1
|
Wolf S, Jayawickrama C, Carlson CA, Deutsch C, Davis EW, Daniels BN, Chan F, Giovannoni SJ. Microbial carbon oxidation in seawater below the hypoxic threshold. Sci Rep 2025; 15:2838. [PMID: 39843462 PMCID: PMC11754627 DOI: 10.1038/s41598-024-82438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (Km) of oxidative enzymes are orders of magnitude higher than respiratory Km values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline. Total oxygen utilization (TOU) in hypoxic treatment (ca. 7.1 µM O2) was 21.7% lower than the oxic treatment (ca. 245.1 µM O2) over the first 43 days of the experiment. In addition, following the restoration of fully oxic conditions to the hypoxic treatment, TOU accelerated, demonstrating that oxidative processes are sensitive to DO concentrations found in large volumes of the ocean. Microbial amplicon-based community composition diverged between oxic treatments, indicating a specialized microbiome that included Thioglobaceae (SUP05 Gammaproteobacteria), OM190 (Planctomycetota), ABY1 (Patescibacteria), and SAR86 subclade D2472, thrived in the hypoxic treatment, while the genus Candidatus Actinomarina and SAR11 alphaproteobacteria were sharply inhibited. Our findings support the hypothesis that oxygenase kinetics might slow the progression of ocean deoxygenation in oxygen-poor regions and be a factor in the evolution of microbial taxa adapted to hypoxic environments.
Collapse
Affiliation(s)
- Sarah Wolf
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Clare Jayawickrama
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Craig A Carlson
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, USA
| | - Benjamin N Daniels
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA.
| |
Collapse
|
2
|
Xiao Z, Zheng Y, Gudi CR, Liu Y, Liao W, Tang YJ. Development of a kinetic model to describe six types of symbiotic interactions in a formate utilizing microalgae-bacteria cultivation system. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Roohidehkordi I, Krol MM. Applicability of ground source heat pumps as a bioremediation-enhancing technology for monoaromatic hydrocarbon contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146235. [PMID: 33721653 DOI: 10.1016/j.scitotenv.2021.146235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Geothermal or ground source heat pumps (GSHPs) are among the highest growing renewable energy technologies used for heating and cooling of buildings. However, despite being a well-established technology, their geo-environmental effects such as impact of the heat on the biosphere is still not thoroughly understood. This study uses FEFLOW software, to simulate heat and mass transport of a vertical closed-loop GSHP system. Transient flow and heat transport results for a multiple borehole system are presented which indicate long-term effects on subsurface temperature. Moreover, the impact of temperature change in a contaminated granular porous subsurface during remediation applications is examined. In particular, as subsurface temperatures are elevated due to geothermal heating, sorption will decrease and biodegradation rates will increase. These effects are examined in the context of contaminant transport, to evaluate the possibility of utilizing geothermal heating as a remediation strategy. The results revealed that temperature changes caused by GSHP operation can significantly enhance biodegradation of hydrocarbon contaminants. For instance, elevated subsurface temperature resulted in 97% reduction in benzene total mass, after one year of GSHP operation for a typical office building in Toronto.
Collapse
Affiliation(s)
- Iman Roohidehkordi
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada.
| | - Magdalena M Krol
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada.
| |
Collapse
|
4
|
Bongartz P, Bator I, Baitalow K, Keller R, Tiso T, Blank LM, Wessling M. A scalable bubble-free membrane aerator for biosurfactant production. Biotechnol Bioeng 2021; 118:3545-3558. [PMID: 34002856 DOI: 10.1002/bit.27822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022]
Abstract
The bioeconomy is a paramount pillar in the mitigation of greenhouse gas emissions and climate change. Still, the industrialization of bioprocesses is limited by economical and technical obstacles. The synthesis of biosurfactants as advanced substitutes for crude-oil-based surfactants is often restrained by excessive foaming. We present the synergistic combination of simulations and experiments towards a reactor design of a submerged membrane module for the efficient bubble-free aeration of bioreactors. A digital twin of the combined bioreactor and membrane aeration module was created and the membrane arrangement was optimized in computational fluid dynamics studies with respect to fluid mixing. The optimized design was prototyped and tested in whole-cell biocatalysis to produce rhamnolipid biosurfactants from sugars. Without any foam formation, the new design enables a considerable higher space-time yield compared to previous studies with membrane modules. The design approach of this study is of generic nature beyond rhamnolipid production.
