1
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
2
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Wang Z, Tan J, Li M, Gao C, Li W, Xu J, Guo C, Chen Z, Cai R. Clickable Photoreactive ATP-Affinity Probe for Global Profiling of ATP-Binding Proteins. Anal Chem 2023; 95:17533-17540. [PMID: 37993803 DOI: 10.1021/acs.analchem.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Adenosine triphosphate (ATP) is the major energy carrier in organisms, and there are many cellular proteins that can bind to ATP. Among these proteins, kinases are key regulators in several cell signaling processes, and aberrant kinase signaling contributes to the development of many human diseases, including cancer. Hence, small-molecule kinase inhibitors have been successfully used for the treatment of various diseases. Since the ATP-binding pockets are similar for many kinases, it is very important to evaluate the selectivity of different kinase inhibitors. We report here a clickable ATP photoaffinity probe for the global profiling of ATP-binding proteins. After incubating the protein lysate with the ATP probe followed by ultraviolet (UV) irradiation, ATP-binding proteins were labeled with an alkyne handle for subsequent biotin conjugation through click chemistry. Labeled proteins were enriched with streptavidin beads, digested with trypsin, and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). More than 400 ATP-binding proteins, including approximately 200 kinases, could be identified in a single LC-MS/MS run in the data-dependent acquisition mode. We then applied this method to the analysis of targets of three selected ATP-competitive kinase inhibitors. We were able to successfully identify some of their reported target proteins from label-free quantification results and validated the results using Western blot analyses. Together, we developed a clickable ATP photoaffinity probe for proteome-wide profiling of ATP-binding proteins and demonstrated that this chemoproteomic method is amenable to high-throughput target identification of kinase inhibitors.
Collapse
Affiliation(s)
- Zhiming Wang
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
| | - Jing Tan
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
| | - Mengxuan Li
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Can Gao
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenwen Li
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Jing Xu
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Changchuan Guo
- Shandong Institute for Food and Drug Control, Jinan 250101, Shandong, China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Rong Cai
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
4
|
Andy D, Gunaratne GS, Marchant JS, Walseth TF, Slama JT. Synthesis and biological evaluation of novel photo-clickable adenosine and cyclic ADP-ribose analogs: 8-N 3-2'-O-propargyladenosine and 8-N 3-2'-O-propargyl-cADPR. Bioorg Med Chem 2022; 76:117099. [PMID: 36446271 PMCID: PMC9842072 DOI: 10.1016/j.bmc.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
A photo-clickable analog of adenosine was devised and synthesized in which the photoactive functional group (8-azidoadenosine) and the click moiety (2'-O-propargyl-ether) were compactly combined within the structure of the adenosine nucleoside itself. We synthesized 8-N3-2'-O-propargyl adenosine in four steps starting from adenosine. This photo-clickable adenosine was 5'-phosphorylated and coupled to nicotinamide mononucleotide to form the NAD analog 8-N3-2'-O-propargyl-NAD. This NAD analog was recognized by Aplysia californica ADP-ribosyl cyclase and enzymatically cyclized producing 8-N3-2'-O-propargyl cyclic ADP-ribose. Photo-clickable cyclic-ADP-ribose analog was envisioned as a probe to label cyclic ADP-ribose binding proteins. The monofunctional 8-N3-cADPR has previously been shown to be an antagonist of cADPR-induced calcium release [T.F. Walseth et. al., J. Biol. Chem (1993) 268, 26686-26691]. 2'-O-propargyl-cADPR was recognized as an agonist which elicited Ca2+ release when added at low concentration to sea urchin egg homogenates. The bifunctional 8-N3-2'-O-propargyl cyclic ADP-ribose did not elicit Ca2+ release at low concentration or impact cyclic ADP-ribose mediated Ca2+ release either when added to sea urchin egg homogenates or when microinjected into cultured human U2OS cells. The photo-clickable adenosine will none-the-less be a useful scaffold for synthesizing photo-clickable probes for identifying proteins that interact with a variety of adenosine nucleotides.
Collapse
Affiliation(s)
- Divya Andy
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St, Minneapolis, MN 55455-0217, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St, Minneapolis, MN 55455-0217, USA
| | - James T Slama
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
5
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
6
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
7
|
White DS, Mongeluzi D, Curry AM, Donu D, Cen Y. Facile synthesis of photoactivatable adenosine analogs. RSC Adv 2022; 12:2219-2226. [PMID: 35425235 PMCID: PMC8979134 DOI: 10.1039/d1ra08794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/08/2022] [Indexed: 11/29/2022] Open
Abstract
Adenosine and its derivatives are important building blocks of the biological system. They serve as the universal energy currency, amplify intracellular signals for various signal transduction pathways, and can also be used as the co-substrates for enzymatic transformations. The synthesis and regulation of adenosine and its analogs rely on the adenosine binding proteins (ABPs). Dysregulated ABP activity contributes to numerous diseases such as cancer, metabolic disorders, and neurodegenerative diseases. Presently, there is intense interest in targeting ABPs for therapeutic purposes. A large fraction of the human ABP family remains poorly characterized. The need for innovative chemical probes to investigate ABP function in the native biological matrix is apparent. In this study, an adenosine analog, probe 1, with a photoaffinity group and biotin tag was synthesized using concise synthetic strategies. This probe was able to label and capture individual recombinant ABPs with good target selectivity. Probe 1 was also evaluated for its ability to label spiked ABP in complex cell lysates. This chemical probe, together with the labeling and enrichment assay, is of great value to interrogate the biological functions of ABPs and to elucidate their diversity under different physiological conditions. Photoactivatable adenosine analog-enabled capture and enrichment of adenosine binding protein (ABP).![]()
Collapse
Affiliation(s)
- Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Daniel Mongeluzi
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
8
|
Analysis of Spatial and Temporal Distribution of Purinergic P2 Receptors in the Mouse Hippocampus. Int J Mol Sci 2021; 22:ijms22158078. [PMID: 34360844 PMCID: PMC8348931 DOI: 10.3390/ijms22158078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
ATP and other nucleotides are important glio-/neurotransmitters in the central nervous system. They bind to purinergic P2X and P2Y receptors that are ubiquitously expressed in various brain regions modulating various physiological and pathophysiological processes. P2X receptors are ligand-gated ion channels mediating excitatory postsynaptic responses whereas P2Y receptors are G protein-coupled receptors mediating slow synaptic transmission. A variety of P2X and P2Y subtypes with distinct neuroanatomical localization provide the basis for a high diversity in their function. There is increasing evidence that P2 receptor signaling plays a prominent role in learning and memory and thus, in hippocampal neuronal plasticity. Learning and memory are time-of-day-dependent. Moreover, extracellular ATP shows a diurnal rhythm in rodents. However, it is not known whether P2 receptors have a temporal variation in the hippocampus. This study provides a detailed systematic analysis on spatial and temporal distribution of P2 in the mouse hippocampus. We found distinct spatial and temporal distribution patterns of the P2 receptors in different hippocampal layers. The temporal distribution of P2 receptors can be segregated into two large time domains, the early to mid-day and the mid to late night. This study provides an important basis for understanding dynamic P2 purinergic signaling in the hippocampal glia/neuronal network.
