1
|
Li A, Li S, Wang P, Dang C, Fan X, Chen M, Liu D, Li F, Liu H, Zhang W, Wang Y, Wang Y. Design, Structure Optimization, and Preclinical Characterization of JAB-21822, a Covalent Inhibitor of KRAS G12C. J Med Chem 2025; 68:2422-2436. [PMID: 39875337 DOI: 10.1021/acs.jmedchem.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
KRAS is the most frequently mutated driver oncogene in human cancer, and KRASG12C mutation is commonly found in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). Inhibitors that covalently modify the mutated codon 12 cysteine have completed proof-of-concept studies in the clinic. Here, we describe structure-based design and cocrystal-aided drug optimization of a series of compounds with the 1,8-naphthyridine-3-carbonitrile scaffold. Biopharmaceutical optimization of the resulting leads to improve the solubility of the compounds and block the possible metabolic hotspots led to the identification of JAB-21822, a covalent KRASG12C inhibitor with high potency and excellent cross-species pharmacokinetic properties. JAB-21822 has finished the pivotal Phase II clinical trials in NSCLC, and a new drug application was submitted to the National Medical Products Administration in 2024.
Collapse
Affiliation(s)
- Amin Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Sujing Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Peng Wang
- Biology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Chaojie Dang
- Process Development Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Xinrui Fan
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Mengran Chen
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Dan Liu
- Biology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Fu Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Huan Liu
- Process Development Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Wei Zhang
- Hits Discovery Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Yanping Wang
- Pharmacology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Yinxiang Wang
- Chief executive officer, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| |
Collapse
|
2
|
Gabano E, Gariboldi MB, Marras E, Barbato F, Ravera M. Platinum(IV) combo prodrugs containing cyclohexane-1 R,2 R-diamine, valproic acid, and perillic acid as a multiaction chemotherapeutic platform for colon cancer. Dalton Trans 2023; 52:11349-11360. [PMID: 37530512 DOI: 10.1039/d3dt01876h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The complex [PtCl2(cyclohexane-1R,2R-diamine)] has been combined in a Pt(IV) molecule with two different bioactive molecules (i.e., the histone deacetylase inhibitor 2-propylpentanoic acid or valproic acid, VPA, and the potential antimetastatic molecule 4-isopropenylcyclohexene-1-carboxylic acid or perillic acid, PA) in order to obtain a set of multiaction or multitarget antiproliferative agents. In addition to traditional thermal synthetic procedures, microwave-assisted heating was used to speed up their preparation. All Pt(IV) complexes showed antiproliferative activity on four human colon cancer cell lines (namely HCT116, HCT8, RKO and HT29) in the nanomolar range, considerably better than those of [PtCl2(cyclohexane-1R,2R-diamine)], VPA, PA, and the reference drug oxaliplatin. The synthesized complexes showed pro-apoptotic and pro-necrotic effects and the ability to induce cell cycle alterations. Moreover, the downregulation of histone deacetylase activity, leading to an increase in histone H3 and H4 levels, and the antimigratory activity, indicated by the reduction of the levels of matrix metalloproteinases MMP2 and MMP9, demonstrated the multiaction nature of the complexes, which showed biological properties similar to or better than those of VPA and PA, but at lower concentrations, probably due to the lipophilicity of the combo molecule that increases the intracellular concentration of the single components (i.e., [PtCl2(cyclohexane-1R,2R-diamine)], VPA and PA).
