1
|
Cai F, Zhou K, Wang P, Zhang W, Liu L, Yang Y. A novel KEAP1 inhibitor, tiliroside, activates NRF2 to protect against acetaminophen-induced oxidative stress and acute liver injury. Hepatol Commun 2025; 9:e0658. [PMID: 40008899 PMCID: PMC11868432 DOI: 10.1097/hc9.0000000000000658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/13/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Acetaminophen-induced acute liver injury (AILI) is one of the common causes of abrupt liver failure in numerous nations. Several previous studies revealed that tiliroside, a glycoside flavonoid, exerts neuroprotective and renal protective effects. However, whether it has hepatoprotective effects is not known. The objective of this research is to examine whether tiliroside can protect against AILI. METHODS AILI mouse and cell models were performed to evaluate the protective effects of tiliroside. Molecular docking, cellular thermal shift assay, immunoprecipitation, and RNA-seq were performed to analyze the possible mechanisms of tiliroside. RESULTS In vivo, tiliroside attenuated AILI in mice significantly, as evidenced by lower ALT and AST levels. Molecular docking, cellular thermal shift assay, and RNA-seq analysis revealed that tiliroside promoted the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the expression of its downstream genes through disruption of the NRF2-KEAP1 protein-protein interaction to inhibit KEAP1-mediated ubiquitination and degradation of NRF2, thereby inhibiting oxidative stress in the livers of AILI mice. Furthermore, hepatocyte-specific knockout of NRF2 greatly attenuated the hepatic-protective effects of tiliroside in mice. In vitro, tiliroside protected against acetaminophen-induced oxidative stress on cultured hepatocytes through activation of NRF2. In addition, NRF2 knockout markedly blunted the protection effects of tiliroside, suggesting that NRF2 mediates the hepatic-protective effects of tiliroside. CONCLUSIONS Our study demonstrated that tiliroside could protect against AILI by activating the KEAP1/NRF2 pathway, which primarily inhibits the processing of oxidative stress and cell death. Our results suggest that tiliroside could serve as a potential agent for the clinical treatment of AILI.
Collapse
Affiliation(s)
- Fangfang Cai
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Kaiqian Zhou
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Peipei Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Liu
- Department of Central Laboratory, Shaanxi Provincial People’s Hospital, Beilin District, Xi'an, China
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Gan L, Jiang Q, Huang D, Wu X, Zhu X, Wang L, Xie W, Huang J, Fan R, Jing Y, Tang G, Li XD, Guo J, Yin S. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nat Chem Biol 2025; 21:80-90. [PMID: 39103634 DOI: 10.1038/s41589-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Liver fibrosis is an urgent clinical problem without effective therapies. Here we conducted a high-content screening on a natural Euphorbiaceae diterpenoid library to identify a potent anti-liver fibrosis lead, 12-deoxyphorbol 13-palmitate (DP). Leveraging a photo-affinity labeling approach, apolipoprotein L2 (APOL2), an endoplasmic reticulum (ER)-rich protein, was identified as the direct target of DP. Mechanistically, APOL2 is induced in activated hepatic stellate cells upon transforming growth factor-β1 (TGF-β1) stimulation, which then binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) to trigger ER stress and elevate its downstream protein kinase R-like ER kinase (PERK)-hairy and enhancer of split 1 (HES1) axis, ultimately promoting liver fibrosis. As a result, targeting APOL2 by DP or ablation of APOL2 significantly impairs APOL2-SERCA2-PERK-HES1 signaling and mitigates fibrosis progression. Our findings not only define APOL2 as a novel therapeutic target for liver fibrosis but also highlight DP as a promising lead for treatment of this symptom.
