1
|
Kant R, Mishra N, Gross ML. Antibody Binding Captures High Energy State of an Antigen: The Case of Nsp1 SARS-CoV-2 as Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. Int J Mol Sci 2023; 24:17342. [PMID: 38139170 PMCID: PMC10743928 DOI: 10.3390/ijms242417342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We describe an investigation using structural mass spectrometry (MS) of the impact of two antibodies, 15497 and 15498, binding the highly flexible SARS-CoV-2 Nsp1 protein. We determined the epitopes and paratopes involved in the antibody-protein interactions by using hydrogen-deuterium exchange MS (HDX-MS). Notably, the Fab (Fragment antigen binding) for antibody 15498 captured a high energy form of the antigen exhibiting significant conformational changes that added flexibility over most of the Nsp1 protein. The Fab for antibody 15497, however, showed usual antigen binding behavior, revealing local changes presumably including the binding site. These findings illustrate an unusual antibody effect on an antigen and are consistent with the dynamic nature of the Nsp1 protein. Our studies suggest that this interaction capitalizes on the high flexibility of Nsp1 to undergo conformational change and be trapped in a higher energy state by binding with a specific antibody.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA;
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Michael L. Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA;
| |
Collapse
|
2
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Crook OM, Gittens N, Chung CW, Deane CM. A Functional Bayesian Model for Hydrogen-Deuterium Exchange Mass Spectrometry. J Proteome Res 2023; 22:2959-2972. [PMID: 37582225 PMCID: PMC10476270 DOI: 10.1021/acs.jproteome.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/17/2023]
Abstract
Proteins often undergo structural perturbations upon binding to other proteins or ligands or when they are subjected to environmental changes. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to explore conformational changes in proteins by examining differences in the rate of deuterium incorporation in different contexts. To determine deuterium incorporation rates, HDX-MS measurements are typically made over a time course. Recently introduced methods show that incorporating the temporal dimension into the statistical analysis improves power and interpretation. However, these approaches have technical assumptions that hinder their flexibility. Here, we propose a more flexible methodology by reframing these methods in a Bayesian framework. Our proposed framework has improved algorithmic stability, allows us to perform uncertainty quantification, and can calculate statistical quantities that are inaccessible to other approaches. We demonstrate the general applicability of the method by showing it can perform rigorous model selection on a spike-in HDX-MS experiment, improved interpretation in an epitope mapping experiment, and increased sensitivity in a small molecule case-study. Bayesian analysis of an HDX experiment with an antibody dimer bound to an E3 ubiquitin ligase identifies at least two interaction interfaces where previous methods obtained confounding results due to the complexities of conformational changes on binding. Our findings are consistent with the cocrystal structure of these proteins, demonstrating a bayesian approach can identify important binding epitopes from HDX data. We also generate HDX-MS data of the bromodomain-containing protein BRD4 in complex with GSK1210151A to demonstrate the increased sensitivity of adopting a Bayesian approach.
Collapse
Affiliation(s)
- Oliver M. Crook
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Nathan Gittens
- Structural
and Biophysical Sciences, GlaxoSmithKline
R&D, Stevenage SG1 2NY, United
Kingdom
| | - Chun-wa Chung
- Structural
and Biophysical Sciences, GlaxoSmithKline
R&D, Stevenage SG1 2NY, United
Kingdom
| | - Charlotte M. Deane
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
4
|
Chen X, Ye Q, Zhao W, Chi X, Xie C, Wang X. RBCK1 promotes hepatocellular carcinoma metastasis and growth by stabilizing RNF31. Cell Death Discov 2022; 8:334. [PMID: 35869046 PMCID: PMC9307510 DOI: 10.1038/s41420-022-01126-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractRNF31 (HOIP), RBCK1 (HOIL-1L), and SHARPIN are subunits of the linear ubiquitin chain assembly complex. Their function and specific molecular mechanisms in hepatocellular carcinoma (HCC) have not been reported previously. Here, we investigated the role of RNF31 and RBCK1 in HCC. We showed that RNF31 and RBCK1 were overexpressed in HCC and that upregulation of RNF31 and RBCK1 indicated poor clinical outcomes in patients with HCC. RNF31 overexpression was significantly associated with more satellite foci and vascular invasion in patients with HCC. Additionally, RBCK1 expression correlated positively with RNF31 expression in HCC tissues. Functionally, RBCK1 and RNF31 promote the metastasis and growth of HCC cells. Moreover, the RNF31 inhibitor gliotoxin inhibited the malignant behavior of HCC cells. Mechanistically, RBCK1 interacted with RNF31 and repressed its ubiquitination and proteasomal degradation. In summary, the present study revealed an oncogenic role and regulatory relationship between RBCK1 and RNF31 in facilitating proliferation and metastasis in HCC, suggesting that they are potential prognostic markers and therapeutic targets for HCC.