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza Sant'Eusebio 5, 13100 Vercelli, Italy
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Francesca Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
3
|
Dong XD, Zhang M, Cai CY, Teng QX, Wang JQ, Fu YG, Cui Q, Patel K, Wang DT, Chen ZS. Overexpression of ABCB1 Associated With the Resistance to the KRAS-G12C Specific Inhibitor ARS-1620 in Cancer Cells. Front Pharmacol 2022; 13:843829. [PMID: 35281897 PMCID: PMC8905313 DOI: 10.3389/fphar.2022.843829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yi-Ge Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
4
|
Ravera M, Gabano E, Zanellato I, Rangone B, Perin E, Ferrari B, Bottone MG, Osella D. Cis,cis,trans-[Pt IVCl 2(NH 3) 2(perillato) 2], a dual-action prodrug with excellent cytotoxic and antimetastatic activity. Dalton Trans 2021; 50:3161-3177. [PMID: 33595015 DOI: 10.1039/d0dt04051g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two Pt(iv) conjugates containing one or two molecules of perillic acid (4-isopropenylcyclohexene-1-carboxylic acid), an active metabolite of limonene, were synthesized both with traditional and microwave-assisted methods and characterized. Their antiproliferative activity was tested on a panel of human tumor cell lines. In particular, cis,cis,trans-[PtIVCl2(NH3)2(perillato)2] exhibited excellent antiproliferative and antimetastatic activity on A-549 lung tumor cells at nanomolar concentrations. A number of in vitro biological tests were performed to decipher some aspects of its mechanism of action, including transwell migration and invasion as well as wound healing assay.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dudas B, Merzel F, Jang H, Nussinov R, Perahia D, Balog E. Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified by Extensive Conformational Sampling. Front Mol Biosci 2020; 7:145. [PMID: 32754617 PMCID: PMC7366858 DOI: 10.3389/fmolb.2020.00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
K-Ras is one of the most frequently mutated oncogenes in human tumor cells. It consists of a well-conserved globular catalytic domain and a flexible tail-like hypervariable region (HVR) at its C-terminal end. It plays a key role in signaling networks in proliferation, differentiation, and survival, undergoing a conformational switch between the active and inactive states. It is regulated through the GDP-GTP cycle of the inactive GDP-bound and active GTP-bound states. Here, without imposing any prior constraints, we mapped the interaction pattern between the catalytic domain and the HVR using Molecular Dynamics with excited Normal Modes (MDeNM) starting from an initially extended HVR conformation for both states. Our sampling captured similar interaction patterns in both GDP- and GTP-bound states with shifted populations depending on the bound nucleotide. In the GDP-bound state, the conformations where the HVR interacts with the effector lobe are more populated than in the GTP-bound state, forming a buried thus autoinhibited catalytic site; in the GTP-bound state conformations where the HVR interacts with the allosteric lobe are more populated, overlapping the α3/α4 dimerization interface. The interaction of the GTP with Switch I and Switch II is stronger than that of the GDP in line with a decrease in the fluctuation upon GTP binding.
Collapse
Affiliation(s)
- Balint Dudas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Zhang Y, Meng X, Tang H, Cheng M, Yang F, Xu W. Design, synthesis, and biological evaluation of novel substituted thiourea derivatives as potential anticancer agents for NSCLC by blocking K-Ras protein-effectors interactions. J Enzyme Inhib Med Chem 2020; 35:344-353. [PMID: 31851852 PMCID: PMC6968486 DOI: 10.1080/14756366.2019.1702653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutation of the proto-oncogene K-Ras is one of the most common molecular mechanisms in non-small cell lung cancer. Many drugs for treating lung cancer have been developed, however, due to clinical observed K-Ras mutations, corresponding chemotherapy and targeted therapy for such mutation are not efficient enough. In this study, on the basis of the crystal structure of K-Ras, 21 analogues (TKR01–TKR21) containing urea or thiourea were rationally designed, which can effectively inhibit the lung cancer cell A549 growth. The designing of these compounds was based on the structure of K-Ras protein, and the related groups were replaced by bioisosteres to improve the affinity and selectivity. Biological testing revealed that compound TKR15 could significantly inhibit the proliferation of A549 cell with IC50 of 0.21 µM. Docking analysis showed that the TKR15 can effectively bind to the hydrophobic cavity and form a hydrogen bond with the Glu37. In addition, through flow apoptosis assay and immunofluorescence staining assay, it confirmed that this compound can inhibit A549 cell proliferation with the mechanism of blocking K-RasG12V protein and effector proteins interactions through the apoptotic pathway. In conclusion, our studies in finding novel potent compound (TKR15) with confirmed mechanism showed great potential for further optimisation and other medicinal chemistry relevant studies.
