 [0.76-1.26]) remained stable. In RHWU of which biopsy rate <20%, the gastric neoplasm detection rate (1.78% vs 3.23%, P < 0.001, OR [95% CI] = 1.84 [1.33-2.54]) nearly doubled after the implementation of CAD, while there was no significant change in the EGC/GN. CONCLUSION The application of CAD devices devoted to distinct increases in gastric neoplasm detection according to different biopsy strategies, which implied that CAD devices demonstrated assistance on gastric neoplasm detection while varied effectiveness according to different implementation scenarios.
Collapse
Affiliation(s)
- Li Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiejun Lin
- Department of Gastroenterology, Wenzhou Sixth People's Hospital, Wenzhou Central Hospital Medical Group, Wenzhou, China
| | - Wen Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
21
|
Soleymanjahi S, Huebner J, Elmansy L, Rajashekar N, Lüdtke N, Paracha R, Thompson R, Grimshaw AA, Foroutan F, Sultan S, Shung DL. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection : A Systematic Review and Meta-analysis. Ann Intern Med 2024; 177:1652-1663. [PMID: 39531400 DOI: 10.7326/annals-24-00981] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Randomized clinical trials (RCTs) of computer-aided detection (CADe) system-enhanced colonoscopy compared with conventional colonoscopy suggest increased adenoma detection rate (ADR) and decreased adenoma miss rate (AMR), but the effect on detection of advanced colorectal neoplasia (ACN) is unclear. PURPOSE To conduct a systematic review to compare performance of CADe-enhanced and conventional colonoscopy. DATA SOURCES Cochrane Library, Google Scholar, Ovid EMBASE, Ovid MEDLINE, PubMed, Scopus, and Web of Science Core Collection databases were searched through February 2024. STUDY SELECTION Published RCTs comparing CADe-enhanced and conventional colonoscopy. DATA EXTRACTION Average adenoma per colonoscopy (APC) and ACN per colonoscopy were primary outcomes. Adenoma detection rate, AMR, and ACN detection rate (ACN DR) were secondary outcomes. Balancing outcomes included withdrawal time and resection of nonneoplastic polyps (NNPs). Subgroup analyses were done by neural network architecture. DATA SYNTHESIS Forty-four RCTs with 36 201 cases were included. Computer-aided detection-enhanced colonoscopies have higher average APC (12 090 of 12 279 [0.98] vs. 9690 of 12 292 [0.78], incidence rate difference [IRD] = 0.22 [95% CI, 0.16 to 0.28]) and higher ADR (7098 of 16 253 [44.7%] vs. 5825 of 15 855 [36.7%], rate ratio [RR] = 1.21 [CI, 1.15 to 1.28]). Average ACN per colonoscopy was similar (1512 of 9296 [0.16] vs. 1392 of 9121 [0.15], IRD = 0.01 [CI, -0.01 to 0.02]), but ACN DR was higher with CADe system use (1260 of 9899 [12.7%] vs. 1119 of 9746 [11.5%], RR = 1.16 [CI, 1.02 to 1.32]). Using CADe systems resulted in resection of almost 2 extra NNPs per 10 colonoscopies and longer total withdrawal time (0.53 minutes [CI, 0.30 to 0.77]). LIMITATION Statistically significant heterogeneity in quality and sample size and inability to blind endoscopists to the intervention in included studies may affect the performance estimates. CONCLUSION Computer-aided detection-enhanced colonoscopies have increased APC and detection rate but no difference in ACN per colonoscopy and a small increase in ACN DR. There is minimal increase in procedure time and no difference in performance across neural network architectures. PRIMARY FUNDING SOURCE None. (PROSPERO: CRD42023422835).
Collapse
Affiliation(s)
- Saeed Soleymanjahi
- Division of Gastroenterology, Mass General Brigham, Harvard School of Medicine, Boston, Massachusetts (S.Soleymanjahi)
| | - Jack Huebner
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Lina Elmansy
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Niroop Rajashekar
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Nando Lüdtke
- Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, New Haven, Connecticut (N.L.)
| | - Rumzah Paracha
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Rachel Thompson
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Alyssa A Grimshaw
- Cushing/Whitney Medical Library, Yale University, New Haven, Connecticut (A.A.G.)
| | | | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota (S.Sultan)
| | - Dennis L Shung
- Section of Digestive Diseases, Clinical and Translational Research Accelerator, and Department of Biomedical Informatics and Data Science, Department of Medicine, Yale School of Medicine, New Haven, Connecticut (D.L.S.)
| |
Collapse
|
22
|
Sinonquel P, Eelbode T, Pech O, De Wulf D, Dewint P, Neumann H, Antonelli G, Iacopini F, Tate D, Lemmers A, Pilonis ND, Kaminski MF, Roelandt P, Hassan C, Ingrid D, Maes F, Bisschops R. Clinical consequences of computer-aided colorectal polyp detection. Gut 2024; 73:1974-1983. [PMID: 38876773 DOI: 10.1136/gutjnl-2024-331943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND AND AIM Randomised trials show improved polyp detection with computer-aided detection (CADe), mostly of small lesions. However, operator and selection bias may affect CADe's true benefit. Clinical outcomes of increased detection have not yet been fully elucidated. METHODS In this multicentre trial, CADe combining convolutional and recurrent neural networks was used for polyp detection. Blinded endoscopists were monitored in real time by a second observer with CADe access. CADe detections prompted reinspection. Adenoma detection rates (ADR) and polyp detection rates were measured prestudy and poststudy. Histological assessments were done by independent histopathologists. The primary outcome compared polyp detection between endoscopists and CADe. RESULTS In 946 patients (51.9% male, mean age 64), a total of 2141 polyps were identified, including 989 adenomas. CADe was not superior to human polyp detection (sensitivity 94.6% vs 96.0%) but outperformed them when restricted to adenomas. Unblinding led to an additional yield of 86 true positive polyp detections (1.1% ADR increase per patient; 73.8% were <5 mm). CADe also increased non-neoplastic polyp detection by an absolute value of 4.9% of the cases (1.8% increase of entire polyp load). Procedure time increased with 6.6±6.5 min (+42.6%). In 22/946 patients, the additional detection of adenomas changed surveillance intervals (2.3%), mostly by increasing the number of small adenomas beyond the cut-off. CONCLUSION Even if CADe appears to be slightly more sensitive than human endoscopists, the additional gain in ADR was minimal and follow-up intervals rarely changed. Additional inspection of non-neoplastic lesions was increased, adding to the inspection and/or polypectomy workload.
