1
|
Muneer A, Wang L, Xie L, Zhang F, Wu B, Mei L, Lenarcic EM, Feng EH, Song J, Xiong Y, Yu X, Wang C, Jain K, Strahl BD, Cook JG, Wan YY, Moorman NJ, Song H, Jin J, Chen X. Non-canonical function of histone methyltransferase G9a in the translational regulation of chronic inflammation. Cell Chem Biol 2023; 30:1525-1541.e7. [PMID: 37858336 PMCID: PMC11095832 DOI: 10.1016/j.chembiol.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/21/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Adil Muneer
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bing Wu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liu Mei
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik M Lenarcic
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emerald Hillary Feng
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles Wang
- Center for Genomics, Division of Microbiology & Molecular Genetics, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kanishk Jain
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yisong Y Wan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel John Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Chen X, Xie L, Sheehy R, Xiong Y, Muneer A, Wrobel J, Park KS, Liu J, Velez J, Luo Y, Li YD, Quintanilla L, Li Y, Xu C, Wen Z, Song J, Jin J, Deshmukh M. Novel brain-penetrant inhibitor of G9a methylase blocks Alzheimer's disease proteopathology for precision medication. RESEARCH SQUARE 2023:rs.3.rs-2743792. [PMID: 38045363 PMCID: PMC10690335 DOI: 10.21203/rs.3.rs-2743792/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects.
Collapse
|
3
|
Xie L, Sheehy RN, Xiong Y, Muneer A, Wrobel JA, Park KS, Velez J, Liu J, Luo YJ, Li YD, Quintanilla L, Li Y, Xu C, Deshmukh M, Wen Z, Jin J, Song J, Chen X. Novel brain-penetrant inhibitor of G9a methylase blocks Alzheimer's disease proteopathology for precision medication. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297491. [PMID: 37961307 PMCID: PMC10635198 DOI: 10.1101/2023.10.25.23297491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects. One-Sentence Summary A brain-penetrant inhibitor of G9a methylase blocks G9a translational mechanism to reverse Alzheimer's disease related proteome for effective therapy.
Collapse
|
4
|
Cavazos TB, Kachuri L, Graff RE, Nierenberg JL, Thai KK, Alexeeff S, Van Den Eeden S, Corley DA, Kushi LH, Hoffmann TJ, Ziv E, Habel LA, Jorgenson E, Sakoda LC, Witte JS. Assessment of genetic susceptibility to multiple primary cancers through whole-exome sequencing in two large multi-ancestry studies. BMC Med 2022; 20:332. [PMID: 36199081 PMCID: PMC9535845 DOI: 10.1186/s12916-022-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second primary cancer in their lifetime. Genetic factors contributing to the development of multiple primary cancers, beyond known cancer syndromes, have been underexplored. METHODS To characterize genetic susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome sequencing study of individuals drawn from two large multi-ancestry populations (6429 cases, 165,853 controls). We created two groupings of individuals diagnosed with multiple primary cancers: (1) an overall combined set with at least two cancers across any of 36 organ sites and (2) cancer-specific sets defined by an index cancer at one of 16 organ sites with at least 50 cases from each study population. We then investigated whether variants identified from exome sequencing were associated with these sets of multiple cancer cases in comparison to individuals with one and, separately, no cancers. RESULTS We identified 22 variant-phenotype associations, 10 of which have not been previously discovered and were significantly overrepresented among individuals with multiple cancers, compared to those with a single cancer. CONCLUSIONS Overall, we describe variants and genes that may play a fundamental role in the development of multiple primary cancers and improve our understanding of shared mechanisms underlying carcinogenesis.