Collapse
Affiliation(s)
- Yuan Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Haikang Tang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghui Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Ghufran M, Rehman AU, Shah M, Ayaz M, Ng HL, Wadood A. In-silico design of peptide inhibitors of K-Ras target in cancer disease. J Biomol Struct Dyn 2019; 38:5488-5499. [DOI: 10.1080/07391102.2019.1704880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, South Korea
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Pakistan
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
8
|
Li H, Tang Y, Zhao W, Wu Z, Wang S, Yu R. Palindromic molecular beacon-based intramolecular strand-displacement amplification strategy for ultrasensitive detection of K-ras gene. Anal Chim Acta 2019; 1065:98-106. [PMID: 31005156 DOI: 10.1016/j.aca.2019.02.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
The sensitive detection of tumor proto-oncogenes is indispensable because the early diagnosis and accurate treatment of genetic diseases is the key guarantee of patients' health. In this study, we proposed a novel palindromic molecular beacon (PMB) that it bases on the signal amplification strategy for ultrasensitive detection of Kras gene codon 12. PMB is designed to have two palindromic fragments at its two ends, one of which is locked via folding into a hairpin structure and the other promotes the formation of PMB duplex via intermolecular self-hybridization. Target DNA can hybridize to the loop portion of PMB and release the palindromic fragment at the 3' end. Within the PMB duplex, the two palindromic fragments released hybridize with each other and serve as polymerization primer responsible for the strand-displacement amplification (SDA). Namely, hybridized target DNA can be displaced and initiates the next round of reactions, making the polymerization/displacement/hybridization process go forward circularly. As a result, a large number of polymerization products are produced, dramatically enhancing optical signal. Because primer hybridization and polymerization-based displacement occur within PMB duplex, the reaction process is called intramolecular strand-displacement amplification (ISDA). Via utilizing the newly-proposed PMB-based ISDA strategy, the target K-ras gene could be detected down to 10 pM with a wide response range of 1 × 10-11-1.5 × 10-7 M, and point mutations are easily distinguished, realizing the ultrasensitive, highly selective detection of K-ras gene. This impressive sensing paradigm demonstrates a new concept of signal amplification for the detection of disease-related genes only via using a simple way to efficiently amplify optical signal.
Collapse
Affiliation(s)
- Hongbo Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Yongqiong Tang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, PR China
| | - Weihua Zhao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Zaisheng Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, PR China.
| | - Suqin Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, PR China
| |
Collapse
|
9
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Gruber TD, Krishnamurthy C, Grimm JB, Tadross MR, Wysocki LM, Gartner ZJ, Lavis LD. Cell-Specific Chemical Delivery Using a Selective Nitroreductase-Nitroaryl Pair. ACS Chem Biol 2018; 13:2888-2896. [PMID: 30111097 DOI: 10.1021/acschembio.8b00524] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utility of small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. "Masking" the activity of small molecules using a general chemical modification and "unmasking" it only within target cells overcomes this limitation. To this end, we have developed a selective enzyme-substrate pair consisting of engineered variants of E. coli nitroreductase (NTR) and a 2-nitro- N-methylimidazolyl (NM) masking group. To discover and optimize this NTR-NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.
Collapse
Affiliation(s)
- Todd D Gruber
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Chithra Krishnamurthy
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Jonathan B Grimm
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Michael R Tadross
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Laura M Wysocki
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Luke D Lavis
- Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States
| |
Collapse
|
11
|
Placental Ras Regulates Inflammation Associated with Maternal Obesity. Mediators Inflamm 2018; 2018:3645386. [PMID: 30402038 PMCID: PMC6196914 DOI: 10.1155/2018/3645386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Heightened placental inflammation and dysfunction are commonly associated in pregnant obese women compared to their pregnant lean counterparts. The small GTPase superfamily members known as the rat sarcoma viral oncogene homolog (Ras) proteins, in particular, the K-Ras and H-Ras isoforms, have been implicated to regulate inflammation. The aims were to determine the placental Ras expression and activity with maternal obesity and its role in regulating placental inflammation. Human placenta was obtained at term Caesarean section from lean and obese pregnant women to determine the effect of maternal obesity on Ras protein expression and activity. To determine the effect of Ras on inflammation induced by bacterial endotoxin LPS and proinflammatory cytokines TNF-α or IL-1β, the chemical inhibitor lonafarnib (total Ras inhibitor) and siRNA (siKRAS and siHRAS) were used. Total Ras protein expression together with combined K-Ras and H-Ras activity was significantly increased in the placenta of obese pregnant women and when stimulated with LPS, IL-1β, or TNF-α. Lonafarnib significantly suppressed LPS-, IL-1β-, or TNF-α-induced IL-6, IL-8, MCP-1, and GRO-α expression and secretion in placental tissue. Primary trophoblast cells transfected with siKRAS or siHRAS demonstrated only K-Ras silencing significantly decreased IL-1β-, TNF-α-, or LPS-induced IL-6, IL-8, and MCP-1 expression and secretion. Furthermore, siKRAS significantly reduced downstream ERK-1/2 activation induced by LPS. In trophoblast cells, ERK-1/2 signalling is required for IL-6, IL-8, MCP-1, and GRO-α secretion. These studies implicate a role for K-Ras in regulating inflammation in human placenta. Suppressing overactive placental K-Ras function may prevent adverse fetal outcomes complicated by maternal obesity.
