1
|
Li S, Liu J, Fang P. Biodegradation of Phenanthrene by Mycobacterium sp. TJFP1: Genetic Basis and Environmental Validation. Microorganisms 2025; 13:1171. [PMID: 40431342 DOI: 10.3390/microorganisms13051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
The development of efficient bioremediation technologies for polycyclic aromatic hydrocarbons contamination is a hot research topic in the environmental field. In this study, we found that the Mycobacterium sp., TJFP1, has the function of degrading low molecular weight PAHs, and further investigated its degradation characteristics using the PAH model compound phenanthrene as a target pollutant. The optimal growth and degradation conditions were determined by single-factor experiments to be 37 °C, pH 9.0, and an initial concentration of 100 mg/L phenanthrene. Under this condition, the degradation efficiency of phenanthrene reached 100% after 106 h of incubation, and the average degradation rate could reach 24.48 mg/L/day. Combined with whole genome sequencing analysis, it was revealed that its genome carries a more complete phenanthrene degradation pathway, including functional gene clusters related to the metabolism of PAHs, such as phd and nid. Meanwhile, intermediates such as phthalic acid were detected; it was determined that TJFP1 metabolizes phenanthrene via the phthalic acid pathway. Simulated contaminated soil experiments were also conducted, and the results showed that the removal rate of phenanthrene from the soil after 20 days of inoculation with the bacterial strain was about 3.7 times higher than that of the control group (natural remediation). At the same time from the soil physical and chemical properties and soil microbial community structure of two levels to explore the changes in different means of remediation, indicating that it can be successfully colonized in the soil, and as a dominant group of bacteria to play the function of remediation, verifying the environmental remediation function of the strains, for the actual inter-soil remediation to provide theoretical evidence. This study provides efficient strain resources for the bioremediation of PAH contamination.
Collapse
Affiliation(s)
- Shuyun Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiazhen Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ping Fang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Jing J, Zhao B, Wang T, Huang P, Li C, Guo X, Qu Y. Bioaugmentation strategies for polycyclic aromatic hydrocarbons-contaminated intertidal zones: Effects and microbial community succession. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138648. [PMID: 40383041 DOI: 10.1016/j.jhazmat.2025.138648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/11/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
The intertidal zone is one of the natural systems most vulnerable to threats from polycyclic aromatic hydrocarbons (PAHs). However, the natural attenuation rate of PAHs within intertidal zones is low, posing challenges for the short-term recovery of contaminated environments. This study developed a contaminated intertidal zone simulation system and used a composite bacterial consortium containing Cellulosimicrobium sp. RS and Brucella sp. BZ for bioaugmented remediation. The degradation rate of PAHs (initial concentration: 5000 μg/kg) in the sediments reached 85.37 % after 120 days of restoration, which was significantly higher than the 29.93 % observed in the control group. High-throughput sequencing was used to analyze the structure and function of sediment microbial communities. The exogenous bacteria Cellulosimicrobium became dominant after remediation, whereas Brucella did not dominate but contributed to synergistic degradation. Network analysis and PICRUSt predictions confirmed that the microbial community evolved toward stronger PAHs degradation capabilities and degraded PAHs through ring cleavage, side-chain metabolism, and central metabolism in bioaugmented sediments. This study provides theoretical guidance and data support for bioaugmented remediation of intertidal zone pollution.
Collapse
Affiliation(s)
- Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bo Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tingting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Pengfei Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Huizenga JM, Semprini L, Garcia-Jaramillo M. Identification of Potentially Toxic Transformation Products Produced in Polycyclic Aromatic Hydrocarbon Bioremediation Using Suspect and Non-Target Screening Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7561-7573. [PMID: 40208242 PMCID: PMC12060897 DOI: 10.1021/acs.est.4c13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous environmental contaminants that can be remediated through physical, chemical, or biological means. Treatment strategies can lead to the formation of PAH-transformation products (PAH-TPs) that, despite having the potential for adverse ecological and human health effects, are unregulated and understudied in environmental monitoring and remediation. Unavailability of reference standards for PAH-TPs limits the ability to identify PAH-TPs by targeted methods. This study utilized suspect and nontarget screening approaches to identify PAH-TPs produced by a bacterial culture, Rhodococcus rhodochrous ATCC 21198, using liquid chromatography-high resolution mass spectrometry. Open-source tools were used to predict biotransformation products, predict potential PAH-TP structures from mass spectra, and estimate health hazards of potential PAH-TPs. The workflow developed in this study allowed for the tentative identification of 16 PAH-TPs (confidence levels 2a to 3), seven of which were not previously detected by targeted analysis. Several new potential transformation pathways for our bacterial pure culture were suggested by the PAH-TPs, including carboxylation, sulfonation and up to three hydroxylation reactions. A computational toxicity assessment indicated that the PAH-TPs shared many hazard characteristics with their parent compounds, including genotoxicity and endocrine disruption, highlighting the importance of considering PAH-TPs in future PAH studies.