Collapse
Affiliation(s)
- Taylor B Cavazos
- Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Epidemiology and Population Health, Stanford University, Alway Building, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA.,Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Stephen Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | | | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Elad Ziv
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
| | - Eric Jorgenson
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA.,Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA. .,Department of Epidemiology and Population Health, Stanford University, Alway Building, 300 Pasteur Drive, Stanford, CA, 94305, USA. .,Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Ta HDK, Wang WJ, Phan NN, An Ton NT, Anuraga G, Ku SC, Wu YF, Wang CY, Lee KH. Potential Therapeutic and Prognostic Values of LSM Family Genes in Breast Cancer. Cancers (Basel) 2021; 13:4902. [PMID: 34638387 PMCID: PMC8508234 DOI: 10.3390/cancers13194902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
In recent decades, breast cancer (BRCA) has become one of the most common diseases worldwide. Understanding crucial genes and their signaling pathways remain an enormous challenge in evaluating the prognosis and possible therapeutics. The "Like-Smith" (LSM) family is known as protein-coding genes, and its member play pivotal roles in the progression of several malignancies, although their roles in BRCA are less clear. To discover biological processes associated with LSM family genes in BRCA development, high-throughput techniques were applied to clarify expression levels of LSMs in The Cancer Genome Atlas (TCGA)-BRCA dataset, which was integrated with the cBioPortal database. Furthermore, we investigated prognostic values of LSM family genes in BCRA patients using the Kaplan-Meier database. Among genes of this family, LSM4 expression levels were highly associated with poor prognostic outcomes with a hazard ratio of 1.35 (95% confidence interval 1.21-1.51, p for trend = 3.4 × 10-7). MetaCore and GlueGo analyses were also conducted to examine transcript expression signatures of LSM family members and their coexpressed genes, together with their associated signaling pathways, such as "Cell cycle role of APC in cell cycle regulation" and "Immune response IL-15 signaling via MAPK and PI3K cascade" in BRCA. Results showed that LSM family members, specifically LSM4, were significantly correlated with oncogenesis in BRCA patients. In summary, our results suggested that LSM4 could be a prospective prognosticator of BRCA.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Jin X, Liu L, Wu J, Jin X, Yu G, Jia L, Wang F, Shi M, Lu H, Liu J, Liu D, Yang J, Li H, Ni Y, Luo Q, Jia W, Wang W, Chen W. A multi-omics study delineates new molecular features and therapeutic targets for esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e538. [PMID: 34586744 PMCID: PMC8473482 DOI: 10.1002/ctm2.538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Xing Jin
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jia Wu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoxia Jin
- Department of PathologyThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Guanzhen Yu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fengying Wang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minxin Shi
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Haimin Lu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jibin Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Dan Liu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jing Yang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Li
- Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yan Ni
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouChina
| | - Qin Luo
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wei Jia
- Hong Kong Traditional Chinese Medicine Phenome Research CenterSchool of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong KongChina
| | - Wei Wang
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Wen‐Lian Chen
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
7
|
Wang L, Wrobel JA, Xie L, Chen X. Protocol for proteogenomic dissection of intronic splicing enhancer interactome for prediction of individualized cancer prognosis. STAR Protoc 2021; 2:100338. [PMID: 33644773 PMCID: PMC7887646 DOI: 10.1016/j.xpro.2021.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inter- or intra-patient tumor heterogeneity hinders the discovery of biomarkers for predicting individualized prognosis. Here, we present a protocol for an alternative splicing activity-based proteogenomic approach for identification of candidate prognostic markers in cancer cell lines and human breast cancer specimens. The pull-down of protein complexes with intronic splicing enhancer (ISE) probes is followed by tandem mass spectrometry (MS/MS) peptide sequencing. The proteogenomic analysis of data from these ISE-MS/MS assays identifies new prognostic markers that can be utilized to stratify patients with poor prognosis. For complete details on the use and execution of this protocol, please refer to Wang et al. (2018).
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Wang L, Muneer A, Xie L, Zhang F, Wu B, Mei L, Lenarcic EM, Feng EH, Song J, Xiong Y, Yu X, Wang C, Gheorghe C, Torralba K, Cook JG, Wan YY, Moorman NJ, Song H, Jin J, Chen X. Novel gene-specific translation mechanism of dysregulated, chronic inflammation reveals promising, multifaceted COVID-19 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.14.382416. [PMID: 33236014 PMCID: PMC7685324 DOI: 10.1101/2020.11.14.382416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperinflammation and lymphopenia provoked by SARS-CoV-2-activated macrophages contribute to the high mortality of Coronavirus Disease 2019 (COVID-19) patients. Thus, defining host pathways aberrantly activated in patient macrophages is critical for developing effective therapeutics. We discovered that G9a, a histone methyltransferase that is overexpressed in COVID-19 patients with high viral load, activates translation of specific genes that induce hyperinflammation and impairment of T cell function or lymphopenia. This noncanonical, pro-translation activity of G9a contrasts with its canonical epigenetic function. In endotoxin-tolerant (ET) macrophages that mimic conditions which render patients with pre-existing chronic inflammatory diseases vulnerable to severe symptoms, our chemoproteomic approach with a biotinylated inhibitor of G9a identified multiple G9a-associated translation regulatory pathways that were upregulated by SARS-CoV-2 infection. Further, quantitative translatome analysis of ET macrophages treated progressively with the G9a inhibitor profiled G9a-translated proteins that unite the networks associated with viral replication and the SARS-CoV-2-induced host response in severe patients. Accordingly, inhibition of G9a-associated pathways produced multifaceted, systematic effects, namely, restoration of T cell function, mitigation of hyperinflammation, and suppression of viral replication. Importantly, as a host-directed mechanism, this G9a-targeted, combined therapeutics is refractory to emerging antiviral-resistant mutants of SARS-CoV-2, or any virus, that hijacks host responses.