Collapse
Affiliation(s)
- Patrick Bongartz
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.,Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kristina Baitalow
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Robert Keller
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,DWI Leibniz - Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
5
|
Al-Dhabi NA, Esmail GA, Valan Arasu M. Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor. CHEMOSPHERE 2021; 268:128726. [PMID: 33131742 DOI: 10.1016/j.chemosphere.2020.128726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A tetracycline degrading bacterial strains was characterized from the municipal sludge and detected its ability to produce manganese peroxidase. The molecular weight of manganese peroxidase was determined as 46 kDa after Biogel P-100 gel filtration column chromatography purification. Maximum tetracycline degradation was observed with the manganese peroxidase from the strain Bacillus velezensis Al-Dhabi 140 and the optimum degradation process was studied. Optimization revealed the maximum removal efficacy was obtained as 87 mg/L at initial tetracycline concentration 143.75 mg/L, pH 6.94 and 8.04% inoculum. Consequently, fibrous bed reactor containing the culture of B. velezensis Al-Dhabi 140 in fibrous matrix was formed to transform tetracycline in synthetic wastewater. The transformed product of tetracycline from the fibrous bed reactor was evident by the activity of ligninolytic enzymes produced by B. velezensis Al-Dhabi 140 in reactor. The decreased level of antibacterial potency was obtained after 10 days. The zone of inhibition was 24 ± 1 mm after 1 day and it decreased as 9 ± 1 mm after 10 days. Based on the findings, fibrous bed B. velezensis Al-Dhabi 140 could be an efficient strain for tetracycline removal from artificial wastewater, even from natural wastewater.
Collapse
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Galal Ali Esmail
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Teramoto EH, Vogt C, Martins Baessa MP, Polese L, Soriano AU, Chang HK, Richnow HH. Dynamics of hydrocarbon mineralization characterized by isotopic analysis at a jet-fuel-contaminated site in subtropical climate. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103684. [PMID: 32711211 DOI: 10.1016/j.jconhyd.2020.103684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Release of benzene, toluene, ethylbenzene, and xylene (BTEX) as components of the light non-aqueous phase liquids (LNAPL) contaminates soil and groundwater. Assessing the mechanisms of degradation and mineralization of BTEX in groundwater helps understand the migration of the dissolved plume, enabling the reduction of risks to humans. Here, we studied the fate of ethylbezene, m,p-xylenes and o-xylenes and the accompanying formation of methane in a Cenozoic lateritic aquifer in Brazil by compound-specific carbon stable isotope analysis (CSIA), to gain insights into the complex dynamics of release and biodegradation of BTEX in the LNAPL source zone. The enrichment of ∂13C in aromatic compounds dissolved in groundwater compared to the corresponding compounds in LNAPL indicate that CSIA can provide valuable information regarding biodegradation. The isotopic analysis of methane provides direct indication of oxidation mediated by aquifer oxygenation. The ∂13C-CO2 values indicate methanogenesis prevailing at the border and aerobic biodegradation in the center of the LNAPL source zone. Importantly, the isotopic results allowed major improvements in the previously developed conceptual model, supporting the existence of oxic and anoxic environments within the LNAPL source zone.
