1
|
Geibel C, Olfert M, Knappe C, Serafimov K, Lämmerhofer M. Branched medium-chain fatty acid profiling and enantiomer separation of anteiso-forms of teicoplanin fatty acyl side chain RS3 using UHPLC-MS/MS with polysaccharide columns. J Pharm Biomed Anal 2023; 224:115162. [PMID: 36423498 DOI: 10.1016/j.jpba.2022.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
This work reports on targeted UHPLC-tandem mass spectrometry methods for the chiral separation of anteiso-methyl branched fatty acids (aiFAs). The methods involve precolumn derivatization with 1-naphthylamine and chiral separation on Chiralpak IG-U. anteiso-Methyl branched fatty acids with up to eight carbons can be separated. A method was used for the assignment of the absolute configuration of an aiFA present as fatty acyl residue of the teicoplanin mixture, namely teicoplanin RS3. Furthermore, the excellent methylene selectivity and improved selectivity for constitutional isomers of the polysaccharide columns was exploited for the elucidation and structural confirmation of previously unknown fatty acyl residues in teicoplanin. This shows the versatility and practical applicability of polysaccharide columns as orthogonal stationary phases to reversed-phase for structural elucidation of natural compounds. The developed methods are useful tools for related subdisciplines such as targeted metabolomics and lipidomics.
Collapse
Affiliation(s)
- Christian Geibel
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Olfert
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Biniek-Antosiak K, Bejger M, Śliwiak J, Baranowski D, Mohammed ASA, Svergun DI, Rypniewski W. Structural, Thermodynamic and Enzymatic Characterization of N, N-Diacetylchitobiose Deacetylase from Pyrococcus chitonophagus. Int J Mol Sci 2022; 23:ijms232415736. [PMID: 36555375 PMCID: PMC9779004 DOI: 10.3390/ijms232415736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Chitin is a major source of energy and macroelements for many organisms. An important step in its degradation is the deacetylation of chitin or its fragments. Deacetylase from the extremophile Pyrococcus chitonophagus has been analyzed by X-ray crystallography, small-angle X-ray scattering, differential scanning calorimetry, isothermal titration calorimetry and NMR to determine its structure, thermodynamics and enzymatic properties. It is a hexameric, zinc-containing metalloenzyme that retains its structural integrity up to temperatures slightly exceeding 100 °C. It removes the acetyl group specifically from the non-reducing end of the sugar substrate. Its main substrate is N,N-diacetylchitobiose but it also active, at a reduced level, toward N-acetyl-d-glucosamine or a trimer of N-acetyl-d-glucosamine units. Crystallographic analysis includes the structure of the enzyme with its main substrate approaching the active site in a monodentate manner, replacing the single water molecule that is bound at the Zn2+ cation when the ligand is absent. The Zn2+ cation remains tetrahedrally coordinated, with three of its ligands provided by the protein's conserved His-Asp-His triad. The crystal structures are consistent with the reaction mechanism proceeding via an anhydride intermediate. Hydrolysis as the first step cannot be ruled out in a hydrated environment but no defined 'hydrolytic water' site can be identified in the analyzed structures.
Collapse
Affiliation(s)
- Katarzyna Biniek-Antosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland
| | - Daniel Baranowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland
| | - Ahmed S. A. Mohammed
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland
- Correspondence:
| |
Collapse
|
3
|
Vobruba S, Kamenik Z, Kadlcik S, Janata J. N-Deacetylation in Lincosamide Biosynthesis Is Catalyzed by a TldD/PmbA Family Protein. ACS Chem Biol 2020; 15:2048-2054. [PMID: 32786288 DOI: 10.1021/acschembio.0c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lincosamides are clinically important antibiotics originally produced as microbial specialized metabolites. The complex biosynthesis of lincosamides is coupled to the metabolism of mycothiol as a sulfur donor. Here, we elucidated the N-deacetylation of the mycothiol-derived N-acetyl-l-cysteine residue of a lincosamide intermediate, which is comprised of an amino acid and an aminooctose connected via an amide bond. We purified this intermediate from the culture broth of a deletion mutant strain and tested it as a substrate of recombinant lincosamide biosynthetic proteins in the in vitro assays that were monitored via liquid chromatography-mass spectrometry. Our findings showed that the N-deacetylation reaction is catalyzed by CcbIH/CcbQ or LmbIH/LmbQ proteins in celesticetin and lincomycin biosynthesis, respectively. These are the first N-deacetylases from the TldD/PmbA protein family, from which otherwise only several proteases and peptidases were functionally characterized. Furthermore, we present a sequence similarity network of TldD/PmbA proteins, which suggests that the lincosamide N-deacetylases are unique among these widely distributed proteins.