Collapse
|
5
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
6
|
Characterisation of HOIP RBR E3 ligase conformational dynamics using integrative modelling. Sci Rep 2022; 12:15201. [PMID: 36076045 PMCID: PMC9458678 DOI: 10.1038/s41598-022-18890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Multidomain proteins composed of individual domains connected by flexible linkers pose a challenge for structural studies due to their intrinsic conformational dynamics. Integrated modelling approaches provide a means to characterise protein flexibility by combining experimental measurements with molecular simulations. In this study, we characterise the conformational dynamics of the catalytic RBR domain of the E3 ubiquitin ligase HOIP, which regulates immune and inflammatory signalling pathways. Specifically, we combine small angle X-ray scattering experiments and molecular dynamics simulations to generate weighted conformational ensembles of the HOIP RBR domain using two different approaches based on maximum parsimony and maximum entropy principles. Both methods provide optimised ensembles that are instrumental in rationalising observed differences between SAXS-based solution studies and available crystal structures and highlight the importance of interdomain linker flexibility.
Collapse
|
7
|
Crook OM, Chung CW, Deane CM. Empirical Bayes functional models for hydrogen deuterium exchange mass spectrometry. Commun Biol 2022; 5:588. [PMID: 35705679 PMCID: PMC9200815 DOI: 10.1038/s42003-022-03517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a technique to explore differential protein structure by examining the rate of deuterium incorporation for specific peptides. This rate will be altered upon structural perturbation and detecting significant changes to this rate requires a statistical test. To determine rates of incorporation, HDX-MS measurements are frequently made over a time course. However, current statistical testing procedures ignore the correlations in the temporal dimension of the data. Using tools from functional data analysis, we develop a testing procedure that explicitly incorporates a model of hydrogen deuterium exchange. To further improve statistical power, we develop an empirical Bayes version of our method, allowing us to borrow information across peptides and stabilise variance estimates for low sample sizes. Our approach has increased power, reduces false positives and improves interpretation over linear model-based approaches. Due to the improved flexibility of our method, we can apply it to a multi-antibody epitope-mapping experiment where current approaches are inapplicable due insufficient flexibility. Hence, our approach allows HDX-MS to be applied in more experimental scenarios and reduces the burden on experimentalists to produce excessive replicates. Our approach is implemented in the R-package “hdxstats”: https://github.com/ococrook/hdxstats. A statistical analysis approach for HDX-MS time series data incorporates correlations in time, reducing false positives and improving statistical power and data interpretation.
Collapse
Affiliation(s)
- Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
| | - Chun-Wa Chung
- Structural and Biophysical Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK
| | | |
Collapse
|
8
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
Linear ubiquitination in immune and neurodegenerative diseases, and beyond. Biochem Soc Trans 2022; 50:799-811. [PMID: 35343567 DOI: 10.1042/bst20211078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Ubiquitin regulates numerous aspects of biology via a complex ubiquitin code. The linear ubiquitin chain is an atypical code that forms a unique structure, with the C-terminal tail of the distal ubiquitin linked to the N-terminal Met1 of the proximal ubiquitin. Thus far, LUBAC is the only known ubiquitin ligase complex that specifically generates linear ubiquitin chains. LUBAC-induced linear ubiquitin chains regulate inflammatory responses, cell death and immunity. Genetically modified mouse models and cellular assays have revealed that LUBAC is also involved in embryonic development in mice. LUBAC dysfunction is associated with autoimmune diseases, myopathy, and neurodegenerative diseases in humans, but the underlying mechanisms are poorly understood. In this review, we focus on the roles of linear ubiquitin chains and LUBAC in immune and neurodegenerative diseases. We further discuss LUBAC inhibitors and their potential as therapeutics for these diseases.