Collapse
Affiliation(s)
- Elias Hideo Teramoto
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | - Carsten Vogt
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Luciana Polese
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | | | - Hung Kiang Chang
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil; São Paulo State University, UNESP, Dept. of Applied Geology, Rio Claro, Brazil.
| | | |
Collapse
|
7
|
Younis SA, El-Gendy NS, Nassar HN. Biokinetic aspects for biocatalytic remediation of xenobiotics polluted seawater. J Appl Microbiol 2020; 129:319-334. [PMID: 32118335 DOI: 10.1111/jam.14626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
AIMS This research was conducted to investigate the biocatalytic remediation of xenobiotics polluted seawater using two biocatalysts; whole bacterial cells of facultative aerobic halotolerant Corynebacterium variabilis Sh42 and its extracted crude enzymes. METHODS AND RESULTS One-Factor-at-A-Time technique and statistical analysis were applied to study the effect of initial substrate concentrations, pH, temperature, and initial biocatalyst concentrations on the batch biocatalytic degradation of three xenobiotic pollutants (2-hydroxybiphenyl (2-HBP), catechol and benzoic acid) in artificial seawater (salinity 3·1%). HPLC and gas-chromatography mass spectroscopy analyses were utilized to illustrate the quantitative removal of the studied aromatic xenobiotic pollutants and their catabolic pathway. The results revealed that the microbial and enzymatic cultures followed substrate inhibition kinetics. Yano and Koga's equation showed the best fit for the biokinetic degradation rates of 2-HBP and benzoic acid, whereas Haldane biokinetic model adequately expressed the specific biodegradation rate of catechol. The biokinetic results indicated the good efficiency and tolerance of crude enzyme for biocatalytic degradation of extremely high concentrations of aromatic pollutants than whole C. variabilis Sh42 cells. The monitored by-products indicated that the catabolic degradation pathway followed an oxidation mechanism via a site-specific monooxygenase enzyme. Benzoic acid and catechol were identified as major intermediates in the biodegradation pathway of 2-HBP, which were then biodegraded through meta-cleavage to 2-hydroxymuconic semialdehyde. With time elapsed, the semialdehyde product was further biodegraded to acetaldehyde and pyruvic acid, which would be further metabolized via the bacterial TCA cycle. CONCLUSION The batch enzymatic bioreactors performed superior-specific biocatalytic degradation rates for all the studied xenobiotic pollutants. SIGNIFICANCE AND IMPACT OF THE STUDY The enzymatic system of C. variabilis Sh42 is tolerable for toxic xenobiotics and different physicochemical environmental parameters. Thus, it can be recommended as an effective biocatalyst for biocatalytic remediation of xenobiotics polluted seawater.
Collapse
Affiliation(s)
- S A Younis
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - N Sh El-Gendy
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - H N Nassar
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Microbiology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
8
|
Manheim DC, Detwiler RL, Jiang SC. Application of unstructured kinetic models to predict microcystin biodegradation: Towards a practical approach for drinking water treatment. WATER RESEARCH 2019; 149:617-631. [PMID: 30530122 DOI: 10.1016/j.watres.2018.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/20/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Biological drinking water treatment technologies offer a cost-effective and sustainable approach to mitigate microcystin (MC) toxins from harmful algal blooms. To effectively engineer these systems, an improved predictive understanding of the bacteria degrading these toxins is required. This study reports an initial comparison of several unstructured kinetic models to describe MC microbial metabolism by isolated degrading populations. Experimental data was acquired from the literature describing both MC removal and cell growth kinetics when MC was utilized as the primary carbon and energy source. A novel model-data calibration approach melding global single-objective, multi-objective, and Bayesian optimization in addition to a fully Bayesian approach to model selection and hypothesis testing were applied to identify and compare parameter and predictive uncertainties associated with each model structure. The results indicated that models incorporating mechanisms of enzyme-MC saturation, affinity, and cooperative binding interactions of a theoretical single, rate limiting reaction accurately and reliably predicted MC degradation and bacterial growth kinetics. Diverse growth characteristics were observed among MC degraders, including moderate to high maximum specific growth rates, very low to substantial affinities for MC, high yield of new biomass, and varying degrees of cooperative enzyme-MC binding. Model predictions suggest that low specific growth rates and MC removal rates of degraders are expected in practice, as MC concentrations in the environment are well below saturating levels for optimal growth. Overall, this study represents an initial step towards the development of a practical and comprehensive kinetic model to describe MC biodegradation in the environment.