Collapse
|
9
|
Wu F, Chi Y, Jiang Z, Xu Y, Xie L, Huang F, Wan D, Ni J, Yuan F, Wu X, Zhang Y, Wang L, Ye R, Byeon B, Wang W, Zhang S, Sima M, Chen S, Zhu M, Pei J, Johnson DM, Zhu S, Cao X, Pei C, Zai Z, Liu Y, Liu T, Swift GB, Zhang W, Yu M, Hu Z, Siedow JN, Chen X, Pei ZM. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 2020; 578:577-581. [PMID: 32076270 DOI: 10.1038/s41586-020-2032-3] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/22/2020] [Indexed: 01/09/2023]
Abstract
Hydrogen peroxide (H2O2) is a major reactive oxygen species in unicellular and multicellular organisms, and is produced extracellularly in response to external stresses and internal cues1-4. H2O2 enters cells through aquaporin membrane proteins and covalently modifies cytoplasmic proteins to regulate signalling and cellular processes. However, whether sensors for H2O2 also exist on the cell surface remains unknown. In plant cells, H2O2 triggers an influx of Ca2+ ions, which is thought to be involved in H2O2 sensing and signalling. Here, by using forward genetic screens based on Ca2+ imaging, we isolated hydrogen-peroxide-induced Ca2+ increases (hpca) mutants in Arabidopsis, and identified HPCA1 as a leucine-rich-repeat receptor kinase belonging to a previously uncharacterized subfamily that features two extra pairs of cysteine residues in the extracellular domain. HPCA1 is localized to the plasma membrane and is activated by H2O2 via covalent modification of extracellular cysteine residues, which leads to autophosphorylation of HPCA1. HPCA1 mediates H2O2-induced activation of Ca2+ channels in guard cells and is required for stomatal closure. Our findings help to identify how the perception of extracellular H2O2 is integrated with responses to various external stresses and internal cues in plants, and have implications for the design of crops with enhanced fitness.
Collapse
Affiliation(s)
- Feihua Wu
- Department of Biology, Duke University, Durham, NC, USA.,Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Horticulture, Foshan University, Foshan, China
| | - Yuan Chi
- Department of Biology, Duke University, Durham, NC, USA.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhonghao Jiang
- Department of Biology, Duke University, Durham, NC, USA.,Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuanyuan Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Huang
- Department of Biology, Duke University, Durham, NC, USA.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Di Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jun Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fang Yuan
- Department of Biology, Duke University, Durham, NC, USA.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanyan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Rui Ye
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Wenhua Wang
- Department of Biology, Duke University, Durham, NC, USA
| | - Shu Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Matthew Sima
- Department of Biology, Duke University, Durham, NC, USA.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Suping Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jessica Pei
- Department of Biology, Duke University, Durham, NC, USA.,Department of Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | | | - Shan Zhu
- Department of Biology, Duke University, Durham, NC, USA.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiang Cao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Zijing Zai
- Department of Biology, Duke University, Durham, NC, USA.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihao Liu
- Department of Biology, Duke University, Durham, NC, USA
| | - Tianyi Liu
- Department of Biology, Duke University, Durham, NC, USA
| | - Gary B Swift
- Department of Physics, Duke University, Durham, NC, USA
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC, USA. .,Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Li Y, Wang L, Rivera-Serrano EE, Chen X, Lemon SM. TNRC6 proteins modulate hepatitis C virus replication by spatially regulating the binding of miR-122/Ago2 complexes to viral RNA. Nucleic Acids Res 2019; 47:6411-6424. [PMID: 30997501 PMCID: PMC6614814 DOI: 10.1093/nar/gkz278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
The liver-specific microRNA, miR-122, is an essential host factor for replication of the hepatitis C virus (HCV). miR-122 stabilizes the positive-strand HCV RNA genome and promotes its synthesis by binding two sites (S1 and S2) near its 5' end in association with Ago2. Ago2 is essential for both host factor activities, but whether other host proteins are involved is unknown. Using an unbiased quantitative proteomics screen, we identified the TNRC6 protein paralogs, TNRC6B and TNRC6C, as functionally important but redundant components of the miR-122/Ago2 host factor complex. Doubly depleting TNRC6B and TNRC6C proteins reduced HCV replication in human hepatoma cells, dampening miR-122 stimulation of viral RNA synthesis without reducing the stability or translational activity of the viral RNA. TNRC6B/C were required for optimal miR-122 host factor activity only when S1 was able to bind miR-122, and restricted replication when S1 was mutated and only S2 bound by miR-122. TNRC6B/C preferentially associated with S1, and TNRC6B/C depletion enhanced Ago2 association at S2. Collectively, these data suggest a model in which TNRC6B/C regulate the assembly of miR-122/Ago complexes on HCV RNA, preferentially directing miR-122/Ago2 to S1 while restricting its association with S2, thereby fine-tuning the spatial organization of miR-122/Ago2 complexes on the viral genome.