Collapse
Affiliation(s)
- Simon Vobruba
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Kadlcik
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Huang CM, Lyu SY, Lin KH, Chen CL, Chen MH, Shih HW, Hsu NS, Lo IW, Wang YL, Li YS, Wu CJ, Li TL. Teicoplanin Reprogrammed with the N-Acyl-Glucosamine Pharmacophore at the Penultimate Residue of Aglycone Acquires Broad-Spectrum Antimicrobial Activities Effectively Killing Gram-Positive and -Negative Pathogens. ACS Infect Dis 2019; 5:430-442. [PMID: 30599088 DOI: 10.1021/acsinfecdis.8b00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipoglycopeptide antibiotics, for example, teicoplanin (Tei) and A40926, are more potent than vancomycin against Gram-positive (Gram-(+)) drug-resistant pathogens, for example, methicillin-resistant Staphylococcus aureus (MRSA). To extend their therapeutic effectiveness on vancomycin-resistant S. aureus (VRSA), the biosynthetic pathway of the N-acyl glucosamine (Glc) pharmacophore at residue 4 (r4) of teicoplanin pseudoaglycone redirection to residue 6 (r6) was attempted. On the basis of crystal structures, two regioselective biocatalysts Orf2*T (a triple-mutation mutant S98A/V121A/F193Y) and Orf11*S (a single-mutation mutant W163A) were engineered, allowing them to act on GlcNAc at r6. New analogs thereby made show marked antimicrobial activity against MRSA and VRSA by 2-3 orders of magnitude better than teicoplanin and vancomycin. The lipid side chain of the Tei-analogs armed with a terminal mono- or diguanidino group extends the antimicrobial specificity from Gram-(+) to Gram-negative (Gram-(-)), comparable to that of kanamycin. In addition to low cytotoxicity and high safety, the Tei analogs exhibit new modes of action as a result of resensitization of VRSA and Acinetobacter baumannii. The redirection of the biosynthetic pathway for the N-acyl-Glc pharmacophore from r4 to r6 bodes well for large-scale production of selected r6,Tei congeners in an environmentally friendly synthetic biology approach.
Collapse
Affiliation(s)
- Chun-Man Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Department of Microbiology and Immunology, National Yang-Ming University, 155 Linong Street, Section 2,
Beitou, Taipei 11221, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chun-Liang Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Hua Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - I-Wen Lo
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chang-Jer Wu
- National Taiwan Ocean University, 2 Peining Road, Jhongjhong, Keelung 20224, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- National Chung-Hsing University, 145 Xingda Road, South Taichung 402, Taiwan
| |
Collapse
|
5
|
GlcNAc De- N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Appl Environ Microbiol 2019; 85:AEM.01879-18. [PMID: 30446550 DOI: 10.1128/aem.01879-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricus IMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Collapse
|
6
|
Complex Regulatory Networks Governing Production of the Glycopeptide A40926. Antibiotics (Basel) 2018; 7:antibiotics7020030. [PMID: 29621136 PMCID: PMC6022936 DOI: 10.3390/antibiotics7020030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/11/2023] Open
Abstract
Glycopeptides (GPAs) are an important class of antibiotics, with vancomycin and teicoplanin being used in the last 40 years as drugs of last resort to treat infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus. A few new GPAs have since reached the market. One of them is dalbavancin, a derivative of A40926 produced by the actinomycete Nonomuraea sp. ATCC 39727, recently classified as N. gerenzanensis. This review summarizes what we currently know on the multilevel regulatory processes governing production of the glycopeptide A40926 and the different approaches used to increase antibiotic yields. Some nutrients, e.g., valine, l-glutamine and maltodextrin, and some endogenous proteins, e.g., Dbv3, Dbv4 and RpoBR, have a positive role on A40926 biosynthesis, while other factors, e.g., phosphate, ammonium and Dbv23, have a negative effect. Overall, the results available so far point to a complex regulatory network controlling A40926 in the native producing strain.