Collapse
Affiliation(s)
- Derek C Manheim
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA.
| | - Russell L Detwiler
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems. Biodegradation 2018; 29:211-232. [PMID: 29492777 PMCID: PMC5943387 DOI: 10.1007/s10532-018-9824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/23/2018] [Indexed: 11/07/2022]
Abstract
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don’t represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific “carrying capacity” depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Collapse
|
10
|
Blunt W, Dartiailh C, Sparling R, Gapes D, Levin DB, Cicek N. Microaerophilic environments improve the productivity of medium chain length polyhydroxyalkanoate biosynthesis from fatty acids in Pseudomonas putida LS46. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Li WC, Ni CF, Tsai CH, Wei YM. Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:307. [PMID: 27106208 DOI: 10.1007/s10661-016-5307-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
This paper presents numerical investigations on quantifying the hydrodynamic effects of coastal environment factors, including tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradients on sea-derived benzene transport in unconfined coastal aquifers. A hydrologic transport and mixed geochemical kinetic/equilibrium reactions in saturated-unsaturated media model was used to simulate the spatial and temporal behaviors of the density flow and benzene transport for various hydrogeological conditions. Simulation results indicated that the tidal fluctuations lead to upper saline plumes (USPs) near the groundwater and seawater interfaces. Such local circulation zones trapped the seaward benzene plumes and carried them down in aquifers to the depth depending on the tide amplitudes and beach slopes across the coastal lines. Comparisons based on different tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradient were systematically conducted and quantified. The results indicated that areas with USPs increased with the tidal amplitude and decreased with the increasing beach slope. However, the variation of hydraulic conductivity and hydraulic gradient has relatively small influence on the patterns of flow fields in the study. The increase of the USP depths was linearly correlated with the increase of the tidal amplitudes. The benzene reactive transport simulations revealed that the plume migrations are mainly controlled by the local flow dynamics and constrained in the USP circulation zones. The self-cleaning process of a coastal aquifer is time-consuming, typically requiring double the time of the contamination process that the benzene plume reach the bottom of a USP circulation zone. The presented systematic analysis can provide useful information for rapidly evaluating seaward contaminants along a coastal line with available hydrogeological properties.
Collapse
Affiliation(s)
- Wei-Ci Li
- Graduate Institute of Applied Geology, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan
| | - Chuen-Fa Ni
- Graduate Institute of Applied Geology, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan.
| | - Chia-Hsing Tsai
- Graduate Institute of Applied Geology, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan
| | - Yi-Ming Wei
- Graduate Institute of Applied Geology, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan
| |
Collapse
|
12
|
Lai B, Yu S, Bernhardt PV, Rabaey K, Virdis B, Krömer JO. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:39. [PMID: 26893611 PMCID: PMC4758010 DOI: 10.1186/s13068-016-0452-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pseudomonas putida is a promising host for the bioproduction of chemicals, but its industrial applications are significantly limited by its obligate aerobic character. The aim of this paper is to empower the anoxic metabolism of wild-type Pseudomonas putida to enable bioproduction anaerobically, with the redox power from a bioelectrochemical system (BES). RESULTS The obligate aerobe Pseudomonas putida F1 was able to survive and produce almost exclusively 2-Keto-gluconate from glucose under anoxic conditions due to redox balancing with electron mediators in a BES. 2-Keto-gluconate, a precursor for industrial anti-oxidant production, was produced at an overall carbon yield of over 90 % based on glucose. Seven different mediator compounds were tested, and only those with redox potential above 0.207 V (vs standard hydrogen electrode) showed interaction with the cells. The productivity increased with the increasing redox potential of the mediator, indicating this was a key factor affecting the anoxic production process. P. putida cells survived under anaerobic conditions, and limited biofilm formation could be observed on the anode's surface. Analysis of the intracellular pools of ATP, ADP and AMP showed that cells had an increased adenylate energy charge suggesting that cells were able to generate energy using the anode as terminal electron acceptor. The analysis of NAD(H) and NADP(H) showed that in the presence of specific extracellular electron acceptors, the NADP(H) pool was more oxidised, while the NAD(H) pool was unchanged. This implies a growth limitation under anaerobic conditions due to a shortage of NADPH and provides a way to limit biomass formation, while allowing cell maintenance and catalysis at high purity and yield. CONCLUSIONS For the first time, this study proved the principle that a BES-driven bioconversion of glucose can be achieved for a wild-type obligate aerobe. This non-growth bioconversion was in high yields, high purity and also could deliver the necessary metabolic energy for cell maintenance. By combining this approach with metabolic engineering strategies, this could prove to be a powerful new way to produce bio-chemicals and fuels from renewables in both high yield and high purity.