Collapse
Affiliation(s)
- You Li
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Efraín E Rivera-Serrano
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stanley M Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Wrobel JA, Xie L, Wang L, Liu C, Rashid N, Gallagher KK, Xiong Y, Konze KD, Jin J, Gatza ML, Chen X. Multi-omic Dissection of Oncogenically Active Epiproteomes Identifies Drivers of Proliferative and Invasive Breast Tumors. iScience 2019; 17:359-378. [PMID: 31336272 PMCID: PMC6660457 DOI: 10.1016/j.isci.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/16/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Proliferative and invasive breast tumors evolve heterogeneously in individual patients, posing significant challenges in identifying new druggable targets for precision, effective therapy. Here we present a functional multi-omics method, interaction-Correlated Multi-omic Aberration Patterning (iC-MAP), which dissects intra-tumor heterogeneity and identifies in situ the oncogenic consequences of multi-omics aberrations that drive proliferative and invasive tumors. First, we perform chromatin activity-based chemoproteomics (ChaC) experiments on breast cancer (BC) patient tissues to identify genetic/transcriptomic alterations that manifest as oncogenically active proteins. ChaC employs a biotinylated small molecule probe that specifically binds to the oncogenically active histone methyltransferase G9a, enabling sorting/enrichment of a G9a-interacting protein complex that represents the predominant BC subtype in a tissue. Second, using patient transcriptomic/genomic data, we retrospectively identified some G9a interactor-encoding genes that showed individualized iC-MAP. Our iC-MAP findings represent both new diagnostic/prognostic markers to identify patient subsets with incurable metastatic disease and targets to create individualized therapeutic strategies. ChaC dissects tumor heterogeneity for identifying oncogenic-active proteins An oncogenic-active G9a-interactome represents the invasive tumor in a tissue iC-MAP identifies multi-omics aberrations that drive invasive tumors Patient-specific iC-MAP of select interactor genes are of prognostic value
Collapse
Affiliation(s)
- John A Wrobel
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cui Liu
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristalyn K Gallagher
- Breast Surgical Oncology and Oncoplastics, UNC Surgical Breast Care Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yan Xiong
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle D Konze
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Ankney JA, Xie L, Wrobel JA, Wang L, Chen X. Novel secretome-to-transcriptome integrated or secreto-transcriptomic approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast cancer patients. BMC Med Genomics 2019; 12:78. [PMID: 31146747 PMCID: PMC6543675 DOI: 10.1186/s12920-019-0530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Presently, a 50-gene expression model (PAM50) serves as a breast cancer (BC) subtype classifier that is insufficient to distinguish, within each single PAM50-classified subtype, patient subpopulations having different prognosis. There is a pressing need for inexpensive and minimally invasive biomarker tests to easily and accurately predict individuals’ clinical outcomes and response to treatments. Although quantitative proteomic approaches have been developed to identify/profile proteins secreted (secretome) from various cancer cell lines in vitro, missing are the clinicopathological relevance and the associated prognostic value of these secretomic identifications. Methods To discover biomarkers to predict individualized prognosis we introduce a new multi-omics (secreto-transcriptomics) method that identifies, in their oncogenically secreted states, candidate markers of BC subtypes whose genes bear patient-specific mRNA expression alterations of prognostic significance. First, we used label-free quantitative (LFQ) proteomics to identify the proteins showing BC-subtypic secretion from a series of BC cell lines representing major BC-subtypes. To determine and externally validate the prognostic value of these secreted proteins, we developed a secreto-transcriptomic approach that discovered a PAM50-subtypic Secretion-Correlated mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic secretion of select proteins statistically correlated with cis-mRNA expression of their encoding genes in patients of the corresponding PAM50-subtypes. Kaplan-Meier analysis of SeCEP genes was used to identify new liquid biopsy biomarkers for predicting individualized prognosis. Results The mRNA expression-to-secretion correlation (SeCEP) pinpointed multiple genes that are fully translated into the oncogenically active secretome in a