Collapse
Affiliation(s)
- Pieter Sinonquel
- Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven Biomedical Sciences Group, Leuven, Belgium
| | - Tom Eelbode
- Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Oliver Pech
- Gastroenterology and Hepatology, Krankenhaus Barmherzige Bruder Regensburg, Regensburg, Germany
| | - Dominiek De Wulf
- Gastroenterology and Hepatology, AZ Delta vzw, Roeselare, Belgium
| | - Pieter Dewint
- Gastroenterology and Hepatology, AZ Maria Middelares vzw, Gent, Belgium
| | - Helmut Neumann
- Gastroenterology and Hepatology, Gastrozentrum Lippe, Bad Salzuflen, Germany
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale Nuovo Regina Margherita, Roma, Italy
| | - Federico Iacopini
- Gastroenterology and Digestive endoscopy, Ospedale dei Castelli, Ariccia, Italy
| | - David Tate
- Gastroenterology and Hepatology, UZ Gent, Gent, Belgium
| | - Arnaud Lemmers
- Gastroenterology and Hepatology, ULB Erasme, Bruxelles, Belgium
| | | | - Michal Filip Kaminski
- Department of Gastroenterology, Hepatology and Oncology, Medical Centre fo Postgraduate Education, Warsaw, Poland
- Department of Gastroenterological Oncology, The Maria Sklodowska-Curie Memorial Cancer Centre, Instytute of Oncology, Warsaw, Poland
| | - Philip Roelandt
- Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven Biomedical Sciences Group, Leuven, Belgium
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Demedts Ingrid
- Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven Biomedical Sciences Group, Leuven, Belgium
| | - Frederik Maes
- Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Raf Bisschops
- Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven Biomedical Sciences Group, Leuven, Belgium
| |
Collapse
|
23
|
Thiruvengadam NR, Solaimani P, Shrestha M, Buller S, Carson R, Reyes-Garcia B, Gnass RD, Wang B, Albasha N, Leonor P, Saumoy M, Coimbra R, Tabuenca A, Srikureja W, Serrao S. The Efficacy of Real-time Computer-aided Detection of Colonic Neoplasia in Community Practice: A Pragmatic Randomized Controlled Trial. Clin Gastroenterol Hepatol 2024; 22:2221-2230.e15. [PMID: 38437999 DOI: 10.1016/j.cgh.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS The use of computer-aided detection (CADe) has increased the adenoma detection rates (ADRs) during colorectal cancer (CRC) screening/surveillance in randomized controlled trials (RCTs) but has not shown benefit in real-world implementation studies. We performed a single-center pragmatic RCT to evaluate the impact of real-time CADe on ADRs in colonoscopy performed by community gastroenterologists. METHODS We enrolled 1100 patients undergoing colonoscopy for CRC screening, surveillance, positive fecal-immunohistochemical tests, and diagnostic indications at one community-based center from September 2022 to March 2023. Patients were randomly assigned (1:1) to traditional colonoscopy or real-time CADe. Blinded pathologists analyzed histopathologic findings. The primary outcome was ADR (the percentage of patients with at least 1 histologically proven adenoma or carcinoma). Secondary outcomes were adenomas detected per colonoscopy (APC), sessile-serrated lesion detection rate, and non-neoplastic resection rate. RESULTS The median age was 55.5 years (interquartile range, 50-62 years), 61% were female, 72.7% were of Hispanic ethnicity, and 9.1% had inadequate bowel preparation. The ADR for the CADe group was significantly higher than the traditional colonoscopy group (42.5% vs 34.4%; P = .005). The mean APC was significantly higher in the CADe group compared with the traditional colonoscopy group (0.89 ± 1.46 vs 0.60 ± 1.12; P < .001). The improvement in adenoma detection was driven by increased detection of <5 mm adenomas. CADe had a higher sessile-serrated lesion detection rate than traditional colonoscopy (4.7% vs 2.0%; P = .01). The improvement in ADR with CADe was significantly higher in the first half of the study (47.2% vs 33.7%; P = .002) compared with the second half (38.7% vs 34.9%; P = .33). CONCLUSIONS In a single-center pragmatic RCT, real-time CADe modestly improved ADR and APC in average-detector community endoscopists. (ClinicalTrials.gov number, NCT05963724).
Collapse
Affiliation(s)
- Nikhil R Thiruvengadam
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California.
| | - Pejman Solaimani
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Manish Shrestha
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Seth Buller
- Loma Linda University School of Medicine, Loma Linda, California
| | - Rachel Carson
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Breanna Reyes-Garcia
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Ronaldo D Gnass
- Department of Pathology, Riverside University Health System, Moreno Valley, California
| | - Bing Wang
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, California
| | - Natalie Albasha
- University of California Riverside School of Medicine, Riverside, California; Department of Medicine, Scripps Green Hospital, La Jolla, California
| | - Paul Leonor
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Monica Saumoy
- Center for Digestive Health, Penn Medicine Princeton Medical Center, Plainsboro, New Jersey
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System, Moreno Valley, California; Department of Surgery, Riverside University Health System, Moreno Valley, California
| | - Arnold Tabuenca
- Department of Surgery, Riverside University Health System, Moreno Valley, California; Department of Surgery, University of California Riverside School of Medicine, Riverside, California
| | - Wichit Srikureja
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Steve Serrao
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| |
Collapse
|
24
|
Cheng CL, Tang JH, Hsieh YH, Kuo YL, Fang KC, Tseng CW, Su IC, Chang CC, Tsui YN, Lee BP, Zou KY, Lee YS, Leung FW. Comparing Right-Sided Colon Adenoma and Serrated Polyp Miss Rates With Water Exchange and CO 2 Insufflation: A Randomized Controlled Trial. Am J Gastroenterol 2024:00000434-990000000-01419. [PMID: 39471473 DOI: 10.14309/ajg.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Postcolonoscopy colorectal cancers primarily occur in the right-sided colon because of missed adenomas and serrated polyps (SPs). Water exchange (WE) improves cleanliness and visibility of the right-sided colon. We hypothesized that WE could reduce the right-sided colon adenoma (rAMR) and SP miss rate (rSPMR) compared with standard colonoscopy. METHODS We randomly assigned 386 colonoscopy patients to insertion with either WE or CO 2 insufflation. During the first withdrawal, polypectomies were performed up to the hepatic flexure. A second endoscopist, blinded to the insertion technique, re-examined the right-sided colon. The miss rate was determined by dividing the number of additional adenomas or SPs by the total number detected in both examinations. The primary outcome was the combined rAMR and rSPMR. RESULTS WE significantly decreased the combined rAMR and rSPMR (22.2% vs 32.2%, P < 0.001) and rSPMR alone (22.5% vs 37.1%, P = 0.002) compared with CO 2 insufflation, but not rAMR (21.8% vs 29.8%, P = 0.079). In addition, WE significantly increased the detection of SP per colonoscopy (SP per colonoscopy) in the right-sided colon (0.95 ± 1.56 vs 0.50 ± 0.79, P < 0.001). Multivariate logistic regression analysis showed that ≥2 SPs in the right-sided colon were an independent predictor of rSPMR (odds ratio, 3.47; 95% confidence interval, 1.89─6.38), along with a higher right-sided colon Boston Bowel Preparation Scale score (odds ratio, 0.55; 95% confidence interval, 0.32─0.94). DISCUSSION The significant reduction in rSPMR and increase in right-sided colon SP per colonoscopy suggest that colonoscopy insertion using WE is a valid alternative to CO 2 insufflation (clinical trial registration number: NCT04124393).
Collapse
Affiliation(s)
- Chi-Liang Cheng
- Division of Gastroenterology, Evergreen General Hospital, Taoyuan, Taiwan
| | - Jui-Hsiang Tang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
| | - Yu-Hsi Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine , Tzu Chi University , Hualien , Taiwan
| | - Yen-Lin Kuo
- Division of Gastroenterology, Evergreen General Hospital, Taoyuan, Taiwan
| | - Kuan-Chieh Fang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine , Tzu Chi University , Hualien , Taiwan
| | - I-Chia Su
- Division of Gastroenterology, Evergreen General Hospital, Taoyuan, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ning Tsui
- Division of Gastroenterology, Evergreen General Hospital, Taoyuan, Taiwan
| | - Bai-Ping Lee
- Division of Gastroenterology, Evergreen General Hospital, Taoyuan, Taiwan
| | - Ke-Yun Zou
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan, Taiwan
| | - Felix W Leung
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
25
|
Mota J, Almeida MJ, Martins M, Mendes F, Cardoso P, Afonso J, Ribeiro T, Ferreira J, Fonseca F, Limbert M, Lopes S, Macedo G, Castro Poças F, Mascarenhas M. Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications. J Clin Med 2024; 13:5842. [PMID: 39407902 PMCID: PMC11477032 DOI: 10.3390/jcm13195842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative tool across several specialties, namely gastroenterology, where it has the potential to optimize both diagnosis and treatment as well as enhance patient care. Coloproctology, due to its highly prevalent pathologies and tremendous potential to cause significant mortality and morbidity, has drawn a lot of attention regarding AI applications. In fact, its application has yielded impressive outcomes in various domains, colonoscopy being one prominent example, where it aids in the detection of polyps and early signs of colorectal cancer with high accuracy and efficiency. With a less explored path but equivalent promise, AI-powered capsule endoscopy ensures accurate and time-efficient video readings, already detecting a wide spectrum of anomalies. High-resolution anoscopy is an area that has been growing in interest in recent years, with efforts being made to integrate AI. There are other areas, such as functional studies, that are currently in the early stages, but evidence is expected to emerge soon. According to the current state of research, AI is anticipated to empower gastroenterologists in the decision-making process, paving the way for a more precise approach to diagnosing and treating patients. This review aims to provide the state-of-the-art use of AI in coloproctology while also reflecting on future directions and perspectives.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, Rua Alfredo Allen n.° 455/461, 4200-135 Porto, Portugal
| | - Filipa Fonseca
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
| | - Manuel Limbert
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
| | - Susana Lopes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Fernando Castro Poças
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Department of Gastroenterology, Santo António University Hospital, 4099-001 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| |
Collapse
|
26
|
Meinikheim M, Mendel R, Palm C, Probst A, Muzalyova A, Scheppach MW, Nagl S, Schnoy E, Römmele C, Schulz DAH, Schlottmann J, Prinz F, Rauber D, Rückert T, Matsumura T, Fernández-Esparrach G, Parsa N, Byrne MF, Messmann H, Ebigbo A. Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial. Endoscopy 2024; 56:641-649. [PMID: 38547927 DOI: 10.1055/a-2296-5696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). METHODS 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. RESULTS AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%-74.2%] to 78.0% [95%CI 74.0%-82.0%]; specificity 67.3% [95%CI 62.5%-72.2%] to 72.7% [95%CI 68.2%-77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. CONCLUSION BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.