Collapse
Affiliation(s)
- Bin Lai
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Shiqin Yu
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Paul V. Bernhardt
- />School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Korneel Rabaey
- />Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Bernardino Virdis
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Jens O. Krömer
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Zhang D, Wan M, del Rio-Chanona EA, Huang J, Wang W, Li Y, Vassiliadis VS. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Memon AR, Andresen J, Habib M, Jaffar M. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol. BIORESOURCE TECHNOLOGY 2014; 157:37-43. [PMID: 24530948 DOI: 10.1016/j.biortech.2014.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA.
Collapse
Affiliation(s)
- Abdul Rehman Memon
- Department of Chemical Engineering, Mehran University of Engineering & Technology, Jamshoro, Pakistan.
| | - John Andresen
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Muddasar Habib
- Department of Chemical Engineering, University of Engineering & Technology, Peshawar, Pakistan
| | - Muhammad Jaffar
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Mandalakis M, Panikov N, Dai S, Ray S, Karger BL. Comparative proteomic analysis reveals mechanistic insights into Pseudomonas putida F1 growth on benzoate and citrate. AMB Express 2013; 3:64. [PMID: 24156539 PMCID: PMC3827995 DOI: 10.1186/2191-0855-3-64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas species are capable to proliferate under diverse environmental conditions and thus have a significant bioremediation potential. To enhance our understanding of their metabolic versatility, this study explores the changes in the proteome and physiology of Pseudomonas putida F1 resulting from its growth on benzoate, a moderate toxic compound that can be catabolized, and citrate, a carbon source that is assimilated through central metabolic pathways. A series of repetitive batch cultivations were performed to ensure a complete adaptation of the bacteria to each of these contrasting carbon sources. After several growth cycles, cell growth stabilized at the maximum level and exhibited a reproducible growth profile. The specific growth rates measured for benzoate (1.01 ± 0.11 h-1) and citrate (1.11 ± 0.12 h-1) were similar, while a higher yield was observed for benzoate (0.6 and 0.3 g cell mass per g of benzoate and citrate, respectively), reflecting the different degrees of carbon reduction in the two substrates. Comparative proteomic analysis revealed an enrichment of several oxygenases/dehydrogenases in benzoate-grown cells, indicative of the higher carbon reduction of benzoate. Moreover, the upregulation of all 14 proteins implicated in benzoate degradation via the catechol ortho-cleavage pathway was observed, while several stress-response proteins were increased to aid cells to cope with benzoate toxicity. Unexpectedly, citrate posed more challenges than benzoate in the maintenance of pH homeostasis, as indicated by the enhancement of the Na+/H+ antiporter and carbonic anhydrase. The study provides important mechanistic insights into Pseudomonas adaptation to varying carbon sources that are of great relevance to bioremediation efforts.