Collapse
Affiliation(s)
- Juliana M. Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| |
Collapse
|
4
|
Ghimire N, Kim B, Han SR, Oh TJ. Comparative genomics based exploration of xenobiotic degradation patterns in Glutamicibacter, Arthrobacter, and Pseudarthrobacter isolated from diverse ecological habitats. Heliyon 2024; 10:e40280. [PMID: 39584100 PMCID: PMC11585801 DOI: 10.1016/j.heliyon.2024.e40280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Xenobiotics pose a substantial threat to environmental integrity by disrupting normal ecosystems. The genus Arthrobacter, known for its metabolic versatility can degrade several xenobiotic compounds. Arthrobacter strains have also undergone frequent taxonomic revisions and reclassifications to strains including Pseudarthrobacter and Glutamicibacter. Here, we present the complete genome sequence of Glutamicibacter protophormiae strain NG4, isolated from a coastal area surrounded by chemical plants. Further, through comparative genomics involving 55 strains from Glutamicibacter, Arthrobacter, and Pseudarthrobacter, we elucidated taxonomic relationships and xenobiotic degradation potential. Our genomics-based findings revealed a generally even distribution of xenobiotic-degrading genes and pathways among the studied strains. Glutamicibacter species emerged as potential candidate for steroid degradation. A significant number of host-specific and environmental isolates predominantly possessed pathways for 4-hydroxybenzoate (4-HB) degradation and only the environmental isolates possessed benzoate degradation pathway. Certain Arthrobacter and Pseudarthrobacter species isolated from the environmental settings were identified as potential degraders of toluene, xylene, and phenanthrene. Notably, most strains contained pathways for azathioprine, capecitabine, and 5-fluorouridine pharmaceutical drug metabolism. Overall, our findings shed light on microbial metabolic diversity among 55 strains isolated from diverse sources and hint the importance of strict environmental monitoring. Further, for the application of the putative xenobiotic degrading strains, experimental validation is required in the future.
Collapse
Affiliation(s)
- Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea
| |
Collapse
|
5
|
Chen Y, Wang F, Gao J, He X, Liu Q, Liu L. Enhancing bioremediation of petroleum-contaminated soil by sophorolipids-modified biochar: Combined metagenomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175772. [PMID: 39191326 DOI: 10.1016/j.scitotenv.2024.175772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
In this study, sophorolipids (SLs)-modified biochar (BC-SLs) was used to enhance the bioremediation of petroleum hydrocarbons (PHs) contaminated soil. The biodegradation rate of petroleum hydrocarbons (PHs) by BC-SLs and BC treatments were 62.86 % and 52.64 % after 60 days of remediation experiments, respectively, higher than non-biochar treatment group (24.09 %). The metagenomic analysis showed that the abundance of petroleum-degrading bacteria Actinobacteria and Proteobacteria were increased by 3.8 % and 5.3 %, respectively in BC-SLs treatment, and the abundance of functional genes for PHs degradation, such as alkB, nidA and pcaG, were significantly increased by 12.85 %, 30.08 % and 21.01 %, respectively. The metabolomic analysis showed that BC-SLs facilitated the metabolic process of PHs, the microbial metabolism of petroleum hydrocarbons (PHs) became more active. Fatty acid degradation and polycyclic aromatic hydrocarbons (PAHs) degradation were up-regulated, indicating the promoting effect of the BC-SLs for PHs metabolism. The combined metagenomic and metabolomic analysis demonstrated the strong positive correlations between PHs metabolites and PHs-degrading bacteria, such as lauric acid vs. Actinobacteria, benzoic vs. Proteobacteria. The strong positive correlations between PHs metabolites and PHs-degrading genes were also observed, such as o-ehyltoluene vs. nahD, 4-isopropylbenzoic acid vs. etbAa. The modification of biochar with SLs increased the oxygen-containing functional groups on the surface of biochar. Meanwhile, the emulsification and solubilization of SLs promoted the bioavailability of PHs. The effects of BC-SLs on the nitrogen cycle during PHs remediation showed that it facilitated the accumulation of nitrogen-fixing genes, promoted nitrification but inhibited denitrification process. This study confirms that the application of BC-SLs is an effective remediation of PHs contamination and a sustainable method for controlling agricultural waste resources.