Collapse
Affiliation(s)
- Michael Meinikheim
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Robert Mendel
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Christoph Palm
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Andreas Probst
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Anna Muzalyova
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Markus W Scheppach
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Nagl
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Elisabeth Schnoy
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Dominik A H Schulz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Jakob Schlottmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Friederike Prinz
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - David Rauber
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tobias Rückert
- Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Tomoaki Matsumura
- Department of Gastroenterology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Glòria Fernández-Esparrach
- Endoscopy Unit, Gastroenterology Department, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Nasim Parsa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, United States
- Satisfai Health, Vancouver, Canada
| | - Michael F Byrne
- Satisfai Health, Vancouver, Canada
- Gastroenterology, Vancouver General Hospital, The University of British Columbia, Vancouver, Canada
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
27
|
Bou Jaoude J, Al Bacha R, Abboud B. Will artificial intelligence reach any limit in gastroenterology? Artif Intell Gastroenterol 2024; 5:91336. [DOI: 10.35712/aig.v5.i2.91336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 08/08/2024] Open
Abstract
Endoscopy is the cornerstone in the management of digestive diseases. Over the last few decades, technology has played an important role in the development of this field, helping endoscopists in better detecting and characterizing luminal lesions. However, despite ongoing advancements in endoscopic technology, the incidence of missed pre-neoplastic and neoplastic lesions remains high due to the operator-dependent nature of endoscopy and the challenging learning curve associated with new technologies. Artificial intelligence (AI), an operator-independent field, could be an invaluable solution. AI can serve as a “second observer”, enhancing the performance of endoscopists in detecting and characterizing luminal lesions. By utilizing deep learning (DL), an innovation within machine learning, AI automatically extracts input features from targeted endoscopic images. DL encompasses both computer-aided detection and computer-aided diagnosis, assisting endoscopists in reducing missed detection rates and predicting the histology of luminal digestive lesions. AI applications in clinical gastrointestinal diseases are continuously expanding and evolving the entire digestive tract. In all published studies, real-time AI assists endoscopists in improving the performance of non-expert gastroenterologists, bringing it to a level comparable to that of experts. The development of DL may be affected by selection biases. Studies have utilized different AI-assisted models, which are heterogeneous. In the future, algorithms need validation through large, randomized trials. Theoretically, AI has no limit to assist endoscopists in increasing the accuracy and the quality of endoscopic exams. However, practically, we still have a long way to go before standardizing our AI models to be accepted and applied by all gastroenterologists.
Collapse
Affiliation(s)
- Joseph Bou Jaoude
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Rose Al Bacha
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Bassam Abboud
- Department of General Surgery, Geitaoui Hospital, Faculty of Medicine, Lebanese University, Lebanon, Beirut 166830, Lebanon
| |
Collapse
|
28
|
Mwango A, Akhtar TS, Abbas S, Abbasi DS, Khan A. Effect of artificial intelligence-aided colonoscopy on the adenoma detection rate: A systematic review. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2024; 13:65-73. [DOI: 10.18528/ijgii240013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Anson Mwango
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
- Faculty of Life Science and Education, University of South Wales, Cardiff, United Kingdom
| | - Tayyab Saeed Akhtar
- Faculty of Life Science and Education, University of South Wales, Cardiff, United Kingdom
- Center for Liver and Digestive Diseases, Holy Family Hospital, Rawalpindi, Pakistan
| | - Sameen Abbas
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Dua Sadaf Abbasi
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
29
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
30
|
Wang Y, He C. ENDOANGEL improves detection of missed colorectal adenomas in second colonoscopy: A retrospective study. Medicine (Baltimore) 2024; 103:e38938. [PMID: 38996141 PMCID: PMC11245239 DOI: 10.1097/md.0000000000038938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The ENDOANGEL (EN) computer-assisted detection technique has emerged as a promising tool for enhancing the detection rate of colorectal adenomas during colonoscopies. However, its efficacy in identifying missed adenomas during subsequent colonoscopies remains unclear. Thus, we herein aimed to compare the adenoma miss rate (AMR) between EN-assisted and standard colonoscopies. Data from patients who underwent a second colonoscopy (EN-assisted or standard) within 6 months between September 2022 and May 2023 were analyzed. The EN-assisted group exhibited a significantly higher AMR (24.3% vs 11.9%, P = .005) than the standard group. After adjusting for potential confounders, multivariable analysis revealed that the EN-assisted group had a better ability to detect missed adenomas than the standard group (odds ratio = 2.89; 95% confidence interval = 1.14-7.80, P = .029). These findings suggest that EN-assisted colonoscopy represents a valuable advancement in improving AMR compared with standard colonoscopy. The integration of EN-assisted colonoscopy into routine clinical practice may offer significant benefits to patients requiring hospital resection of lesions following adenoma detection during their first colonoscopy.
Collapse
Affiliation(s)
- Yundong Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| |
Collapse
|
31
|
Taghiakbari M, Djinbachian R, Haumesser C, Sidani S, Chen Kiow JL, Panzini B, von Renteln D. Measuring Size of Colorectal Polyps Using a Virtual Scale Endoscope or Visual Assessment: A Randomized Controlled Trial. Am J Gastroenterol 2024; 119:1309-1317. [PMID: 38084850 DOI: 10.14309/ajg.0000000000002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION This study aimed to compare the accuracy of polyp size measurements using a virtual scale endoscope (VSE) with an integrated laser-based adaptive scale function and visual assessment (VA) during colonoscopies. METHODS We conducted a single-blinded, prospective randomized controlled trial. Eligible patients (aged 45-80 years) undergoing screening, surveillance, or diagnostic colonoscopies were randomly assigned (1:1) into 2 groups. In the intervention group, all detected polyps were measured for size using VSE; in the control group, all polyps were measured using VA. Size measurements were compared with a reference standard of digital caliper measurement immediately post polypectomy. The primary outcome was the relative accuracy of real-time VSE measurement compared with VA. Secondary outcomes included the mean differences and the correlations between VSE or VA sizes and the reference standard of measurement. RESULTS Overall, 230 patients were enrolled and randomized. The relative size measurement accuracy of VSE was 84% in 118 polyps, which was significantly higher than that of VA (105 polyps; 68.4%, P < 0.001). VSE resulted in a significantly higher percentage of size measurements within 25% of true size compared with VA (81.4% vs 41%, P < 0.001). VSE had a significantly lower percentage for >5-mm polyps incorrectly sized as 1-5 mm compared with VA (13.5% vs 57.1%; P < 0.001) and a significantly lower percentage for >3-mm polyps incorrectly sized as 1-3 mm compared with VA (11.3% vs 56.5%; P < 0.001). DISCUSSION VSE significantly improves the size measurement accuracy of colorectal polyps during colonoscopies compared with VA and results in fewer misclassifications at relevant decision-making size thresholds.
Collapse
Affiliation(s)
- Mahsa Taghiakbari
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Roupen Djinbachian
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | | | - Sacha Sidani
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Jeremy Liu Chen Kiow
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Benoit Panzini
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Daniel von Renteln
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
- Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| |
Collapse
|
32
|
Introzzi L, Zonca J, Cabitza F, Cherubini P, Reverberi C. Enhancing human-AI collaboration: The case of colonoscopy. Dig Liver Dis 2024; 56:1131-1139. [PMID: 37940501 DOI: 10.1016/j.dld.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Diagnostic errors impact patient health and healthcare costs. Artificial Intelligence (AI) shows promise in mitigating this burden by supporting Medical Doctors in decision-making. However, the mere display of excellent or even superhuman performance by AI in specific tasks does not guarantee a positive impact on medical practice. Effective AI assistance should target the primary causes of human errors and foster effective collaborative decision-making with human experts who remain the ultimate decision-makers. In this narrative review, we apply these principles to the specific scenario of AI assistance during colonoscopy. By unraveling the neurocognitive foundations of the colonoscopy procedure, we identify multiple bottlenecks in perception, attention, and decision-making that contribute to diagnostic errors, shedding light on potential interventions to mitigate them. Furthermore, we explored how existing AI devices fare in clinical practice and whether they achieved an optimal integration with the human decision-maker. We argue that to foster optimal Human-AI collaboration, future research should expand our knowledge of factors influencing AI's impact, establish evidence-based cognitive models, and develop training programs based on them. These efforts will enhance human-AI collaboration, ultimately improving diagnostic accuracy and patient outcomes. The principles illuminated in this review hold more general value, extending their relevance to a wide array of medical procedures and beyond.