Collapse
|
12
|
|
13
|
The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nat Struct Mol Biol 2018; 25:454-462. [DOI: 10.1038/s41594-018-0061-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/04/2018] [Indexed: 02/03/2023]
|
14
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
15
|
Lee YC, Kumar K, Waldmann H. Ligandengesteuerte divergente Synthese von carbo- und heterocyclischen Ringsystemen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yen-Chun Lee
- Max-Planck-Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Herbert Waldmann
- Max-Planck-Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
16
|
Lee YC, Kumar K, Waldmann H. Ligand-Directed Divergent Synthesis of Carbo- and Heterocyclic Ring Systems. Angew Chem Int Ed Engl 2018; 57:5212-5226. [DOI: 10.1002/anie.201710247] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Yen-Chun Lee
- Max-Planck Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn Str. 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Kamal Kumar
- Max-Planck Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn Str. 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn Str. 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| |
Collapse
|
17
|
Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. Biochem J 2017; 473:2973-94. [PMID: 27679857 DOI: 10.1042/bcj20160471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations. However, UVR also activates signaling cascades that promote the survival of these potentially cancerous cells, resulting in tumor initiation. Thus, the UVR-induced stress response in the skin is multifaceted and requires coordinated activation of numerous pathways controlling DNA damage repair, inflammation, and kinase-mediated signal transduction that lead to either cell survival or cell death. This review focuses on the central signaling mechanisms that respond to UVR and the subsequent cellular changes. Given the prevalence of NMSC and the resulting health care burden, many of these pathways provide promising targets for continued study aimed at both chemoprevention and chemotherapy.
Collapse
|
18
|
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. Multivalent Small-Molecule Pan-RAS Inhibitors. Cell 2017; 168:878-889.e29. [PMID: 28235199 DOI: 10.1016/j.cell.2017.02.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/23/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022]
Abstract
Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.
Collapse
Affiliation(s)
- Matthew E Welsch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Anna Kaplan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jennifer M Chambers
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yan Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Marta Sanchez-Martin
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael A Badgley
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine S Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hemanth Akkiraju
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Serge Cremers
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kenneth P Olive
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Jansen JM, Wartchow C, Jahnke W, Fong S, Tsang T, Pfister K, Zavorotinskaya T, Bussiere D, Cheng JM, Crawford K, Dai Y, Dove J, Fang E, Feng Y, Florent JM, Fuller J, Gossert AD, Hekmat-Nejad M, Henry C, Klopp J, Lenahan WP, Lingel A, Ma S, Meyer A, Mishina Y, Narberes J, Pardee G, Ramurthy S, Rieffel S, Stuart D, Subramanian S, Tandeske L, Widger S, Widmer A, Winterhalter A, Zaror I, Hardy S. Inhibition of prenylated KRAS in a lipid environment. PLoS One 2017; 12:e0174706. [PMID: 28384226 PMCID: PMC5383040 DOI: 10.1371/journal.pone.0174706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.