Collapse
|
10
|
Ning S, Luo L, Yu B, Mai D, Wang F. Structures, functions, and inhibitors of LUBAC and its related diseases. J Leukoc Biol 2022; 112:799-811. [PMID: 35266190 DOI: 10.1002/jlb.3mr0222-508r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is a reversible posttranslational modification in which ubiquitin is covalently attached to substrates at catalysis by E1, E2, and E3 enzymes. As the only E3 ligase for assembling linear ubiquitin chains in animals, the LUBAC complex exerts an essential role in the wide variety of cellular activities. Recent advances in the LUBAC complex, including structure, physiology, and correlation with malignant diseases, have enabled the discovery of potent inhibitors to treat immune-related diseases and cancer brought by LUBAC complex dysfunction. In this review, we summarize the current progress on the structures, physiologic functions, inhibitors of LUBAC, and its potential role in immune diseases, tumors, and other diseases, providing the theoretical basis for therapy of related diseases targeting the LUBAC complex.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Luo
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dina Mai
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
11
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
12
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
13
|
Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem Soc Trans 2021; 48:1737-1750. [PMID: 32677670 PMCID: PMC7458406 DOI: 10.1042/bst20200237] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Ubiquitination is a fundamental post-translational modification that regulates almost all aspects of cellular signalling and is ultimately catalysed by the action of E3 ubiquitin ligases. The RING-between-RING (RBR) family of E3 ligases encompasses 14 distinct human enzymes that are defined by a unique domain organisation and catalytic mechanism. Detailed characterisation of several RBR ligase family members in the last decade has revealed common structural and mechanistic features. At the same time these studies have highlighted critical differences with respect to autoinhibition, activation and catalysis. Importantly, the majority of RBR E3 ligases remain poorly studied, and thus the extent of diversity within the family remains unknown. In this mini-review we outline the current understanding of the RBR E3 mechanism, structure and regulation with a particular focus on recent findings and developments that will shape the field in coming years.
Collapse
|
14
|
Oikawa D, Sato Y, Ito H, Tokunaga F. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Int J Mol Sci 2020; 21:ijms21093381. [PMID: 32403254 PMCID: PMC7246992 DOI: 10.3390/ijms21093381] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin ligase composed of the Heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein (HOIP), and Shank-associated RH domain interactor (SHARPIN) subunits. LUBAC specifically generates the N-terminal Met1-linked linear ubiquitin chain and regulates acquired and innate immune responses, such as the canonical nuclear factor-κB (NF-κB) and interferon antiviral pathways. Deubiquitinating enzymes, OTULIN and CYLD, physiologically bind to HOIP and control its function by hydrolyzing the linear ubiquitin chain. Moreover, proteins containing linear ubiquitin-specific binding domains, such as NF-κB-essential modulator (NEMO), optineurin, A20-binding inhibitors of NF-κB (ABINs), and A20, modulate the functions of LUBAC, and the dysregulation of the LUBAC-mediated linear ubiquitination pathway induces cancer and inflammatory, autoimmune, and neurodegenerative diseases. Therefore, inhibitors of LUBAC would be valuable to facilitate investigations of the molecular and cellular bases for LUBAC-mediated linear ubiquitination and signal transduction, and for potential therapeutic purposes. We identified and characterized α,β-unsaturated carbonyl-containing chemicals, named HOIPINs (HOIP inhibitors), as LUBAC inhibitors. We summarize recent advances in elucidations of the pathophysiological functions of LUBAC-mediated linear ubiquitination and identifications of its regulators, toward the development of LUBAC inhibitors.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan;
| | - Hidefumi Ito
- Department of Neurology, Faculty of Medicine, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81-6-6645-3720
| |
Collapse
|