Collapse
|
7
|
Nakamura T, Yonezawa Y, Tsuchiya Y, Niiyama M, Ida K, Oshima M, Morita J, Uegaki K. Substrate recognition of N,N′-diacetylchitobiose deacetylase from Pyrococcus horikoshii. J Struct Biol 2016; 195:286-293. [DOI: 10.1016/j.jsb.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
8
|
Mazurkewich S, Brott AS, Kimber MS, Seah SYK. Structural and Kinetic Characterization of the 4-Carboxy-2-hydroxymuconate Hydratase from the Gallate and Protocatechuate 4,5-Cleavage Pathways of Pseudomonas putida KT2440. J Biol Chem 2016; 291:7669-86. [PMID: 26867578 PMCID: PMC4817193 DOI: 10.1074/jbc.m115.682054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/03/2016] [Indexed: 11/06/2022] Open
Abstract
The bacterial catabolism of lignin and its breakdown products is of interest for applications in industrial processing of ligno-biomass. The gallate degradation pathway ofPseudomonas putidaKT2440 requires a 4-carboxy-2-hydroxymuconate (CHM) hydratase (GalB), which has a 12% sequence identity to a previously identified CHM hydratase (LigJ) fromSphingomonassp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-LN-acetylglucosamine deacetylase family; GalB is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereospecificity as GalB, providing an example of convergent evolution for catalytic conversion of a common metabolite in bacterial aromatic degradation pathways. Purified GalB contains a bound Zn(2+)cofactor; however the enzyme is capable of using Fe(2+)and Co(2+)with similar efficiency. The general base aspartate in the PIG-L deacetylases is an alanine in GalB; replacement of the alanine with aspartate decreased the GalB catalytic efficiency for CHM by 9.5 × 10(4)-fold, and the variant enzyme did not have any detectable hydrolase activity. Kinetic analyses and pH dependence studies of the wild type and variant enzymes suggested roles for Glu-48 and His-164 in the catalytic mechanism. A comparison with the PIG-L deacetylases led to a proposed mechanism for GalB wherein Glu-48 positions and activates the metal-ligated water for the hydration reaction and His-164 acts as a catalytic acid.
Collapse
Affiliation(s)
- Scott Mazurkewich
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashley S Brott
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephen Y K Seah
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Chen M, Xu T, Zhang G, Zhao J, Gao Z, Zhang C. High-yield production of lipoglycopeptide antibiotic A40926 using a mutant strain Nonomuraea sp. DP-13 in optimized medium. Prep Biochem Biotechnol 2016; 46:171-5. [PMID: 25831044 DOI: 10.1080/10826068.2015.1015561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The lipoglycopeptide antibiotic A40926 produced by Nonomuraea sp. is a complex of structurally related components differing in the fatty acid moiety. Besides showing an intrinsic antibacterial activity, A40926 is the precursor of the semisynthetic antibiotic Dalvance. In this work, A40926 production by a mutant strain Nonomuraea sp. DP-13 was investigated. It was found that A40926 production was markedly promoted by using poorly assimilated carbon source maltodextrin and nitrogen source soybean meal. Addition of Cu(2+) resulted in a stimulation of A40926 production, but Co(2+) had an inhibitory effect. L-Leucine addition greatly improved total A40926 production and modified the complex composition toward factor B0. An optimized production medium IM-3 was developed and a maximum A40926 production of 1096 mg/L was obtained in the 10-L fermenter. This was the highest A40926 productivity so far reported.