PAM50-subtypic manner. Further, multiple SeCEP genes in distinct combinations or panels of multiple SeCEP genes were identified as ‘systems prognostic markers’ that showed mRNA co-overexpression patterns in the distinct subpopulations of PAM50-subtypic patients with poor prognosis or high-risk of relapse. Thus, our secreto-transcriptomic approach statistically linked BC subtypic secretome genes with patient-specific information about their mRNA expression alterations and significantly improved the sensitivity and specificity in patient stratification in the context of clinical outcomes or prognosis. Conclusions By combining LFQ secretome screening with proteo-transcriptomic retrospective analysis of patient data our integrated multi-omics approach bypasses costly, tedious, genome-wide fishing and predictive modeling that are commonly required to distinguish a few prognostically altered genes from thousands of other non-BC related genes in a genome. Electronic supplementary material The online version of this article (10.1186/s12920-019-0530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, Paulovich AG. Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 2019; 16:256-268. [PMID: 30487530 PMCID: PMC6448780 DOI: 10.1038/s41571-018-0135-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer genomics research aims to advance personalized oncology by finding and targeting specific genetic alterations associated with cancers. In genome-driven oncology, treatments are selected for individual patients on the basis of the findings of tumour genome sequencing. This personalized approach has prolonged the survival of subsets of patients with cancer. However, many patients do not respond to the predicted therapies based on the genomic profiles of their tumours. Furthermore, studies pairing genomic and proteomic analyses of samples from the same tumours have shown that the proteome contains novel information that cannot be discerned through genomic analysis alone. This observation has led to the concept of proteogenomics, in which both types of data are leveraged for a more complete view of tumour biology that might enable patients to be more successfully matched to effective treatments than they would using genomics alone. In this Perspective, we discuss the added value of proteogenomics over the current genome-driven approach to the clinical characterization of cancers and summarize current efforts to incorporate targeted proteomic measurements based on selected/multiple reaction monitoring (SRM/MRM) mass spectrometry into the clinical laboratory to facilitate clinical proteogenomics.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Molecular and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Geoffrey S Baird
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Cell, Development and Cancer Biology, Oregon Health & Sciences University, Portland, OR, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
14
|
Doll S, Gnad F, Mann M. The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine. Proteomics Clin Appl 2019; 13:e1800113. [PMID: 30790462 PMCID: PMC6519247 DOI: 10.1002/prca.201800113] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Indexed: 02/06/2023]
Abstract
The concept of personalized medicine is predominantly been pursued through genomic and transcriptomic technologies, leading to the identification of multiple mutations in a large variety of cancers. However, it has proven challenging to distinguish driver and passenger mutations and to deal with tumor heterogeneity and resistant clonal populations. More generally, these heterogeneous mutation patterns do not in themselves predict the tumor phenotype. Analysis of the expressed proteins in a tumor and their modification states reveals if and how these mutations are translated to the functional level. It is already known that proteomic changes including posttranslational modifications are crucial drivers of oncogenesis, but proteomics technology has only recently become comparable in depth and accuracy to RNAseq. These advances also allow the rapid and highly sensitive analysis of formalin-fixed and paraffin-embedded biobank tissues, on both the proteome and phosphoproteome levels. In this perspective, pioneering mass spectrometry-based proteomic studies are highlighted that pave the way toward clinical implementation. It is argued that proteomics and phosphoproteomics could provide the missing link to make omics analysis actionable in the clinic.
Collapse
Affiliation(s)
- Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Florian Gnad
- Department of Bioinformatics and Computational BiologyCell Signaling Technology Inc01923DanversMAUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of Biochemistry82152MartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|