Collapse
Affiliation(s)
- Johanna M. Jansen
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| | - Charles Wartchow
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Wolfgang Jahnke
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Susan Fong
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tiffany Tsang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Keith Pfister
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tatiana Zavorotinskaya
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Dirksen Bussiere
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jan Marie Cheng
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Kenneth Crawford
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yumin Dai
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jeffrey Dove
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Eric Fang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yun Feng
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jean-Michel Florent
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - John Fuller
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Alvar D. Gossert
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mohammad Hekmat-Nejad
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Chrystèle Henry
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Julia Klopp
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - William P. Lenahan
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Andreas Lingel
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sylvia Ma
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Arndt Meyer
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yuji Mishina
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jamie Narberes
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gwynn Pardee
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Savithri Ramurthy
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sebastien Rieffel
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Darrin Stuart
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sharadha Subramanian
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Laura Tandeske
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephania Widger
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Armin Widmer
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Aurelie Winterhalter
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabel Zaror
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephen Hardy
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| |
Collapse
|
20
|
Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer. Pharmacol Res 2017; 117:370-376. [DOI: 10.1016/j.phrs.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 02/07/2023]
|
21
|
Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, Wu ZS. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 2016; 90:314-320. [PMID: 27936442 DOI: 10.1016/j.bios.2016.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023]
Abstract
Highly sensitive detection of K-ras gene is of great significance in biomedical research and clinical diagnosis. Here, we developed a colorimetric biosensing system for the detection of proto-oncogene K-ras based on enhanced amplification effect of DNA molecular machine, where dual isothermal circular strand-displacement amplification (D-SDA) occurs on two arms in one-to-one correspondence. Specifically, we designed a primer-locked hairpin probe (HP) and a primer-contained linear polymerization template (PPT). In the presence of target gene, HP can hybridize with PPT, forming a DNA molecular machine with dual functional arms (called DFA-machine). Each of the two probes in this machine is able to be extended by polymerase on its counterpart species. Moreover, with the help of nicking endonuclease, the dual isothermal polymerization is converted into dual circular strand-displacement amplification, generating a large amount of anti-hemin aptamer-contained products. After binding to hemins, the aptamer/hemin duplex, horseradish peroxidase (HRP)-mimicking DNAzyme, was formed and catalyzed the oxidation of colorless ABTS by H2O2, producing a visible green color. The proposed colorimetric assay exhibits a wide linear range from 0.01 to 150nM with a low detection limit of 10pM. More interestingly, the mutations existing in target gene are easily observed by the naked eye. It should be noted that this colorimetric system was proved by the analysis of K-ras gene of SW620 cell lines. The simple and powerful DFA-machine is expected to provide promising potential in the sensitive detection of biomarkers for cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Huo Xu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Dong Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chen-Qiao Li
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zheng Lu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiao-Yun Liao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jie Huang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Oeste CL, Martínez-López M, Pérez-Sala D. Taking a lipidation-dependent path toward endolysosomes. Commun Integr Biol 2016; 8:e1078041. [PMID: 27066167 PMCID: PMC4802854 DOI: 10.1080/19420889.2015.1078041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022] Open
Abstract
We recently reported that the isoprenylation and palmitoylation motif present at the C-terminus of human RhoB protein promotes intraluminal vesicle delivery of proteins in cells from organisms as phylogenetically apart as fungi and humans. Here we build on these observations by showing that chimeras of fluorescent proteins bearing this sequence, namely, CINCCKVL, which become isoprenylated and palmitoylated in cells, may be used to mark endolysosomes while preserving their morphology. Indeed, these chimeric proteins are devoid of the effects derived from overexpression of fluorescent constructs of full-length, active proteins widely used as endolysosomal markers, such as Lamp1 or Rab7, which cause lysosomal enlargement, or RhoB, which induces actin stress fibers. Moreover, the fact that lipidation-dependent endolysosomal localization of CINCCKVL chimeras can be ascertained in a wide variety of cells indicates that they follow a path toward endolysosomes that is conserved in diverse species. Therefore, CINCCKVL chimeras serve as robust tools to mark these late endocytic compartments