Collapse
Affiliation(s)
- Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Xu Y, Lv S, Li X, Zhai C, Shi Y, Li X, Feng Z, Luo G, Wang Y, Gao X. Photoaffinity probe-enabled discovery of sennoside A reductase in Bifidobacterium pseudocatenulatum. J Pharm Anal 2025; 15:101108. [PMID: 39902460 PMCID: PMC11788863 DOI: 10.1016/j.jpha.2024.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 02/05/2025] Open
Abstract
Sennoside A (SA), a typical prodrug, exerts its laxative effect only after its transformation into rheinanthrone catalyzed by gut microbial hydrolases and reductases. Hydrolases have been identified, but reductases remain unknown. By linking a photoreactive group to the SA scaffold, we synthesized a photoaffinity probe to covalently label SA reductases and identified SA reductases using activity-based protein profiling (ABPP). From lysates of an active strain, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 397 proteins were enriched and subsequently identified using mass spectrometry (MS). Among these proteins, chromate reductase/nicotinamide adenine dinucleotide (NADH) phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase/oxygen-insensitive NADPH nitroreductase (nfrA) was identified as a potent SA reductase through further bioinformatic analysis and The Universal Protein Resource (UniProt) database screening. We also determined that recombinant nfrA could reduce SA. Our study contributes to further illuminating mechanisms of SA transformation to rheinanthrone and simultaneously offers an effective method to identify gut bacterial reductases.
Collapse
Affiliation(s)
| | | | | | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yulian Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhiyang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
4
|
Feng YL, Xu XR, Zhu QM, Chang J, Zhang HL, Wang N, Sun JB, Liu J, Zhang J, Sun CP. Aucklandiae radix targeted PKM2 to alleviate ulcerative colitis: Insights from the photocrosslinking target fishing technique. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155973. [PMID: 39241384 DOI: 10.1016/j.phymed.2024.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1β (IL-6 and IL-1β) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.
Collapse
Affiliation(s)
- Yan-Li Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin-Rong Xu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jing Chang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hui-Lin Zhang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Na Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jian-Bo Sun
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Juan Zhang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
5
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
6
|
Wozniak JM, Li W, Parker CG. Chemical proteomic mapping of reversible small molecule binding sites in native systems. Trends Pharmacol Sci 2024; 45:969-981. [PMID: 39406592 DOI: 10.1016/j.tips.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 11/10/2024]
Abstract
The impact of small molecules in human biology are manifold; not only are they critical regulators of physiological processes, but they also serve as probes to investigate biological pathways and leads for therapeutic development. Identifying the protein targets of small molecules, and where they bind, is critical to understanding their functional consequences and potential for pharmacological use. Over the past two decades, chemical proteomics has emerged as a go-to strategy for the comprehensive mapping of small molecule-protein interactions. Recent advancements in this field, particularly innovations of photoaffinity labeling (PAL)-based methods, have enabled the robust identification of small molecule binding sites on protein targets, often in live cells. In this opinion article, we examine these advancements as well as reflect on how their strategic integration with other emerging tools can advance therapeutic development.
Collapse
Affiliation(s)
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
8
|
Weerawarna PM, Schiefer IT, Soares P, Fox S, Morimoto RI, Melani RD, Kelleher NL, Luan CH, Silverman RB. Target Identification of a Class of Pyrazolone Protein Aggregation Inhibitor Therapeutics for Amyotrophic Lateral Sclerosis. ACS CENTRAL SCIENCE 2024; 10:87-103. [PMID: 38292603 PMCID: PMC10823514 DOI: 10.1021/acscentsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure, and current treatment options are very limited. Previously, we performed a high-throughput screen to identify small molecules that inhibit protein aggregation caused by a mutation in the gene that encodes superoxide dismutase 1 (SOD1), which is responsible for about 25% of familial ALS. This resulted in three hit series of compounds that were optimized over several years to give three compounds that were highly active in a mutant SOD1 ALS model. Here we identify the target of two of the active compounds (6 and 7) with the use of photoaffinity labeling, chemical biology reporters, affinity purification, proteomic analysis, and fluorescent/cellular thermal shift assays. Evidence is provided to demonstrate that these two pyrazolone compounds directly interact with 14-3-3-E and 14-3-3-Q isoforms, which have chaperone activity and are known to interact with mutant SOD1G93A aggregates and become insoluble in the subcellular JUNQ compartment, leading to apoptosis. Because protein aggregation is the hallmark of all neurodegenerative diseases, knowledge of the target compounds that inhibit protein aggregation allows for the design of more effective molecules for the treatment of ALS and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Pathum M. Weerawarna