Collapse
Affiliation(s)
- Yuhang Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fumei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiaqi Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xinhua He
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qinglong Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Le Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Li J, Peng W, Yin X, Wang X, Liu Z, Liu Q, Deng Z, Lin S, Liang R. Identification of an efficient phenanthrene-degrading Pseudarthrobacter sp. L1SW and characterization of its metabolites and catabolic pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133138. [PMID: 38086304 DOI: 10.1016/j.jhazmat.2023.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Phenanthrene, a typical chemical of polycyclic aromatic hydrocarbons (PAHs) pollutants, severely threatens health of wild life and human being. Microbial degradation is effective and environment-friendly for PAH removal, while the phenanthrene-degrading mechanism in Gram-positive bacteria is unclear. In this work, one Gram-positive strain of plant growth-promoting rhizobacteria (PGPR), Pseudarthrobacter sp. L1SW, was isolated and identified with high phenanthrene-degrading efficiency and great stress tolerance. It degraded 96.3% of 500 mg/L phenanthrene in 72 h and kept stable degradation performance with heavy metals (65 mg/L of Zn2+, 5.56 mg/L of Ni2+, and 5.20 mg/L of Cr3+) and surfactant (10 CMC of Tween 80). Strain L1SW degraded phenanthrene mainly through phthalic acid pathway, generating intermediate metabolites including cis-3,4-dihydrophenanthrene-3,4-diol, 1-hydroxy-2-naphthoic acid, and phthalic acid. A novel metabolite (m/z 419.0939) was successfully separated and identified as an end-product of phenanthrene, suggesting a unique metabolic pathway. With the whole genome sequence alignment and comparative genomic analysis, 19 putative genes associated with phenanthrene metabolism in strain L1SW were identified to be distributed in three gene clusters and induced by phenanthrene and its metabolites. These findings advance the phenanthrene-degrading study in Gram-positive bacteria and promote the practical use of PGPR strains in the bioremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Junlan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianqi Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhixiang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
8
|
Jiménez-Volkerink SN, Jordán M, Smidt H, Minguillón C, Vila J, Grifoll M. Metagenomic insights into the microbial cooperative networks of a benz(a)anthracene-7,12-dione degrading community from a creosote-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167832. [PMID: 37863223 DOI: 10.1016/j.scitotenv.2023.167832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Genotoxicity of PAH-contaminated soils can eventually increase after bioremediation due to the formation and accumulation of polar transformation products, mainly oxygenated PAHs (oxy-PAHs). Biodegradation of oxy-PAHs has been described in soils, but information on the microorganisms and mechanisms involved is still scarce. Benz(a)anthracene-7,12-dione (BaAQ), a transformation product from benz(a)anthracene frequently detected in soils, presents higher genotoxic potential than its parent PAH. Here, using sand-in-liquid microcosms we identified a specialized BaAQ-degrading subpopulation in a PAH-contaminated soil. A BaAQ-degrading microbial consortium was obtained by enrichment in sand-in-liquid cultures with BaAQ as sole carbon source, and its metagenomic analysis identified members of Sphingobium, Stenotrophomonas, Pusillimonas, Olivibacter, Pseudomonas, Achromobacter, and Hyphomicrobiales as major components. The integration of data from metabolomic and metagenomic functional gene analyses of the consortium revealed that the BaAQ metabolic pathway was initiated by Baeyer-Villiger monooxygenases (BVMOs). The presence of plasmid pANTQ-1 in the metagenomic sequences, identified in a previous multi-omic characterization of a 9,10-anthraquinone-degrading isolate recovered from the same soil, suggested the occurrence of a horizontal gene transfer event. Further metagenomic analysis of the BaAQ-degrading consortium also provided insights into the potential roles and interactions within the consortium members. Several potential auxotrophies were detected, indicating that relevant nutritional interdependencies and syntrophic associations were taking place within the community members, not only to provide suitable carbon and energy sources, but also to supply essential nutrients and cofactors. Our work confirms the essential role that BVMO may play as a detoxification mechanism to mitigate the risk posed by oxy-PAH formation during bioremediation of contaminated soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Cristina Minguillón
- Department of Nutrition, Food Science and Gastronomy, University of Barcelona, Avda. Prat de la Riba, 171, 08921 Sta. Coloma de Gramanet, Barcelona, Spain