Collapse
|
17
|
Kim DJ, Park MR, Lim DS, Choi JW. Impact of nitrate dose on toluene degradation under denitrifying condition. Appl Biochem Biotechnol 2013; 170:248-56. [PMID: 23504564 DOI: 10.1007/s12010-013-0176-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the impact of nitrate dose on toluene degradation by Pseudomonas putida to elucidate the upper limit of nitrate concentration and whether an optimum ratio of nitrate to toluene concentration exists. Batch microcosm studies were conducted in order to monitor toluene degradation for various ratios (2-20) of nitrate to toluene with nitrate concentrations ranging from 0 to 700 mg L(-1) for a given toluene concentration of 50 and 25 mg L(-1) during 4-day (short term) and 14-day (long term) incubation time, respectively. The short-term study revealed that nitrate concentration of 500 mg L(-1) was toxic to bacteria and the optimum concentration was 300 mg L(-1) yielding the highest toluene degradation rate (0.083 mg L(-1) h(-1)). In the batch study of long term, toluene degradation was limited to 6 days after which the nitrate at 50 mg L(-1) was depleted, indicating that nitrate was a necessary electron acceptor. For both batch studies, an optimum ratio of 6 was found yielding the highest toluene degradation rate. This indicates that an appropriate nitrate dose is essential for efficient degradation of toluene when bioremediation of groundwater contaminated with toluene is under consideration.
Collapse
Affiliation(s)
- Dong-Ju Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Yang SS, Guo WQ, Zhou XJ, Meng ZH, Liu B, Ren NQ. Optimization of operating parameters for sludge process reduction under alternating aerobic/oxygen-limited conditions by response surface methodology. BIORESOURCE TECHNOLOGY 2011; 102:9843-51. [PMID: 21906935 DOI: 10.1016/j.biortech.2011.07.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/16/2011] [Accepted: 07/21/2011] [Indexed: 05/17/2023]
Abstract
Batch tests were employed to estimate the optimal conditions for excess sludge reduction under an alternating aerobic/oxygen-limited environment using response surface methodology. Three key operating parameters, initial mixed liquor suspended solids (initial MLSS), HRT (hydraulic retention time) and reaction temperature (T), were selected, and their interrelationships studied by the Box-Behnken design. The experimental data and ANOVA analysis showed that the coefficient of determination (R(2)) was 0.9956 and the adjR(2) was 0.9912, which demonstrates that the modified model was significant. The optimum conditions were predicted to give a maximal ΔMLSS yield of 226 mg/L at an initial MLSS of 10,021 ± 50 mg/L, an HRT of 9.1h and a reaction temperature of 29°C. The prediction was tested by triplicate experiments, where a ΔMLSS yield of 233 mg/L was achieved under the chosen optimal conditions. This excellent correlation between the predicted and measured values provides confidence in the model.
Collapse
Affiliation(s)
- Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 2010; 85:207-28. [PMID: 19730850 DOI: 10.1007/s00253-009-2192-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/03/2023]
Abstract
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and "omics" technologies in aromatics biodegradation.
Collapse
|
20
|
Quijano G, Hernandez M, Thalasso F, Muñoz R, Villaverde S. Two-phase partitioning bioreactors in environmental biotechnology. Appl Microbiol Biotechnol 2009; 84:829-46. [DOI: 10.1007/s00253-009-2158-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
|
21
|
Numthuam S, Suzuki H, Fukuda J, Phunsiri S, Rungchang S, Satake T. Rapid Measurement and Prediction of Bacterial Contamination in Milk Using an Oxygen Electrode. Foodborne Pathog Dis 2009; 6:187-92. [DOI: 10.1089/fpd.2008.0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sonthaya Numthuam
- Graduate School of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Junji Fukuda
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Suthiluk Phunsiri
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Takaaki Satake
- Graduate School of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Nogales J, Palsson BØ, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC SYSTEMS BIOLOGY 2008; 2:79. [PMID: 18793442 PMCID: PMC2569920 DOI: 10.1186/1752-0509-2-79] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 09/16/2008] [Indexed: 11/16/2022]
Abstract
Background Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions. Results We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected. Conclusion Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production.