Collapse
Affiliation(s)
- Ming Chen
- a School of Biological Engineering , Dalian Polytechnic University , Dalian , China
| | - Tao Xu
- a School of Biological Engineering , Dalian Polytechnic University , Dalian , China
| | - Guanghao Zhang
- a School of Biological Engineering , Dalian Polytechnic University , Dalian , China
| | - Jing Zhao
- b College of Life Science , Dalian Nationalities University , Dalian , China
| | - Ziqing Gao
- a School of Biological Engineering , Dalian Polytechnic University , Dalian , China
| | - Chunzhi Zhang
- a School of Biological Engineering , Dalian Polytechnic University , Dalian , China
| |
Collapse
|
10
|
Identity of cofactor bound to mycothiol conjugate amidase (Mca) influenced by expression and purification conditions. Biometals 2015; 28:755-63. [DOI: 10.1007/s10534-015-9864-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|
11
|
Thaker MN, Wright GD. Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. ACS Synth Biol 2015; 4:195-206. [PMID: 23654249 PMCID: PMC4384835 DOI: 10.1021/sb300092n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Synthetic
biology offers a new path for the exploitation and improvement
of natural products to address the growing crisis in antibiotic resistance.
All antibiotics in clinical use are facing eventual obsolesce as a
result of the evolution and dissemination of resistance mechanisms,
yet there are few new drug leads forthcoming from the pharmaceutical
sector. Natural products of microbial origin have proven over the
past 70 years to be the wellspring of antimicrobial drugs. Harnessing
synthetic biology thinking and strategies can provide new molecules
and expand chemical diversity of known antibiotic scaffolds to provide
much needed new drug leads. The glycopeptide antibiotics offer paradigmatic
scaffolds suitable for such an approach. We review these strategies
here using the glycopeptides as an example and demonstrate how synthetic
biology can expand antibiotic chemical diversity to help address the
growing resistance crisis.
Collapse
Affiliation(s)
- Maulik N. Thaker
- M.G. DeGroote
Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON, L8S 4K1 Canada
| | - Gerard D. Wright
- M.G. DeGroote
Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON, L8S 4K1 Canada
| |
Collapse
|
12
|
Viars S, Valentine J, Hernick M. Structure and function of the LmbE-like superfamily. Biomolecules 2014; 4:527-45. [PMID: 24970229 PMCID: PMC4101496 DOI: 10.3390/biom4020527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022] Open
Abstract
The LmbE-like superfamily is comprised of a series of enzymes that use a single catalytic metal ion to catalyze the hydrolysis of various substrates. These substrates are often key metabolites for eukaryotes and prokaryotes, which makes the LmbE-like enzymes important targets for drug development. Herein we review the structure and function of the LmbE-like proteins identified to date. While this is the newest superfamily of metallohydrolases, a growing number of functionally interesting proteins from this superfamily have been characterized. Available crystal structures of LmbE-like proteins reveal a Rossmann fold similar to lactate dehydrogenase, which represented a novel fold for (zinc) metallohydrolases at the time the initial structure was solved. The structural diversity of the N-acetylglucosamine containing substrates affords functional diversity for the LmbE-like enzyme superfamily. The majority of enzymes identified to date are metal-dependent deacetylases that catalyze the hydrolysis of a N-acetylglucosamine moiety on substrate using a combination of amino acid side chains and a single bound metal ion, predominantly zinc. The catalytic zinc is coordinated to proteins via His2-Asp-solvent binding site. Additionally, studies indicate that protein dynamics play important roles in regulating access to the active site and facilitating catalysis for at least two members of this protein superfamily.