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Lu J, Liu Y, Zhang R, Hu Z, Xue K, Dong B. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132550. [PMID: 37729712 DOI: 10.1016/j.jhazmat.2023.132550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Controversial results are reported whereby biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be promoted or inhibited by biochar amendment of soil. Metabolomics was applied to analyze the metabolic profiles of amendment with biochar (BB) and biochar inoculated with functional bacteria (Pseudomonas putida) (BP) involved in phenanthrene (PHE) degradation. Additionally, metagenomic analysis was utilized to assess the impact of different treatments on PHE degradation by soil microorganisms. Results indicated that BB treatment decreased the PHE biodegradation of the soil indigenous bacterial consortium, but BP treatment alleviated this inhibitory effect. Metabolomics revealed the differential metabolite 9-phenanthrol was absent in the BB treatment, but was found in the control group (CK), and in the treatment inoculated with the Pseudomonas putida (Ps) and the BP treatment. Metagenomic analysis showed that biochar decreased the abundance of the cytochrome P450 monooxygenase (CYP116), which was detected in the Pseudomonas putida, thus alleviating the inhibitory effect of biochar on PHE degradation. Moreover, a noticeable delayed increase of functional gene abundance and enzymes abundance in the BB treatment was observed in the PHE degradation pathway. Our findings elucidate the mechanism of inhibition with biochar amendment and the alleviating effect of biochar inoculated with degrading bacteria.
Collapse
Affiliation(s)
- Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
K S, Manian R. Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1441. [PMID: 37946088 DOI: 10.1007/s10661-023-12042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
The life of all creatures is supported directly or indirectly by soil, which is a significant environmental matrix. The soil has been polluted partly due to increased human activities and population growth, releasing several foreign substances and persistent contaminants. When toxic substances like polycyclic aromatic hydrocarbons (PAHs) are disposed of, the characteristics of the soil are changed, microbial biodiversity is impacted, and items are destroyed. Because of the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and cleanup of PAH-polluted areas represent a severe technological and environmental challenge for long-term growth and development. Although there are several ways to clean up PAH-contaminated soils, much attention is paid to intriguing bacteria, fungus, and their enzymes. Various factors influence PAH breakdown, including pH, temperature, airflow, moisture level, nutrient availability, and degrading microbial populations. This review discusses how PAHs affect soil characteristics and shows that secondary metabolite and carbon dioxide decomposition are produced due to microbial breakdown processes. Furthermore, the advantages of bioremediation strategies were assessed for correct evaluation and considered dependable on each legislative and scientific research level, as analyzed in this review.
Collapse
Affiliation(s)
- Sumathi K
- Department of Biotechnology, School of Biosciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rameshpathy Manian
- Department of Biotechnology, School of Biosciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Chang X, Fu F, Sun Y, Zhao L, Li X, Li Y. Coupling multifactor dominated the biochemical response and the alterations of intestinal microflora of earthworm Pheretima guillelmi due to typical herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94126-94137. [PMID: 37526832 DOI: 10.1007/s11356-023-29032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The excessive application of herbicides on farmlands can substantially reduce labor costs and increase crop yields, but can also have undesirable effects on terrestrial ecosystems. To evaluate the ecological toxicity of herbicides, metolachlor and fomesafen, two typical herbicides that are extensively used worldwide were chosen as target pollutants, and the endogeic earthworm Pheretima guillelmi, which is widely distributed in China, was selected as the test organism. A laboratory-scale microcosmic experiment was set, and energy resources, enzymes, and the composition and connections of intestinal microorganisms in earthworms were determined. Both herbicides depleted the energy resources of the earthworms, especially glycogen contents; increased the levels of antioxidant enzymes; and inhibited acetylcholinesterase. Moreover, the richness and diversity of the intestinal bacterial community of the earthworms were suppressed. Additionally, the bacterial composition at the genus level changed greatly and the connections between dominant bacteria increased dramatically. Most interactions among the bacterial genera belonging to the same and different phyla showed mutualism and competition, respectively. Importantly, metolachlor with higher toxicity had a transitory effect on these indicators in earthworms, whereas fomesafen, with lower toxicity but stronger bioaccumulation potential, exerted a sustaining impact on earthworms. Collectively, these results indicate that the toxic effects of herbicides on terrestrial organisms should be comprehensively considered in combination with biological toxicity, persistence, bioaccumulation potential, and other factors.