Collapse
Affiliation(s)
- Juan Nogales
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| | | | | |
Collapse
|
23
|
Choi NC, Choi JW, Kim SB, Kim DJ. Modeling of growth kinetics for Pseudomonas putida during toluene degradation. Appl Microbiol Biotechnol 2008; 81:135-41. [PMID: 18712521 DOI: 10.1007/s00253-008-1650-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/30/2008] [Accepted: 08/02/2008] [Indexed: 11/25/2022]
Abstract
Glucose has been often used as a secondary substrate to enhance the degradation of primary substrate as well as the increase of biomass, especially for the inhibitory range of substrate concentration. In this study, we investigated the effect of glucose concentration on growth kinetics of Pseudomonas putida during toluene degradation for a wide concentration range (60-250 mg/l). Batch microcosm studies were conducted in order to monitor bacterial growth for three different initial concentrations (2, 5, 10 mg/ml) of glucose for a given toluene concentration. Modeling of growth kinetics was also performed for each growth curve of glucose dose using both Monod and Haldane kinetics. Batch studies revealed that bacterial growth showed a distinct inhibitory phase above some limit (approximately 170 mg/l) for the lowest (2 mg/ml) glucose dose, but the degree of inhibition decreased as the glucose dose increased, leading to three different growth patterns. The bacterial growth followed each of the modified Wayman and Tseng, Wayman and Tseng, and Luong model as the glucose dose increased from 2 to 10 mg/ml. This indicates that glucose has a prominent influence on bacterial growth during toluene degradation and that different kinetics should be adopted for each broth condition.
Collapse
Affiliation(s)
- N-C Choi
- Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University, Seoul, 151-921, South Korea
| | | | | | | |
Collapse
|
24
|
|
25
|
Bongochgetsakul N, Ishida T. A new analytical approach to optimizing the design of large-scale composting systems. BIORESOURCE TECHNOLOGY 2008; 99:1630-41. [PMID: 17532629 DOI: 10.1016/j.biortech.2007.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
This paper proposes a new approach on aiding for optimizing the design, operations, and maintenance planning of new and existing large-scale composting facilities. Numerical modeling on mass/energy transport, degradation process, and turning/shifting processes was discussed. The models are integrated with the 3D finite element method based system, which is able to solve for mass/energy distribution fields influenced by biological activities at each corresponding location and interaction with arbitrary environment. As a result, designing and planning for more cost-effective and better performance facilities without performing trail tests shall become possible.
Collapse
|
26
|
Mechanistic model for evaluating the performance of suspended growth bioreactors for the off-gas treatment of VOCs. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Muñoz R, Díaz LF, Bordel S, Villaverde S. Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. CHEMOSPHERE 2007; 68:244-52. [PMID: 17316748 DOI: 10.1016/j.chemosphere.2007.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 05/14/2023]
Abstract
The influence of benzene concentration on the specific growth rate (mu), CO(2) and metabolite production, and cellular energetic content (i.e., ATP content), during benzene biodegradation by Pseudomonas putida F1 was investigated. Within the concentration range tested (5-130mg benzene l(-1)) the mu, the specific CO(2) production, and the ATP content remained constant at 0.42-0.48h(-1), 1.86+/-0.21g CO(2) g(-1) biomass, and 5.3+/-0.4x10(-6)mol ATP g(-1) biomass, respectively. Catechol accumulated during process start-up at all tested concentrations. Catechol specific production increased with increasing benzene inlet concentrations. This confirms that the transformation of this intermediate was the limiting step during benzene degradation. It was shown that catechol inhibited both the conversion of benzene to catechol and its further transformation. In addition, catechol concentrations higher than 10mgl(-1) significantly decreased both benzene and catechol associated respiration, confirming the highly inhibitory effect of this intermediate. This inhibitory threshold concentration was approximately two orders of magnitude lower than the concentrations present in the culture medium during process start-up, suggesting that cellular activity was always far below its maximum. Thus, due to its toxic and inhibitory nature and its tendency to accumulate at high benzene loading, catechol must be carefully monitored during process operation.