Collapse
Affiliation(s)
- Shane Viars
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| | - Jason Valentine
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| | - Marcy Hernick
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA 24631, USA.
| |
Collapse
|
13
|
Mine S, Niiyama M, Hashimoto W, Ikegami T, Koma D, Ohmoto T, Fukuda Y, Inoue T, Abe Y, Ueda T, Morita J, Uegaki K, Nakamura T. Expression from engineeredEscherichia colichromosome and crystallographic study of archaealN,N′-diacetylchitobiose deacetylase. FEBS J 2014; 281:2584-96. [DOI: 10.1111/febs.12805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Shouhei Mine
- National Institute of Advanced Industrial Science and Technology; Osaka Japan
| | - Mayumi Niiyama
- National Institute of Advanced Industrial Science and Technology; Osaka Japan
| | - Wakana Hashimoto
- National Institute of Advanced Industrial Science and Technology; Osaka Japan
- Faculty of Human Life and Science; Doshisha Women's College of Liberal Arts; Kyoto Japan
| | | | - Daisuke Koma
- Osaka Municipal Technical Research Institute; Japan
| | | | - Yohta Fukuda
- Graduate School of Engineering; Osaka University; Japan
| | | | - Yoshito Abe
- Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka Japan
| | - Junji Morita
- Faculty of Human Life and Science; Doshisha Women's College of Liberal Arts; Kyoto Japan
| | - Koichi Uegaki
- National Institute of Advanced Industrial Science and Technology; Osaka Japan
| | - Tsutomu Nakamura
- National Institute of Advanced Industrial Science and Technology; Osaka Japan
| |
Collapse
|
14
|
Liebens V, Defraine V, Van der Leyden A, De Groote VN, Fierro C, Beullens S, Verstraeten N, Kint C, Jans A, Frangipani E, Visca P, Marchal K, Versées W, Fauvart M, Michiels J. A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 2014; 71:39-54. [PMID: 24692291 DOI: 10.1111/2049-632x.12174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022] Open
Abstract
A major cause of treatment failure of infections caused by Pseudomonas aeruginosa is the presence of antibiotic-insensitive persister cells. The mechanism of persister formation in P. aeruginosa is largely unknown, and so far, only few genetic determinants have been linked to P. aeruginosa persistence. Based on a previous high-throughput screening, we here present dnpA (de-N-acetylase involved in persistence; gene locus PA14_66140/PA5002) as a new gene involved in noninherited fluoroquinolone tolerance in P. aeruginosa. Fluoroquinolone tolerance of a dnpA mutant is strongly reduced both in planktonic culture and in a biofilm model, whereas overexpression of dnpA in the wild-type strain increases the persister fraction. In addition, the susceptibility of the dnpA mutant to different classes of antibiotics is not affected. dnpA is part of the conserved LPS core oligosaccharide biosynthesis gene cluster. Based on primary sequence analysis, we predict that DnpA is a de-N-acetylase, acting on an unidentified substrate. Site-directed mutagenesis suggests that this enzymatic activity is essential for DnpA-mediated persistence. A transcriptome analysis indicates that DnpA primarily affects the expression of genes involved in surface-associated processes. We discuss the implications of these findings for future antipersister therapies targeted at chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Veerle Liebens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grande-García A, Lallous N, Díaz-Tejada C, Ramón-Maiques S. Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD. Structure 2013; 22:185-98. [PMID: 24332717 DOI: 10.1016/j.str.2013.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/30/2022]
Abstract
Upregulation of CAD, the multifunctional protein that initiates and controls the de novo biosynthesis of pyrimidines in animals, is essential for cell proliferation. Deciphering the architecture and functioning of CAD is of interest for its potential usage as an antitumoral target. However, there is no detailed structural information about CAD other than that it self-assembles into hexamers of ∼1.5 MDa. Here we report the crystal structure and functional characterization of the dihydroorotase domain of human CAD. Contradicting all assumptions, the structure reveals an active site enclosed by a flexible loop with two Zn²⁺ ions bridged by a carboxylated lysine and a third Zn coordinating a rare histidinate ion. Site-directed mutagenesis and functional assays prove the involvement of the Zn and flexible loop in catalysis. Comparison with homologous bacterial enzymes supports a reclassification of the DHOase family and provides strong evidence against current models of the architecture of CAD.