Collapse
Affiliation(s)
- Luca Introzzi
- Department of Psychology, Università Milano - Bicocca, Milano, Italy
| | - Joshua Zonca
- Department of Psychology, Università Milano - Bicocca, Milano, Italy; Milan Center for Neuroscience, Università Milano - Bicocca, Milano, Italy
| | - Federico Cabitza
- Department of Informatics, Systems and Communication, Università Milano - Bicocca, Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Paolo Cherubini
- Department of Brain and Behavioral Sciences, Università Statale di Pavia, Pavia, Italy
| | - Carlo Reverberi
- Department of Psychology, Università Milano - Bicocca, Milano, Italy; Milan Center for Neuroscience, Università Milano - Bicocca, Milano, Italy.
| |
Collapse
|
33
|
Wittbrodt M, Klug M, Etemadi M, Yang A, Pandolfino JE, Keswani RN. Assessment of colonoscopy skill using machine learning to measure quality: Proof-of-concept and initial validation. Endosc Int Open 2024; 12:E849-E853. [PMID: 38966321 PMCID: PMC11221895 DOI: 10.1055/a-2333-8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024] Open
Abstract
Background and study aims Low-quality colonoscopy increases cancer risk but measuring quality remains challenging. We developed an automated, interactive assessment of colonoscopy quality (AI-CQ) using machine learning (ML). Methods Based on quality guidelines, metrics selected for AI development included insertion time (IT), withdrawal time (WT), polyp detection rate (PDR), and polyps per colonoscopy (PPC). Two novel metrics were also developed: HQ-WT (time during withdrawal with clear image) and WT-PT (withdrawal time subtracting polypectomy time). The model was pre-trained using a self-supervised vision transformer on unlabeled colonoscopy images and then finetuned for multi-label classification on another mutually exclusive colonoscopy image dataset. A timeline of video predictions and metric calculations were presented to clinicians in addition to the raw video using a web-based application. The model was externally validated using 50 colonoscopies at a second hospital. Results The AI-CQ accuracy to identify cecal intubation was 88%. IT ( P = 0.99) and WT ( P = 0.99) were highly correlated between manual and AI-CQ measurements with a median difference of 1.5 seconds and 4.5 seconds, respectively. AI-CQ PDR did not significantly differ from manual PDR (47.6% versus 45.5%, P = 0.66). Retroflexion was correctly identified in 95.2% and number of right colon evaluations in 100% of colonoscopies. HQ-WT was 45.9% of, and significantly correlated with ( P = 0.85) WT time. Conclusions An interactive AI assessment of colonoscopy skill can automatically assess quality. We propose that this tool can be utilized to rapidly identify and train providers in need of remediation.
Collapse
Affiliation(s)
| | - Matthew Klug
- Information Services, Northwestern Medicine, Chicago, United States
| | - Mozziyar Etemadi
- Information Services, Northwestern Medicine, Chicago, United States
- Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Anthony Yang
- Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - John E. Pandolfino
- Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Rajesh N. Keswani
- Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
34
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
35
|
Desai M, Ausk K, Brannan D, Chhabra R, Chan W, Chiorean M, Gross SA, Girotra M, Haber G, Hogan RB, Jacob B, Jonnalagadda S, Iles-Shih L, Kumar N, Law J, Lee L, Lin O, Mizrahi M, Pacheco P, Parasa S, Phan J, Reeves V, Sethi A, Snell D, Underwood J, Venu N, Visrodia K, Wong A, Winn J, Wright CH, Sharma P. Use of a Novel Artificial Intelligence System Leads to the Detection of Significantly Higher Number of Adenomas During Screening and Surveillance Colonoscopy: Results From a Large, Prospective, US Multicenter, Randomized Clinical Trial. Am J Gastroenterol 2024; 119:1383-1391. [PMID: 38235741 DOI: 10.14309/ajg.0000000000002664] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Adenoma per colonoscopy (APC) has recently been proposed as a quality measure for colonoscopy. We evaluated the impact of a novel artificial intelligence (AI) system, compared with standard high-definition colonoscopy, for APC measurement. METHODS This was a US-based, multicenter, prospective randomized trial examining a novel AI detection system (EW10-EC02) that enables a real-time colorectal polyp detection enabled with the colonoscope (CAD-EYE). Eligible average-risk subjects (45 years or older) undergoing screening or surveillance colonoscopy were randomized to undergo either CAD-EYE-assisted colonoscopy (CAC) or conventional colonoscopy (CC). Modified intention-to-treat analysis was performed for all patients who completed colonoscopy with the primary outcome of APC. Secondary outcomes included positive predictive value (total number of adenomas divided by total polyps removed) and adenoma detection rate. RESULTS In modified intention-to-treat analysis, of 1,031 subjects (age: 59.1 ± 9.8 years; 49.9% male), 510 underwent CAC vs 523 underwent CC with no significant differences in age, gender, ethnicity, or colonoscopy indication between the 2 groups. CAC led to a significantly higher APC compared with CC: 0.99 ± 1.6 vs 0.85 ± 1.5, P = 0.02, incidence rate ratio 1.17 (1.03-1.33, P = 0.02) with no significant difference in the withdrawal time: 11.28 ± 4.59 minutes vs 10.8 ± 4.81 minutes; P = 0.11 between the 2 groups. Difference in positive predictive value of a polyp being an adenoma among CAC and CC was less than 10% threshold established: 48.6% vs 54%, 95% CI -9.56% to -1.48%. There were no significant differences in adenoma detection rate (46.9% vs 42.8%), advanced adenoma (6.5% vs 6.3%), sessile serrated lesion detection rate (12.9% vs 10.1%), and polyp detection rate (63.9% vs 59.3%) between the 2 groups. There was a higher polyp per colonoscopy with CAC compared with CC: 1.68 ± 2.1 vs 1.33 ± 1.8 (incidence rate ratio 1.27; 1.15-1.4; P < 0.01). DISCUSSION Use of a novel AI detection system showed to a significantly higher number of adenomas per colonoscopy compared with conventional high-definition colonoscopy without any increase in colonoscopy withdrawal time, thus supporting the use of AI-assisted colonoscopy to improve colonoscopy quality ( ClinicalTrials.gov NCT04979962).
Collapse
Affiliation(s)
- Madhav Desai
- Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Karlee Ausk
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Donald Brannan
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Rajiv Chhabra
- Department of Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, Missouri, USA
| | - Walter Chan
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Chiorean
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Seth A Gross
- Gastroenterology, New York University Langone Health, New York, New York, USA
| | - Mohit Girotra
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Gregory Haber
- Gastroenterology, New York University Langone Health, New York, New York, USA
| | - Reed B Hogan
- GI Associates and Endoscopy Center, Jackson, Mississippi, USA
| | - Bobby Jacob
- Gastroenterology, Largo Medical Center, Largo, Florida, USA
| | - Sreeni Jonnalagadda
- Department of Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, Missouri, USA
| | - Lulu Iles-Shih
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Navin Kumar
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joanna Law
- Gastroenterology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - Linda Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Otto Lin
- Gastroenterology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - Meir Mizrahi
- Gastroenterology, Largo Medical Center, Largo, Florida, USA
| | - Paulo Pacheco
- Gastroenterology, New York University Langone Health, New York, New York, USA
| | - Sravanthi Parasa
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Jennifer Phan
- Departement of Gastroenterology, Keck Medicine University of Southern California, Los Angeles, California, USA
| | - Vonda Reeves
- GI Associates and Endoscopy Center, Jackson, Mississippi, USA
| | - Amrita Sethi
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, New York, USA
| | - David Snell
- Gastroenterology, New York University Langone Health, New York, New York, USA
| | - James Underwood
- GI Associates and Endoscopy Center, Jackson, Mississippi, USA
| | - Nanda Venu
- Gastroenterology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - Kavel Visrodia
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, New York, USA
| | - Alina Wong
- Gastroenterology, Swedish Health and Swedish Medical Center, Seattle, Washington, USA
| | - Jessica Winn
- Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | | | - Prateek Sharma
- Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
36
|
Mandarino FV, Danese S, Uraoka T, Parra-Blanco A, Maeda Y, Saito Y, Kudo SE, Bourke MJ, Iacucci M. Precision endoscopy in colorectal polyps' characterization and planning of endoscopic therapy. Dig Endosc 2024; 36:761-777. [PMID: 37988279 DOI: 10.1111/den.14727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Precision endoscopy in the management of colorectal polyps and early colorectal cancer has emerged as the standard of care. It includes optical characterization of polyps and estimation of submucosal invasion depth of large nonpedunculated colorectal polyps to select the appropriate endoscopic resection modality. Over time, several imaging modalities have been implemented in endoscopic practice to improve optical performance. Among these, image-enhanced endoscopy systems and magnification endoscopy represent now well-established tools. New advanced technologies, such as endocytoscopy and confocal laser endomicroscopy, have recently shown promising results in predicting the histology of colorectal polyps. In recent years, artificial intelligence has continued to enhance endoscopic performance in the characterization of colorectal polyps, overcoming the limitations of other imaging modes. In this review we retrace the path of precision endoscopy, analyzing the yield of various endoscopic imaging techniques in personalizing management of colorectal polyps and early colorectal cancer.