Collapse
Affiliation(s)
- Xingping Chang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Furong Fu
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Li W, Zhu Y, Li K, Wang L, Li D, Liu N, Huang S. Synergistic remediation of phenanthrene-cadmium co-contaminants by an immobilized acclimated bacterial-fungal consortium and its community response. CHEMOSPHERE 2023:139234. [PMID: 37327827 DOI: 10.1016/j.chemosphere.2023.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Bioremediation has tremendous potential to mitigate the serious threats posed by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). In the present study, nine bacterial-fungal consortia were progressively acclimated under different culture conditions. Among them, a microbial consortium 1, originating from activated sludge and copper mine sludge microorganisms, was developed through the acclimation of a multi-substrate intermediate (catechol)-target contaminant (Cd2+, phenanthrene (PHE)). Consortium 1 exhibited the best PHE degradation, with an efficiency of 95.6% after 7 d of inoculation, and its tolerance concentration for Cd2+ was up to 1800 mg/L within 48 h. Bacteria Pandoraea and Burkholderia-Caballeronia-Paraburkholderia, as well as fungi Ascomycota and Basidiomycota predominated in the consortium 1. Furthermore, a biochar-loaded consortium was constructed to better cope with the co-contamination behavior, which exhibited excellent adaptation to Cd2+ ranging of 50-200 mg/L. Immobilized consortium efficiently degraded 92.02-97.77% of 50 mg/L PHE within 7 d while removing 93.67-99.04% of Cd2+. In remediation of co-pollution, immobilization technology improved the bioavailability of PHE and dehydrogenase activity of the consortium to enhance PHE degradation, and the phthalic acid pathway was the main metabolic pathway. As for Cd2+ removal, oxygen-containing functional groups (-OH, C=O, and C-O) of biochar or microbial cell walls and EPS components, fulvic acid and aromatic proteins, participated through chemical complexation and precipitation. Furthermore, immobilization led to more active consortium metabolic activity during the reaction, and the community structure developed in a more favorable direction. The dominant species were Proteobacteria, Bacteroidota, and Fusarium, and the predictive expression of functional genes corresponding to key enzymes was elevated. This study provides a basis for combining biochar and acclimated bacterial-fungal consortia for co-contaminated site remediation.
Collapse
Affiliation(s)
- Wei Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanfeng Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Kang Li
- College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
13
|
Shen X, Wan Y, Dong W, Wei Y, Li T. Experimental study on the biodegradation of naphthalene and phenanthrene by functional bacterial strains in the riparian soil of a binary system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112603. [PMID: 34371457 DOI: 10.1016/j.ecoenv.2021.112603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap) and phenanthrene (Phe) are organic pollutants of concern owing to their toxicity, carcinogenicity, and teratogenicity. Biodegradation is considered the most economical and efficient process to remediate Nap and Phe. The riparian zone between a river and a riparian aquifer, which is rich in indigenous microorganisms, may be important for PAH remediation. However, few studies have evaluated the ability of indigenous microorganisms to remove Nap and Phe. In this study, focusing on the typical PAHs (Nap and Phe) as target pollutants, the genus-level community structure of Nap- and Phe-degrading bacteria was identified. Batch static and dynamic biodegradation experiments were conducted to explore the biodegradation mechanisms of Nap and Phe in the riparian zone and identify the factors influencing Nap and Phe biodegradation in the binary system (i.e., where Nap and Phe are simultaneously present). According to the genus-level community structure test results, the dominant bacterial genus in the binary system was mainly the Phe-degrading bacteria. The Nap and Phe-biodegradation percentages were 19.20% lower and 19.49% higher, respectively, in the binary system than in the unitary system. The results indicated that functional bacteria can degrade Nap and Phe, and that Nap weakly promoted Phe biodegradation. Additionally, the initial Nap and Phe concentration ratio, hydraulic gradient, and temperature affected Nap and Phe biodegradation. Dynamic biodegradation experiments showed that the biodegradation percentage decreased as the hydraulic gradient increased, and biodegradation percentage of Phe was always higher than that of Nap. According to the results of the dynamic laboratory experiments, the removal percentages of Nap and Phe by indigenous riparian-zone microorganisms were 6.21-16.73% and 13.95-24.45%, respectively. The findings in this study will be useful for alleviation of Nap and Phe pollution in groundwater and will facilitate determination of appropriate treatment measures for groundwater exposed to this type of pollution.