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Isaac T. Schiefer
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Pedro Soares
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Susan Fox
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard I. Morimoto
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Department
of Chemistry and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics
Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Chi-Hao Luan
- High
Throughput
Analysis Laboratory, Chemistry of Life Processes Institute, and Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard B. Silverman
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
West AV, Woo CM. Photoaffinity Labeling Chemistries Used to Map Biomolecular Interactions. Isr J Chem 2022. [DOI: 10.1002/ijch.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexander V. West
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St Cambridge MA USA
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St Cambridge MA USA
| |
Collapse
|
10
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
11
|
Chen Y, An Y, Dai Z, Liu Y, Liang Z, Zhao Q, Zhang L, Zhang Y. Highly selective enrichment of surface proteins from living cells by photo-crosslinking probe enabled in-depth analysis of surfaceome. Anal Chim Acta 2022; 1203:339694. [DOI: 10.1016/j.aca.2022.339694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/01/2022]
|
12
|
Huang Yang CP, Horwitz SB, McDaid HM. Utilization of Photoaffinity Labeling to Investigate Binding of Microtubule Stabilizing Agents to P-Glycoprotein and β-Tubulin. JOURNAL OF NATURAL PRODUCTS 2022; 85:720-728. [PMID: 35240035 PMCID: PMC9484556 DOI: 10.1021/acs.jnatprod.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoaffinity labeling approaches have historically been used in pharmacology to identify molecular targets. This methodology has played a pivotal role in identifying drug-binding domains and searching for novel compounds that may interact at these domains. In this review we focus on studies of microtubule stabilizing agents of natural product origin, specifically taxol (paclitaxel). Taxol and other microtubule interacting agents bind to both P-glycoprotein (ABCB1), a drug efflux pump that reduces intracellular drug accumulation, and the tubulin/microtubule system. Both binding relationships modulate drug efficacy and are of immense interest to basic and translational scientists, primarily because of their association with drug resistance for this class of molecules. We present this body of work and acknowledge its value as fundamental to understanding the mechanisms of taxol and elucidation of the taxol pharmacophore. Furthermore, we highlight the ability to multiplex photoaffinity approaches with other technologies to further enhance our understanding of pharmacologic interactions at an atomic level. Thus, photoaffinity approaches offer a relatively inexpensive and robust technique that will continue to play an important role in drug discovery for the foreseeable future.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Obstetrics and Gynecology and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Susan Band Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hayley M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
13
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
14
|
Yongsong T, Brož B, Tureček F, Marek A. Tritium hydrogen-isotope exchange with electron-poor tertiary benzenesulfonamide moiety; application in late-stage labeling of T0901317. J Labelled Comp Radiopharm 2022; 65:36-44. [PMID: 34957593 DOI: 10.1002/jlcr.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
The multifunctional radioligand [3 H]T0901317 ([3 H]1) has been employed as a powerful autoradiographic tool to target several receptors, such as liver X, farnesoid X, and retinoic acid-related orphan receptor alpha and gamma subtypes at nanomolar concentrations. Although [3 H]1 is commercially available and its synthesis via tritiodebromination has been reported, the market price of this radioligand and the laborious synthesis of corresponding bromo-intermediate potentially preclude its widespread use in biochemical, pharmacological, and pathological studies in research lab settings. We exploit recent reports on hydrogen-isotope exchange (HIE) reactions in tertiary benzenesulfonamides where the sulfonamide represents an ortho-directing group that facilitates CH activation in the presence of homogenous iridium(I) catalysts. Herein, we report a time- and cost-efficient method for the tritium late-stage labeling of compound 1-a remarkably electron-poor substrate owing to the tertiary trifluoroethylsulfonamide moiety. Under a straightforward HIE condition using a commercially available Kerr-type NHC Ir(I) complex, [(cod)Ir (NHC)Cl], the reaction with 1 afforded a specific activity of 10.8 Ci/mmol. Additionally, alternative HIE conditions using the heterogeneous catalyst of Ir-black provided sufficient 0.72 D-enrichment of 1 but unexpectedly failed while repeating with tritium gas.
Collapse
Affiliation(s)
- Tian Yongsong
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Břetislav Brož
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Hsu KL. Shining a Light on Phenotypic Drug Discovery. Cell Chem Biol 2021; 28:115-117. [PMID: 33607003 DOI: 10.1016/j.chembiol.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Cell Chemical Biology, Seneviratne et al. (2020) combine photoaffinity labeling and quantitative chemical proteomics to identify the molecular target of a lead compound discovered from a phenotypic drug screen. Their work showcase the power of coupling a photoreactive group to screening hits for rapid target deconvolution.