Collapse
Affiliation(s)
- Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gumma, Japan
| | - Adolfo Parra-Blanco
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Michael J Bourke
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Marietta Iacucci
- Department of Gastroenterology, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Savino A, Rondonotti E, Rocchetto S, Piagnani A, Bina N, Di Domenico P, Segatta F, Radaelli F. GI genius endoscopy module: a clinical profile. Expert Rev Med Devices 2024; 21:359-372. [PMID: 38618982 DOI: 10.1080/17434440.2024.2342508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The identification of early-stage colorectal cancers (CRC) and the resection of pre-cancerous neoplastic lesions through colonoscopy allows to decrease both CRC incidence and mortality. However, colonoscopy miss rates up to 26% for adenomas and 9% for advanced adenomas have been reported. In recent years, artificial intelligence (AI) systems have been emerging as easy-to-use tools, potentially lowering the risk of missing lesions. AREAS COVERED This review paper focuses on GI Genius device (Medtronic Co. Minneapolis, MN, U.S.A.) a computer-assisted tool designed to assist endoscopists during standard white-light colonoscopies in detecting mucosal lesions. EXPERT OPINION Randomized controlled trials (RCTs) suggest that GI Genius is a safe and effective tool for improving adenoma detection, especially in CRC screening and surveillance colonoscopies. However, its impact seems to be less significant among experienced endoscopists and in real-world clinical scenarios compared to the controlled conditions of RCTs. Furthermore, it appears that GI Genius mainly enhances the detection of non-advanced, small polyps, but does not significantly impact the identification of advanced and difficult-to-detect adenoma. When using GI Genius, no complications were documented. Only a small number of studies reported an increased in withdrawal time or the removal of non-neoplastic lesions.
Collapse
Affiliation(s)
- Alberto Savino
- Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | | | - Simone Rocchetto
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | - Alessandra Piagnani
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | - Niccolò Bina
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | - Pasquale Di Domenico
- Gastrointestinal Unit, Department of Medicine, Surgery & Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Francesco Segatta
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | | |
Collapse
|
38
|
Pak S, Park SG, Park J, Cho ST, Lee YG, Ahn H. Applications of artificial intelligence in urologic oncology. Investig Clin Urol 2024; 65:202-216. [PMID: 38714511 PMCID: PMC11076794 DOI: 10.4111/icu.20230435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 05/10/2024] Open
Abstract
PURPOSE With the recent rising interest in artificial intelligence (AI) in medicine, many studies have explored the potential and usefulness of AI in urological diseases. This study aimed to comprehensively review recent applications of AI in urologic oncology. MATERIALS AND METHODS We searched the PubMed-MEDLINE databases for articles in English on machine learning (ML) and deep learning (DL) models related to general surgery and prostate, bladder, and kidney cancer. The search terms were a combination of keywords, including both "urology" and "artificial intelligence" with one of the following: "machine learning," "deep learning," "neural network," "renal cell carcinoma," "kidney cancer," "urothelial carcinoma," "bladder cancer," "prostate cancer," and "robotic surgery." RESULTS A total of 58 articles were included. The studies on prostate cancer were related to grade prediction, improved diagnosis, and predicting outcomes and recurrence. The studies on bladder cancer mainly used radiomics to identify aggressive tumors and predict treatment outcomes, recurrence, and survival rates. Most studies on the application of ML and DL in kidney cancer were focused on the differentiation of benign and malignant tumors as well as prediction of their grade and subtype. Most studies suggested that methods using AI may be better than or similar to existing traditional methods. CONCLUSIONS AI technology is actively being investigated in the field of urological cancers as a tool for diagnosis, prediction of prognosis, and decision-making and is expected to be applied in additional clinical areas soon. Despite technological, legal, and ethical concerns, AI will change the landscape of urological cancer management.
Collapse
Affiliation(s)
- Sahyun Pak
- Department of Urology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sung Gon Park
- Department of Urology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | | | - Sung Tae Cho
- Department of Urology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young Goo Lee
- Department of Urology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Jin XF, Ma HY, Shi JW, Cai JT. Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials. Gastrointest Endosc 2024; 99:667-675.e1. [PMID: 38184117 DOI: 10.1016/j.gie.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIMS The aim of this study was to determine if utilization of artificial intelligence (AI) in the course of endoscopic procedures can significantly diminish both the adenoma miss rate (AMR) and the polyp miss rate (PMR) compared with standard endoscopy. METHODS We performed an extensive search of various databases, encompassing PubMed, Embase, Cochrane Library, Web of Science, and Scopus, until June 2023. The search terms used were artificial intelligence, machine learning, deep learning, transfer machine learning, computer-assisted diagnosis, convolutional neural networks, gastrointestinal (GI) endoscopy, endoscopic image analysis, polyp, adenoma, and neoplasms. The main study aim was to explore the impact of AI on the AMR, PMR, and sessile serrated lesion miss rate. RESULTS A total of 7 randomized controlled trials were included in this meta-analysis. Pooled AMR was markedly lower in the AI group versus the non-AI group (pooled relative risk [RR], .46; 95% confidence interval [CI], .36-.59; P < .001). PMR was also reduced in the AI group in contrast with the non-AI control (pooled RR, .43; 95% CI, .27-.69; P < .001). The results showed that AI decreased the miss rate of sessile serrated lesions (pooled RR, .43; 95% CI, .20 to .92; P < .05) and diminutive adenomas (pooled RR, .49; 95% CI, .26-.93) during endoscopy, but no significant effect was observed for advanced adenomas (pooled RR, .48; 95% CI, .17-1.37; P = .17). The average number of polyps (Hedges' g = -.486; 95% CI, -.697 to -.274; P = .000) and adenomas (Hedges' g = -.312; 95% CI, -.551 to -.074; P = .01) detected during the second procedure also favored AI. However, AI implementation did not lead to a prolonged withdrawal time (P > .05). CONCLUSIONS This meta-analysis suggests that AI technology leads to significant reduction of miss rates for GI adenomas, polyps, and sessile serrated lesions during endoscopic surveillance. These results underscore the potential of AI to improve the accuracy and efficiency of GI endoscopic procedures.