Collapse
Affiliation(s)
- R Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo del Prado de la Magdalena s/n, Valladolid, Spain
| | | | | | | |
Collapse
|
28
|
Studer M, Rudolf von Rohr P. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation. Biotechnol Bioeng 2007; 99:38-48. [PMID: 17570707 DOI: 10.1002/bit.21532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biological waste gas treatment is an attractive method for controlling air emissions of volatile organic compounds (VOCs). Microorganisms degrade the VOCs to harmless products such as carbon dioxide (CO(2)), biomass and water. In spite of the advantages, significant unresolved challenges remain for biological waste gas treatment. Fluctuating loads in waste gas streams, especially of VOCs with low water solubility, can often not be satisfactorily removed. Concentration peaks leave the reactor virtually untreated, while periods without VOCs in the waste gas lead to starvation of the bacteria. Furthermore, bioreactors are often subject to clogging due to biomass accumulation. In the current work, a flat sheet membrane bioreactor was developed which was able to buffer fluctuating loads of toluene, our model compound, by absorption in silicone oil prior to degradation and which continuously removed and discharged excess biomass from the reactor. The absorption and the biodegradation were both membrane based. An inverse bacterial biofilm developed on the membrane, which separated the culture medium from the absorbent. The culture medium was constantly passed along the biofilm, introducing shear stresses on the surface and thereby removing excess, inactive biomass. The toluene surface elimination capacity was virtually independent of the gas flow rate for the tested steady-state conditions and reached a maximum of 0.6 g m(-2) h(-1). Experiments with fluctuating inlet mass flow rates of toluene confirmed the excellent buffering capability of the set-up. The reactor was successfully operated for 162 days without clogging.
Collapse
Affiliation(s)
- Michael Studer
- ETH Zurich, Transport Processes and Reactions Laboratory, Institute of Process Engineering, Sonneggstrasse 3, ML, CH-8092 Zurich, Switzerland
| | | |
Collapse
|
29
|
Bordel S, Muñoz R, Díaz LF, Villaverde S. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol 2006; 74:857-66. [PMID: 17136537 DOI: 10.1007/s00253-006-0724-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/17/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO(2), and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO(2) production remained constant at 1.0 +/- 0.1 g biomass dry weight (DW) g(-1) toluene and 1.91 +/- 0.31 g CO(2) g(-1) biomass, respectively, under the tested range of concentrations (2-250 mg toluene l(-1)). The specific growth rate increased up to 70 mg toluene l(-1). Further increases in toluene concentration inhibited PpF1 growth, although inhibitory concentrations were far from the application range of biological treatment processes. The specific ATP content increased with toluene concentration up to toluene concentrations of 170 mg l(-1). 3-Methyl catechol (3-MC) was never detected in the cultivation medium despite being an intermediary in the TOD pathway. This suggested that the transformation from toluene to 3-MC was the limiting step in the biodegradation process. On the other hand, benzyl alcohol (BA) was produced from toluene in a side chain reaction. This is, to the best of our knowledge, the first reported case of methyl monoxygenation of toluene by PpF1 not harboring the pWW0 TOL plasmid. In addition, the influence of 3-MC, BA, and o-cresol on toluene degradation was investigated respirometrically, showing that toluene-associated respiration was not significantly inhibited in the presence of 10-100 mg l(-1) of the above-mentioned compounds.
Collapse
Affiliation(s)
- Sergio Bordel
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, Valladolid, Spain
| | | | | | | |
Collapse
|
30
|
Gusmão VR, Martins TH, Chinalia FA, Sakamoto IK, HenriqueThiemann O, Varesche MBA. BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Lim KH, Park SW, Lee EJ. Effect of temperature on the performance of a biofilter inoculated withPseudomonas putida to treat waste-air containing ethanol. KOREAN J CHEM ENG 2005. [DOI: 10.1007/bf02705676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|