Collapse
|
9
|
Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, Reggiano G, Qiu X, Bohstedt T, Liko I, Almeida FG, Garneau AP, Wang D, McKinley G, Moreau CP, Bountra KD, Abrusci P, Mukhopadhyay SMM, Fernandez‐Cid A, Slimani S, Lavoie JL, Burgess‐Brown NA, Tehan B, DiMaio F, Jazayeri A, Isenring P, Robinson CV, Dürr KL. Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters. EMBO J 2021; 40:e107294. [PMID: 34031912 PMCID: PMC8280820 DOI: 10.15252/embj.2020107294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 11/26/2022] Open
Abstract
Potassium-coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho-regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo-EM structures of human KCC3b and KCC1, revealing structural determinants for phospho-regulation in both N- and C-termini. We show that phospho-mimetic KCC3b is arrested in an inward-facing state in which intracellular ion access is blocked by extensive contacts with the N-terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho-regulatory site in the KCC1 N-terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP-binding pocket in the large C-terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.
Collapse
Affiliation(s)
- Gamma Chi
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Rebecca Ebenhoch
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
MedChem, Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Henry Man
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Exscientia LtdOxfordUK
| | - Haiping Tang
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Laurence E Tremblay
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | | | - Xingyu Qiu
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Tina Bohstedt
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | | | - Alexandre P Garneau
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQCCanada
| | - Dong Wang
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin McKinley
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Christophe P Moreau
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Present address:
Celonic AGBaselGermany
| | | | - Patrizia Abrusci
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Exscientia LtdOxfordUK
| | - Shubhashish M M Mukhopadhyay
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Alejandra Fernandez‐Cid
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Samira Slimani
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | - Julie L Lavoie
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQCCanada
| | - Nicola A Burgess‐Brown
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | | | - Paul Isenring
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Katharina L Dürr
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- OMass Therapeutics, Ltd.OxfordUK
| |
Collapse
|
10
|
Kock Flygaard R, Neumann C, Anthony Lyons J, Nissen P. Transport unplugged: KCCs are regulated through an N-terminal plug of the ion pathway. EMBO J 2021; 40:e108371. [PMID: 34031898 DOI: 10.15252/embj.2021108371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
The ability to regulate transmembrane ion transport in response to various cues is vital to any living cell. In neurons, one key example of critical ion control relates to the extrusion of chloride mediated by the potassium-chloride-cotransporters (KCC1-4). In a recent hallmark study, Chi et␣al (2021) report cryo-EM structures of human KCC1 and KCC3b, delineating in detail how regulation by phosphorylation inhibits the transport activity. The authors also identify a stabilizing binding site for nucleotides and speculate on its functional role.
Collapse
Affiliation(s)
- Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Neumann
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Joseph Anthony Lyons
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Šileikytė J, Sundalam S, David LL, Cohen MS. Chemical Proteomics Approach for Profiling the NAD Interactome. J Am Chem Soc 2021; 143:6787-6791. [PMID: 33914500 DOI: 10.1021/jacs.1c01302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a multifunctional molecule. Beyond redox metabolism, NAD+ has an equally important function as a substrate for post-translational modification enzymes, the largest family being the poly-ADP-ribose polymerases (PARPs, 17 family members in humans). The recent surprising discoveries of noncanonical NAD (NAD+/NADH)-binding proteins suggests that the NAD interactome is likely larger than previously thought; yet, broadly useful chemical tools for profiling and discovering NAD-binding proteins do not exist. Here, we describe the design, synthesis, and validation of clickable, photoaffinity labeling (PAL) probes, 2- and 6-ad-BAD, for interrogating the NAD interactome. We found that 2-ad-BAD efficiently labels PARPs in a UV-dependent manner. Chemical proteomics experiments with 2- and 6-ad-BAD identified known and unknown NAD+/NADH-binding proteins. Together, our study shows the utility of 2- and 6-ad-BAD as clickable PAL NAD probes.
Collapse
Affiliation(s)
- Justina Šileikytė
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Sunil Sundalam
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Larry L David
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|