Collapse
Affiliation(s)
- Xi-Feng Jin
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Hong-Yan Ma
- Tengzhou Central People's Hospital, Shandong Province, Zaozhuang, China
| | - Jun-Wen Shi
- Tengzhou Central People's Hospital, Shandong Province, Zaozhuang, China
| | - Jian-Ting Cai
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Rey JF. As how artificial intelligence is revolutionizing endoscopy. Clin Endosc 2024; 57:302-308. [PMID: 38454543 PMCID: PMC11133999 DOI: 10.5946/ce.2023.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Institut Arnaut Tzanck Gastrointestinal Unt, Saint Laurent du Var, France
| |
Collapse
|
41
|
Lee MCM, Parker CH, Liu LWC, Farahvash A, Jeyalingam T. Impact of study design on adenoma detection in the evaluation of artificial intelligence-aided colonoscopy: a systematic review and meta-analysis. Gastrointest Endosc 2024; 99:676-687.e16. [PMID: 38272274 DOI: 10.1016/j.gie.2024.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIMS Randomized controlled trials (RCTs) have reported that artificial intelligence (AI) improves endoscopic polyp detection. Different methodologies-namely, parallel and tandem designs-have been used to evaluate the efficacy of AI-assisted colonoscopy in RCTs. Systematic reviews and meta-analyses have reported a pooled effect that includes both study designs. However, it is unclear whether there are inconsistencies in the reported results of these 2 designs. Here, we aimed to determine whether study characteristics moderate between-trial differences in outcomes when evaluating the effectiveness of AI-assisted polyp detection. METHODS A systematic search of Ovid MEDLINE, Embase, Cochrane Central, Web of Science, and IEEE Xplore was performed through March 1, 2023, for RCTs comparing AI-assisted colonoscopy with routine high-definition colonoscopy in polyp detection. The primary outcome of interest was the impact of study type on the adenoma detection rate (ADR). Secondary outcomes included the impact of the study type on adenomas per colonoscopy and withdrawal time, as well as the impact of geographic location, AI system, and endoscopist experience on ADR. Pooled event analysis was performed using a random-effects model. RESULTS Twenty-four RCTs involving 17,413 colonoscopies (AI assisted: 8680; non-AI assisted: 8733) were included. AI-assisted colonoscopy improved overall ADR (risk ratio [RR], 1.24; 95% confidence interval [CI], 1.17-1.31; I2 = 53%; P < .001). Tandem studies collectively demonstrated improved ADR in AI-aided colonoscopies (RR, 1.18; 95% CI, 1.08-1.30; I2 = 0%; P < .001), as did parallel studies (RR, 1.26; 95% CI, 1.17-1.35; I2 = 62%; P < .001), with no statistical subgroup difference between study design. Both tandem and parallel study designs revealed improvement in adenomas per colonoscopy in AI-aided colonoscopies, but this improvement was more marked among tandem studies (P < .001). AI assistance significantly increased withdrawal times for parallel (P = .002), but not tandem, studies. ADR improvement was more marked among studies conducted in Asia compared to Europe and North America in a subgroup analysis (P = .007). Type of AI system used or endoscopist experience did not affect overall improvement in ADR. CONCLUSIONS Either parallel or tandem study design can capture the improvement in ADR resulting from the use of AI-assisted polyp detection systems. Tandem studies powered to detect differences in endoscopic performance through paired comparison may be a resource-efficient method of evaluating new AI-assisted technologies.
Collapse
Affiliation(s)
- Michelle C M Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colleen H Parker
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Louis W C Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Armin Farahvash
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thurarshen Jeyalingam
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Yuan L, Zhou H, Xiao X, Zhang X, Chen F, Liu L, Liu J, Bao S, Tao K. Development and external validation of a transfer learning-based system for the pathological diagnosis of colorectal cancer: a large emulated prospective study. Front Oncol 2024; 14:1365364. [PMID: 38725622 PMCID: PMC11079287 DOI: 10.3389/fonc.2024.1365364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background The progress in Colorectal cancer (CRC) screening and management has resulted in an unprecedented caseload for histopathological diagnosis. While artificial intelligence (AI) presents a potential solution, the predominant emphasis on slide-level aggregation performance without thorough verification of cancer in each location, impedes both explainability and transparency. Effectively addressing these challenges is crucial to ensuring the reliability and efficacy of AI in histology applications. Method In this study, we created an innovative AI algorithm using transfer learning from a polyp segmentation model in endoscopy. The algorithm precisely localized CRC targets within 0.25 mm² grids from whole slide imaging (WSI). We assessed the CRC detection capabilities at this fine granularity and examined the influence of AI on the diagnostic behavior of pathologists. The evaluation utilized an extensive dataset comprising 858 consecutive patient cases with 1418 WSIs obtained from an external center. Results Our results underscore a notable sensitivity of 90.25% and specificity of 96.60% at the grid level, accompanied by a commendable area under the curve (AUC) of 0.962. This translates to an impressive 99.39% sensitivity at the slide level, coupled with a negative likelihood ratio of <0.01, signifying the dependability of the AI system to preclude diagnostic considerations. The positive likelihood ratio of 26.54, surpassing 10 at the grid level, underscores the imperative for meticulous scrutiny of any AI-generated highlights. Consequently, all four participating pathologists demonstrated statistically significant diagnostic improvements with AI assistance. Conclusion Our transfer learning approach has successfully yielded an algorithm that can be validated for CRC histological localizations in whole slide imaging. The outcome advocates for the integration of the AI system into histopathological diagnosis, serving either as a diagnostic exclusion application or a computer-aided detection (CADe) tool. This integration has the potential to alleviate the workload of pathologists and ultimately benefit patients.
Collapse
Affiliation(s)
- Liuhong Yuan
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Henghua Zhou
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | | | - Xiuqin Zhang
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Feier Chen
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Lin Liu
- Institute of Natural Sciences, MOE-LSC, School of Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | | | - Shisan Bao
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
43
|
Hsu CM, Chen TH, Hsu CC, Wu CH, Lin CJ, Le PH, Lin CY, Kuo T. Two-stage deep-learning-based colonoscopy polyp detection incorporating fisheye and reflection correction. J Gastroenterol Hepatol 2024; 39:733-739. [PMID: 38225761 DOI: 10.1111/jgh.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND AND AIM Colonoscopy is a useful method for the diagnosis and management of colorectal diseases. Many computer-aided systems have been developed to assist clinicians in detecting colorectal lesions by analyzing colonoscopy images. However, fisheye-lens distortion and light reflection in colonoscopy images can substantially affect the clarity of these images and their utility in detecting polyps. This study proposed a two-stage deep-learning model to correct distortion and reflections in colonoscopy images and thus facilitate polyp detection. METHODS Images were collected from the PolypSet dataset, the Kvasir-SEG dataset, and one medical center's patient archiving and communication system. The training, validation, and testing datasets comprised 808, 202, and 1100 images, respectively. The first stage involved the correction of fisheye-related distortion in colonoscopy images and polyp detection, which was performed using a convolutional neural network. The second stage involved the use of generative and adversarial networks for correcting reflective colonoscopy images before the convolutional neural network was used for polyp detection. RESULTS The model had higher accuracy when it was validated using corrected images than when it was validated using uncorrected images (96.8% vs 90.8%, P < 0.001). The model's accuracy in detecting polyps in the Kvasir-SEG dataset reached 96%, and the area under the receiver operating characteristic curve was 0.94. CONCLUSION The proposed model can facilitate the clinical diagnosis of colorectal polyps and improve the quality of colonoscopy.
Collapse
Affiliation(s)
- Chen-Ming Hsu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Taoyuan Branch, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Hsing Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Chang Hsu
- Department of Computer Science and Information Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Che-Hao Wu
- Department of Computer Science and Information Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Chun-Jung Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Puo-Hsien Le
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Tony Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| |
Collapse
|
44
|
Tiankanon K, Aniwan S, Kerr SJ, Mekritthikrai K, Kongtab N, Wisedopas N, Piyachaturawat P, Kulpatcharapong S, Linlawan S, Phromnil P, Muangpaisarn P, Orprayoon T, Chanyaswad J, Sunthornwechapong P, Vateekul P, Kullavanijaya P, Rerknimitr R. Improvement of adenoma detection rate by two computer-aided colonic polyp detection systems in high adenoma detectors: a randomized multicenter trial. Endoscopy 2024; 56:273-282. [PMID: 37963587 DOI: 10.1055/a-2210-7999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND This study aimed to evaluate the benefits of a self-developed computer-aided polyp detection system (SD-CADe) and a commercial system (CM-CADe) for high adenoma detectors compared with white-light endoscopy (WLE) as a control. METHODS Average-risk 50-75-year-old individuals who underwent screening colonoscopy at five referral centers were randomized to SD-CADe, CM-CADe, or WLE groups (1:1:1 ratio). Trainees and staff with an adenoma detection rate (ADR) of ≥35% were recruited. The primary outcome was ADR. Secondary outcomes were the proximal adenoma detection rate (pADR), advanced adenoma detection rate (AADR), and the number of adenomas, proximal adenomas, and advanced adenomas per colonoscopy (APC, pAPC, and AAPC, respectively). RESULTS The study enrolled 1200 participants. The ADR in the control, CM-CADe, and SD-CADe groups was 38.3%, 50.0%, and 54.8%, respectively. The pADR was 23.0%, 32.3%, and 38.8%, respectively. AADR was 6.0%, 10.3%, and 9.5%, respectively. After adjustment, the ADR and pADR in both intervention groups were significantly higher than in controls (all P<0.05). The APC in the control, CM-CADe, and SD-CADe groups was 0.66, 1.04, and 1.16, respectively. The pAPC was 0.33, 0.53, and 0.64, respectively, and the AAPC was 0.07, 0.12, and 0.10, respectively. Both CADe systems showed significantly higher APC and pAPC than WLE. AADR and AAPC were improved in both CADe groups versus control, although the differences were not statistically significant. CONCLUSION Even in high adenoma detectors, CADe significantly improved ADR and APC. The AADR tended to be higher with both systems, and this may enhance colorectal cancer prevention.