Collapse
Affiliation(s)
- Clara L Oeste
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Marta Martínez-López
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| |
Collapse
|
23
|
Chakrabarti M, Jang H, Nussinov R. Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. J Phys Chem B 2016; 120:667-79. [PMID: 26761128 PMCID: PMC7815164 DOI: 10.1021/acs.jpcb.5b11110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human HRAS, KRAS, and NRAS genes encode four isoforms of Ras, a p21 GTPase. Mutations in KRAS account for the majority of RAS-driven cancers. The KRAS has two splice variants, K-Ras4A and K-Ras4B. Due to their reversible palmitoylation, K-Ras4A and N-Ras have bimodal signaling states. K-Ras4A and K-Ras4B differ in four catalytic domain residues (G151R/D153E/K165Q/H166Y) and in their disordered C-terminal hypervariable region (HVR). In K-Ras4A, the HVR is not as strongly positively charged as in K-Ras4B (+6e vs +9e). Here, we performed all-atom molecular dynamics simulations to elucidate isoform-specific differences between the two splice variants. We observe that the catalytic domain of GDP-bound K-Ras4A has a more exposed nucleotide binding pocket than K-Ras4B, and the dynamic fluctuations in switch I and II regions also differ; both factors may influence guanine-nucleotide exchange. We further observe that like K-Kas4B, full-length K-Ras4A exhibits nucleotide-dependent HVR fluctuations; however, these fluctuations differ between the GDP-bound forms of K-Ras4A and K-Ras4B. Unlike K-Ras4B where the HVR tends to cover the effector binding region, in K-Ras4A, autoinhibited states are unstable. With lesser charge, the K-Ras4A HVR collapses on itself, making it less available for binding the catalytic domain. Since the HVRs of N- and H-Ras are weakly charged (+1e and +2e, respectively), autoinhibition may be a unique feature of K-Ras4B.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
24
|
Abstract
The small GTPases from the rat sarcoma (Ras) superfamily are a heterogeneous group of proteins of about 21 kDa that act as molecular switches, modulating cell signaling pathways and controlling diverse cellular processes. They are active when bound to guanosine triphosphate (GTP) and inactive when bound to guanosine diphosphate (GDP). Ras homolog enriched in brain (Rheb) is a member of the Ras GTPase superfamily and a key activator of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1). We recently determined that microspherule protein 1 (MCRS1) maintains Rheb at lysosomal surfaces in an amino acid-dependent manner. MCRS1 depletion promotes the formation of the GDP-bound form of Rheb, which is then delocalized from the lysosomal platform and transported to endocytic recycling vesicles, leading to mTORC1 inactivation. During this delocalization process, Rheb-GDP remains farnesylated and associated with cellular endomembranes. These findings provide new insights into the regulation of small GTPases, whose activity depends on both their GTP/GDP switch state and their capacity to move between different cellular membrane-bound compartments. Dynamic spatial transport between compartments makes it possible to alter the proximity of small GTPases to their activatory sites depending on the prevailing physiological and cellular conditions.
Collapse
Affiliation(s)
- Amanda Garrido
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| | - Marta Brandt
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| | - Nabil Djouder
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| |
Collapse
|
25
|
8-Hydroxyquinoline-based inhibitors of the Rce1 protease disrupt Ras membrane localization in human cells. Bioorg Med Chem 2015; 24:160-78. [PMID: 26706114 DOI: 10.1016/j.bmc.2015.11.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023]
Abstract
Ras converting enzyme 1 (Rce1) is an endoprotease that catalyzes processing of the C-terminus of Ras protein by removing -aaX from the CaaX motif. The activity of Rce1 is crucial for proper localization of Ras to the plasma membrane where it functions. Ras is responsible for transmitting signals related to cell proliferation, cell cycle progression, and apoptosis. The disregulation of these pathways due to constitutively active oncogenic Ras can ultimately lead to cancer. Ras, its effectors and regulators, and the enzymes that are involved in its maturation process are all targets for anti-cancer therapeutics. Key enzymes required for Ras maturation and localization are the farnesyltransferase (FTase), Rce1, and isoprenylcysteine carboxyl methyltransferase (ICMT). Among these proteins, the physiological role of Rce1 in regulating Ras and other CaaX proteins has not been fully explored. Small-molecule inhibitors of Rce1 could be useful as chemical biology tools to understand further the downstream impact of Rce1 on Ras function and serve as potential leads for cancer therapeutics. Structure-activity relationship (SAR) analysis of a previously reported Rce1 inhibitor, NSC1011, has been performed to generate a new library of Rce1 inhibitors. The new inhibitors caused a reduction in Rce1 in vitro activity, exhibited low cell toxicity, and induced mislocalization of EGFP-Ras from the plasma membrane in human colon carcinoma cells giving rise to a phenotype similar to that observed with siRNA knockdowns of Rce1 expression. Several of the new inhibitors were more effective at mislocalizing K-Ras compared to a potent farnesyltransferase inhibitor (FTI), which is significant because of the preponderance of K-Ras mutations in cancer.
Collapse
|