Collapse
Affiliation(s)
- Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
16
|
Abstract
Here, we describe a protocol for a photoaffinity labeling probe strategy for target deconvolution in live cells. We made a chemical probe by incorporation of a photoreactive group to covalently cross-link with adjacent amino acid residues upon UV irradiation. Click chemistry-based enrichment captures labeled proteins for proteomic analysis. Here, we detail specifics for finding targets of LXRβ, but the protocol has potential for application to other targets. For complete details on the use and execution of this protocol, please refer to Seneviratne et al. (2020). Protocol detailing photoaffinity probe strategy for target deconvolution in live cells Competition with parent compound demonstrates specific binding Photoaffinity label provides evidence of small-molecule binding to LXRβ Click chemistry-based enrichment captures labeled proteins for proteomic analysis
Collapse
|
17
|
Ben Aissa M, Lewandowski CT, Ratia KM, Lee SH, Layden BT, LaDu MJ, Thatcher GRJ. Discovery of Nonlipogenic ABCA1 Inducing Compounds with Potential in Alzheimer's Disease and Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:143-154. [PMID: 33615168 PMCID: PMC7887740 DOI: 10.1021/acsptsci.0c00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Selective liver X receptor (LXR) agonists have been extensively pursued as therapeutics for Alzheimer's disease and related dementia (ADRD) and, for comorbidities such as type 2 diabetes (T2D) and cerebrovascular disease (CVD), disorders with underlying impaired insulin signaling, glucose metabolism, and cholesterol mobilization. The failure of the LXR-focused approach led us to pursue a novel strategy to discover nonlipogenic ATP-binding cassette transporter A1 (ABCA1) inducers (NLAIs): screening for ABCA1-luciferase activation in astrocytoma cells and counterscreening against lipogenic gene upregulation in hepatocarcinoma cells. Beneficial effects of LXRβ agonists mediated by ABCA1 include the following: control of cholesterol and phospholipid efflux to lipid-poor apolipoproteins forming beneficial peripheral HDL and HDL-like particles in the brain and attenuation of inflammation. While rare, ABCA1 variants reduce plasma HDL and correlate with an increased risk of ADRD and CVD. In secondary assays, NLAI hits enhanced cholesterol mobilization and positively impacted in vitro biomarkers associated with insulin signaling, inflammatory response, and biogenic properties. In vivo target engagement was demonstrated after oral administration of NLAIs in (i) mice fed a high-fat diet, a model for obesity-linked T2D, (ii) mice administered LPS, and (iii) mice with accelerated oxidative stress. The lack of adverse effects on lipogenesis and positive effects on multiple biomarkers associated with T2D and ADRD supports this novel phenotypic approach to NLAIs as a platform for T2D and ADRD drug discovery.
Collapse
Affiliation(s)
- Manel Ben Aissa
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Cutler T. Lewandowski
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Kiira M. Ratia
- HTS
Screening Facility, Research Resources Center, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Sue H. Lee
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Brian T. Layden
- Department
of Medicine, University of Illinois at Chicago
(UIC), Chicago, Illinois 60612, United States
| | - Mary Jo LaDu
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Pasquer QTL, Tsakoumagkos IA, Hoogendoorn S. From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Molecules 2020; 25:E5702. [PMID: 33287212 PMCID: PMC7730769 DOI: 10.3390/molecules25235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Biologically active small molecules have a central role in drug development, and as chemical probes and tool compounds to perturb and elucidate biological processes. Small molecules can be rationally designed for a given target, or a library of molecules can be screened against a target or phenotype of interest. Especially in the case of phenotypic screening approaches, a major challenge is to translate the compound-induced phenotype into a well-defined cellular target and mode of action of the hit compound. There is no "one size fits all" approach, and recent years have seen an increase in available target deconvolution strategies, rooted in organic chemistry, proteomics, and genetics. This review provides an overview of advances in target identification and mechanism of action studies, describes the strengths and weaknesses of the different approaches, and illustrates the need for chemical biologists to integrate and expand the existing tools to increase the probability of evolving screen hits to robust chemical probes.
Collapse
Affiliation(s)
| | | | - Sascha Hoogendoorn
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Genève, Switzerland; (Q.T.L.P.); (I.A.T.)
| |
Collapse
|