Collapse
Affiliation(s)
- Kasenee Tiankanon
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Satimai Aniwan
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Krittaya Mekritthikrai
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Natanong Kongtab
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Naruemon Wisedopas
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Poonrada Phromnil
- Department of Medicine, Khlong Khlung Hospital, Kamphaeng Phet, Thailand
| | - Puth Muangpaisarn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Prapokklao Hospital, Chanthaburi, Thailand
| | - Theerapat Orprayoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Prapokklao Hospital, Chanthaburi, Thailand
| | - Jaruwan Chanyaswad
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Prapokklao Hospital, Chanthaburi, Thailand
| | | | - Peerapon Vateekul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Pinit Kullavanijaya
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Chulalongkorn University, Bangkok, Thailand
- Gastrointestinal Endoscopy Excellence Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
45
|
Yim D, Khuntia J, Parameswaran V, Meyers A. Preliminary Evidence of the Use of Generative AI in Health Care Clinical Services: Systematic Narrative Review. JMIR Med Inform 2024; 12:e52073. [PMID: 38506918 PMCID: PMC10993141 DOI: 10.2196/52073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Generative artificial intelligence tools and applications (GenAI) are being increasingly used in health care. Physicians, specialists, and other providers have started primarily using GenAI as an aid or tool to gather knowledge, provide information, train, or generate suggestive dialogue between physicians and patients or between physicians and patients' families or friends. However, unless the use of GenAI is oriented to be helpful in clinical service encounters that can improve the accuracy of diagnosis, treatment, and patient outcomes, the expected potential will not be achieved. As adoption continues, it is essential to validate the effectiveness of the infusion of GenAI as an intelligent technology in service encounters to understand the gap in actual clinical service use of GenAI. OBJECTIVE This study synthesizes preliminary evidence on how GenAI assists, guides, and automates clinical service rendering and encounters in health care The review scope was limited to articles published in peer-reviewed medical journals. METHODS We screened and selected 0.38% (161/42,459) of articles published between January 1, 2020, and May 31, 2023, identified from PubMed. We followed the protocols outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to select highly relevant studies with at least 1 element on clinical use, evaluation, and validation to provide evidence of GenAI use in clinical services. The articles were classified based on their relevance to clinical service functions or activities using the descriptive and analytical information presented in the articles. RESULTS Of 161 articles, 141 (87.6%) reported using GenAI to assist services through knowledge access, collation, and filtering. GenAI was used for disease detection (19/161, 11.8%), diagnosis (14/161, 8.7%), and screening processes (12/161, 7.5%) in the areas of radiology (17/161, 10.6%), cardiology (12/161, 7.5%), gastrointestinal medicine (4/161, 2.5%), and diabetes (6/161, 3.7%). The literature synthesis in this study suggests that GenAI is mainly used for diagnostic processes, improvement of diagnosis accuracy, and screening and diagnostic purposes using knowledge access. Although this solves the problem of knowledge access and may improve diagnostic accuracy, it is oriented toward higher value creation in health care. CONCLUSIONS GenAI informs rather than assisting or automating clinical service functions in health care. There is potential in clinical service, but it has yet to be actualized for GenAI. More clinical service-level evidence that GenAI is used to streamline some functions or provides more automated help than only information retrieval is needed. To transform health care as purported, more studies related to GenAI applications must automate and guide human-performed services and keep up with the optimism that forward-thinking health care organizations will take advantage of GenAI.
Collapse
Affiliation(s)
- Dobin Yim
- Loyola University, Maryland, MD, United States
| | - Jiban Khuntia
- University of Colorado Denver, Denver, CO, United States
| | | | - Arlen Meyers
- University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
46
|
Chen TH, Wang YT, Wu CH, Kuo CF, Cheng HT, Huang SW, Lee C. A colonial serrated polyp classification model using white-light ordinary endoscopy images with an artificial intelligence model and TensorFlow chart. BMC Gastroenterol 2024; 24:99. [PMID: 38443794 PMCID: PMC10913269 DOI: 10.1186/s12876-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, we implemented a combination of data augmentation and artificial intelligence (AI) model-Convolutional Neural Network (CNN)-to help physicians classify colonic polyps into traditional adenoma (TA), sessile serrated adenoma (SSA), and hyperplastic polyp (HP). We collected ordinary endoscopy images under both white and NBI lights. Under white light, we collected 257 images of HP, 423 images of SSA, and 60 images of TA. Under NBI light, were collected 238 images of HP, 284 images of SSA, and 71 images of TA. We implemented the CNN-based artificial intelligence model, Inception V4, to build a classification model for the types of colon polyps. Our final AI classification model with data augmentation process is constructed only with white light images. Our classification prediction accuracy of colon polyp type is 94%, and the discriminability of the model (area under the curve) was 98%. Thus, we can conclude that our model can help physicians distinguish between TA, SSA, and HPs and correctly identify precancerous lesions such as TA and SSA.
Collapse
Affiliation(s)
- Tsung-Hsing Chen
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Chi-Huan Wu
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital- Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan, ROC
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Hao-Tsai Cheng
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shu-Wei Huang
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chieh Lee
- Department of Information and Management, College of Business, National Sun Yat-sen University, Kaohsiung city, Taiwan.
| |
Collapse
|
47
|
Lau LHS, Ho JCL, Lai JCT, Ho AHY, Wu CWK, Lo VWH, Lai CMS, Scheppach MW, Sia F, Ho KHK, Xiao X, Yip TCF, Lam TYT, Kwok HYH, Chan HCH, Lui RN, Chan TT, Wong MTL, Ho MF, Ko RCW, Hon SF, Chu S, Futaba K, Ng SSM, Yip HC, Tang RSY, Wong VWS, Chan FKL, Chiu PWY. Effect of Real-Time Computer-Aided Polyp Detection System (ENDO-AID) on Adenoma Detection in Endoscopists-in-Training: A Randomized Trial. Clin Gastroenterol Hepatol 2024; 22:630-641.e4. [PMID: 37918685 DOI: 10.1016/j.cgh.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The effect of computer-aided polyp detection (CADe) on adenoma detection rate (ADR) among endoscopists-in-training remains unknown. METHODS We performed a single-blind, parallel-group, randomized controlled trial in Hong Kong between April 2021 and July 2022 (NCT04838951). Eligible subjects undergoing screening/surveillance/diagnostic colonoscopies were randomized 1:1 to receive colonoscopies with CADe (ENDO-AID[OIP-1]) or not (control) during withdrawal. Procedures were performed by endoscopists-in-training with <500 procedures and <3 years' experience. Randomization was stratified by patient age, sex, and endoscopist experience (beginner vs intermediate level, <200 vs 200-500 procedures). Image enhancement and distal attachment devices were disallowed. Subjects with incomplete colonoscopies or inadequate bowel preparation were excluded. Treatment allocation was blinded to outcome assessors. The primary outcome was ADR. Secondary outcomes were ADR for different adenoma sizes and locations, mean number of adenomas, and non-neoplastic resection rate. RESULTS A total of 386 and 380 subjects were randomized to CADe and control groups, respectively. The overall ADR was significantly higher in the CADe group than in the control group (57.5% vs 44.5%; adjusted relative risk, 1.41; 95% CI, 1.17-1.72; P < .001). The ADRs for <5 mm (40.4% vs 25.0%) and 5- to 10-mm adenomas (36.8% vs 29.2%) were higher in the CADe group. The ADRs were higher in the CADe group in both the right colon (42.0% vs 30.8%) and left colon (34.5% vs 27.6%), but there was no significant difference in advanced ADR. The ADRs were higher in the CADe group among beginner (60.0% vs 41.9%) and intermediate-level (56.5% vs 45.5%) endoscopists. Mean number of adenomas (1.48 vs 0.86) and non-neoplastic resection rate (52.1% vs 35.0%) were higher in the CADe group. CONCLUSIONS Among endoscopists-in-training, the use of CADe during colonoscopies was associated with increased overall ADR. (ClinicalTrials.gov, Number: NCT04838951).