Collapse
Affiliation(s)
- Araceli Grande-García
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Nada Lallous
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Celsa Díaz-Tejada
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Santiago Ramón-Maiques
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
16
|
Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr Purif 2012; 84:265-9. [DOI: 10.1016/j.pep.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/24/2022]
|
17
|
Chan HC, Huang YT, Lyu SY, Huang CJ, Li YS, Liu YC, Chou CC, Tsai MD, Li TL. Regioselective deacetylation based on teicoplanin-complexed Orf2* crystal structures. MOLECULAR BIOSYSTEMS 2011; 7:1224-31. [PMID: 21267472 DOI: 10.1039/c0mb00320d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipoglycopeptide antibiotics are more effective than vancomycin against MRSA as they carry an extra aliphatic acyl side chain on glucosamine (Glm) at residue 4 (r4). The biosynthesis of the r4 N-acyl Glc moiety at teicoplanin (Tei) or A40926 has been elucidated, in which the primary amine nucleophile of Glm is freed from the r4 GlcNac pseudo-Tei precursor by Orf2* for the subsequent acylation reaction to occur. In this report, two Orf2* structures in complex with β-D-octyl glucoside or Tei were solved. Of the complexed structures, the substrate binding site and a previously unknown hydrophobic cavity were revealed, wherein r4 GlcNac acts as the key signature for molecular recognition and the cavity allows substrates carrying longer acyl side chains in addition to the acetyl group. On the basis of the complexed structures, a triple-mutation mutant S98A/V121A/F193Y is able to regioselectively deacetylate r6 GlcNac pseudo-Tei instead of that at r4. Thereby, novel analogs can be made at the r6 sugar moiety.
Collapse
|
18
|
β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 2010; 28:596-604. [PMID: 20970210 DOI: 10.1016/j.tibtech.2010.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/06/2010] [Accepted: 09/20/2010] [Indexed: 01/21/2023]
Abstract
Most infections are caused by bacteria, many of which are ever-evolving and resistant to nearly all available antibiotics. β-Lactams and glycopeptides are used to combat these infections by inhibiting bacterial cell-wall synthesis. This mechanism remains an interesting target in the search for new antibiotics in light of failed genomic approaches and the limited input of major pharmaceutical companies. Several strategies have enriched the pipeline of bacterial cell-wall inhibitors; examples include combining screening strategies with lesser-explored microbial diversity, or reinventing known scaffolds based on structure-function relationships. Drugs developed using novel strategies will contribute to the arsenal in fight against the continued emergence of bacterial resistance.
Collapse
|
19
|
Deli A, Koutsioulis D, Fadouloglou VE, Spiliotopoulou P, Balomenou S, Arnaouteli S, Tzanodaskalaki M, Mavromatis K, Kokkinidis M, Bouriotis V. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. FEBS J 2010; 277:2740-53. [DOI: 10.1111/j.1742-4658.2010.07691.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Improved production of A40926 by Nonomuraea sp. through deletion of a pathway-specific acetyltransferase. Appl Microbiol Biotechnol 2010; 87:1633-8. [PMID: 20414653 DOI: 10.1007/s00253-010-2579-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Nonomuraea strain ATCC 39727 produces the glycopeptide A40926, used for manufacturing dalbavancin, currently in advanced clinical trials. From the gene cluster involved in A40926 biosynthesis, a strain deleted in dbv23 was constructed. This mutant can produce only the glycopeptides lacking the O-linked acetyl residue at position 6 of the mannose moiety, while, under identical fermentation conditions, the wild-type strain produces mostly glycopeptides carrying an acetylated mannose. Furthermore, the total amount of glycopeptides produced by the mutant strain was found to be approximately twice that of the wild type. The reduced level of glycopeptides observed in the wild-type strain may be due to an inhibitory effect exerted by the acetylated compound on the biosynthesis of A40926. Indeed, spiking production cultures with > or =1 microg/ml of the acetylated glycopeptide inhibited A40926 production in the mutant strain.
Collapse
|