Collapse
Affiliation(s)
- Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jacky C L Ho
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jimmy C T Lai
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Agnes H Y Ho
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Claudia W K Wu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vincent W H Lo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Carol M S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Markus W Scheppach
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Gastroenterology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Felix Sia
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kyle H K Ho
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiang Xiao
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Terry C F Yip
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Thomas Y T Lam
- Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hanson Y H Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Heyson C H Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rashid N Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ting-Ting Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Marc T L Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Man-Fung Ho
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rachel C W Ko
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sok-Fei Hon
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Simon Chu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Koari Futaba
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Simon S M Ng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hon-Chi Yip
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Raymond S Y Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Francis K L Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Philip W Y Chiu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
48
|
Uchikov P, Khalid U, Kraev K, Hristov B, Kraeva M, Tenchev T, Chakarov D, Sandeva M, Dragusheva S, Taneva D, Batashki A. Artificial Intelligence in the Diagnosis of Colorectal Cancer: A Literature Review. Diagnostics (Basel) 2024; 14:528. [PMID: 38472999 DOI: 10.3390/diagnostics14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this review is to explore the role of artificial intelligence in the diagnosis of colorectal cancer, how it impacts CRC morbidity and mortality, and why its role in clinical medicine is limited. METHODS A targeted, non-systematic review of the published literature relating to colorectal cancer diagnosis was performed with PubMed databases that were scouted to help provide a more defined understanding of the recent advances regarding artificial intelligence and their impact on colorectal-related morbidity and mortality. Articles were included if deemed relevant and including information associated with the keywords. RESULTS The advancements in artificial intelligence have been significant in facilitating an earlier diagnosis of CRC. In this review, we focused on evaluating genomic biomarkers, the integration of instruments with artificial intelligence, MR and hyperspectral imaging, and the architecture of neural networks. We found that these neural networks seem practical and yield positive results in initial testing. Furthermore, we explored the use of deep-learning-based majority voting methods, such as bag of words and PAHLI, in improving diagnostic accuracy in colorectal cancer detection. Alongside this, the autonomous and expansive learning ability of artificial intelligence, coupled with its ability to extract increasingly complex features from images or videos without human reliance, highlight its impact in the diagnostic sector. Despite this, as most of the research involves a small sample of patients, a diversification of patient data is needed to enhance cohort stratification for a more sensitive and specific neural model. We also examined the successful application of artificial intelligence in predicting microsatellite instability, showcasing its potential in stratifying patients for targeted therapies. CONCLUSIONS Since its commencement in colorectal cancer, artificial intelligence has revealed a multitude of functionalities and augmentations in the diagnostic sector of CRC. Given its early implementation, its clinical application remains a fair way away, but with steady research dedicated to improving neural architecture and expanding its applicational range, there is hope that these advanced neural software could directly impact the early diagnosis of CRC. The true promise of artificial intelligence, extending beyond the medical sector, lies in its potential to significantly influence the future landscape of CRC's morbidity and mortality.
Collapse
Affiliation(s)
- Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Krasimir Kraev
- Department of Propaedeutics of Internal Diseases "Prof. Dr. Anton Mitov", Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Section "Gastroenterology", Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kraeva
- Department of Otorhinolaryngology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Tihomir Tenchev
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propaedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Milena Sandeva
- Department of Midwifery, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Snezhanka Dragusheva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Daniela Taneva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Atanas Batashki
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
49
|
Maas MHJ, Neumann H, Shirin H, Katz LH, Benson AA, Kahloon A, Soons E, Hazzan R, Landsman MJ, Lebwohl B, Lewis SK, Sivanathan V, Ngamruengphong S, Jacob H, Siersema PD. A computer-aided polyp detection system in screening and surveillance colonoscopy: an international, multicentre, randomised, tandem trial. Lancet Digit Health 2024; 6:e157-e165. [PMID: 38395537 DOI: 10.1016/s2589-7500(23)00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Studies on the effect of computer-aided detection (CAD) in a daily clinical screening and surveillance colonoscopy population practice are scarce. The aim of this study was to evaluate a novel CAD system in a screening and surveillance colonoscopy population. METHODS This multicentre, randomised, controlled trial was done in ten hospitals in Europe, the USA, and Israel by 31 endoscopists. Patients referred for non-immunochemical faecal occult blood test (iFOBT) screening or surveillance colonoscopy were included. Patients were randomomly assigned to CAD-assisted colonoscopy or conventional colonoscopy; a subset was further randomly assigned to undergo tandem colonoscopy: CAD followed by conventional colonoscopy or conventional colonoscopy followed by CAD. Primary objectives included adenoma per colonoscopy (APC) and adenoma per extraction (APE). Secondary objectives included adenoma miss rate (AMR) in the tandem colonoscopies. The study was registered at ClinicalTrials.gov, NCT04640792. FINDINGS A total of 916 patients were included in the modified intention-to-treat analysis: 449 in the CAD group and 467 in the conventional colonoscopy group. APC was higher with CAD compared with conventional colonoscopy (0·70 vs 0·51, p=0·015; 314 adenomas per 449 colonoscopies vs 238 adenomas per 467 colonoscopies; poisson effect ratio 1·372 [95% CI 1·068-1·769]), while showing non-inferiority of APE compared with conventional colonoscopy (0·59 vs 0·66; p<0·001 for non-inferiority; 314 of 536 extractions vs 238 of 360 extractions). AMR in the 127 (61 with CAD first, 66 with conventional colonoscopy first) patients completing tandem colonoscopy was 19% (11 of 59 detected during the second pass) in the CAD first group and 36% (16 of 45 detected during the second pass) in the conventional colonoscopy first group (p=0·024). INTERPRETATION CAD increased adenoma detection in non-iFOBT screening and surveillance colonoscopies and reduced adenoma miss rates compared with conventional colonoscopy, without an increase in the resection of non-adenomatous lesions. FUNDING Magentiq Eye.
Collapse
Affiliation(s)
- Michiel H J Maas
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Helmut Neumann
- University Medical Center Mainz, Interventional Endoscopy Center, I Medizinische Klinik und Poliklinik, Mainz, Germany
| | - Haim Shirin
- Institute of Gastroenterology and Liver Diseases, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Lior H Katz
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Ariel A Benson
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Arslan Kahloon
- College of Medicine, Division of Gastroenterology, University of Tennessee, Chattanooga, TN, USA
| | - Elsa Soons
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rawi Hazzan
- Assuta Centers, Haifa Gastroenterology Institute, Haifa, Israel
| | - Marc J Landsman
- Department of Gastroenterology, MetroHealth Medical Center, Cleveland, OH, USA
| | - Benjamin Lebwohl
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, NY, USA
| | - Suzanne K Lewis
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, NY, USA
| | - Visvakanth Sivanathan
- University Medical Center Mainz, Interventional Endoscopy Center, I Medizinische Klinik und Poliklinik, Mainz, Germany
| | | | - Harold Jacob
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Peter D Siersema
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands; Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
50
|
Martindale APL, Llewellyn CD, de Visser RO, Ng B, Ngai V, Kale AU, di Ruffano LF, Golub RM, Collins GS, Moher D, McCradden MD, Oakden-Rayner L, Rivera SC, Calvert M, Kelly CJ, Lee CS, Yau C, Chan AW, Keane PA, Beam AL, Denniston AK, Liu X. Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines. Nat Commun 2024; 15:1619. [PMID: 38388497 PMCID: PMC10883966 DOI: 10.1038/s41467-024-45355-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77-94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines.
Collapse
Affiliation(s)
| | - Carrie D Llewellyn
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Brighton, UK
| | - Richard O de Visser
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Brighton, UK
| | - Benjamin Ng
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
- Christ Church, University of Oxford, Oxford, UK
| | - Victoria Ngai
- University College London Medical School, London, UK
| | - Aditya U Kale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | | | - Robert M Golub
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary S Collins
- Centre for Statistics in Medicine//UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - David Moher
- Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottowa, Canada
| | - Melissa D McCradden
- Department of Bioethics, The Hospital for Sick Children, Toronto, Canada
- Genetics & Genome Biology Research Program, Peter Gilgan Centre for Research & Learning, Toronto, Canada
- Division of Clinical and Public Health, Dalla Lana School of Public Health, Toronto, Canada
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia
| | - Samantha Cruz Rivera
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Melanie Calvert
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- NIHR Applied Research Collaboration (ARC) West Midlands, University of Birmingham, Birmingham, UK
- NIHR Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | | | | | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Health Data Research UK, London, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Hospital. University of Toronto, Toronto, Canada
| | - Pearse A Keane
- NIHR Biomedical Research Centre at Moorfields, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Andrew L Beam
- Department of Epidemiology, Harvard. T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre at Moorfields, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.
| |
Collapse
|