Collapse
Affiliation(s)
- Xiaofang Shen
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Yujie Wei
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tong Li
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
14
|
Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168794. [PMID: 34444543 PMCID: PMC8395025 DOI: 10.3390/ijerph18168794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
This paper analyzed the degradation pathways of petroleum hydrocarbon degradation bacteria, screened the main degradation pathways, and found the petroleum hydrocarbon degradation enzymes corresponding to each step of the degradation pathway. Through the Copeland method, the best inoculation program of petroleum hydrocarbon degradation bacteria in a polluted site was selected as follows: single oxygenation path was dominated by Streptomyces avermitilis, hydroxylation path was dominated by Methylosinus trichosporium OB3b, secondary oxygenation path was dominated by Pseudomonas aeruginosa, secondary hydroxylation path was dominated by Methylococcus capsulatus, double oxygenation path was dominated by Acinetobacter baylyi ADP1, hydrolysis path was dominated by Rhodococcus erythropolis, and CoA path was dominated by Geobacter metallireducens GS-15 to repair petroleum hydrocarbon contaminated sites. The Copeland method score for this solution is 22, which is the highest among the 375 solutions designed in this paper, indicating that it has the best degradation effect. Meanwhile, we verified its effect by the Cdocker method, and the Cdocker energy of this solution is −285.811 kcal/mol, which has the highest absolute value. Among the inoculation programs of the top 13 petroleum hydrocarbon degradation bacteria, the effect of the best inoculation program of petroleum hydrocarbon degradation bacteria was 18% higher than that of the 13th group, verifying that this solution has the best overall degradation effect. The inoculation program of petroleum hydrocarbon degradation bacteria designed in this paper considered the main pathways of petroleum hydrocarbon pollutant degradation, especially highlighting the degradability of petroleum hydrocarbon intermediate degradation products, and enriching the theoretical program of microbial remediation of petroleum hydrocarbon contaminated sites.
Collapse
|
15
|
Lara-Moreno A, Morillo E, Merchán F, Villaverde J. A comprehensive feasibility study of effectiveness and environmental impact of PAH bioremediation using an indigenous microbial degrader consortium and a novel strain Stenotrophomonas maltophilia CPHE1 isolated from an industrial polluted soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112512. [PMID: 33848881 DOI: 10.1016/j.jenvman.2021.112512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are major toxic and recalcitrant pollutants in the environment. This study assessed the capacity of an isolated soil microbial consortium (OMC) to biodegrade PAHs. OMC was able to reach 100% biodegradation of naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene in solution, and up to 76% and 50% of anthracene and fluoranthene, respectively, from a mix of 16 PAHs. To measure phenanthrene (PHE) mineralization, OMC and eight strains isolated from OMC were used and identified by PCR amplification of the gene 16S ribosomal RNA. A novel Stenotrophomonas maltophilia CPHE1, not previously described as a PAH degrader, was able to mineralize almost 40% PHE and biodegrade 90.5% in solution, in comparison to OMC that reached 100% PHE degradation, but only 18.8% mineralization. Based on metabolites identified during PHE degradation and on the detection of two genes (PAH RHDα and nahAc) in OMC consortium, two possible via were described for its degradation, through salicylic and phthalic acid. PAH RHDα, which codified the first step on PHE biodegradation pathway, was also found in the DNA of S. maltophilia CPHE1. An ecotoxicology study showed that PHE bioremediation after inoculating S. maltophilia CPHE1 for 30 days decreased by half the solution toxicity.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Science Research Council (IRNAS-CSIC), Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Science Research Council (IRNAS-CSIC), Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Science Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
16
|
Wang P, Zhang Y, Jin J, Wang T, Wang J, Jiang B. A high-efficiency phenanthrene-degrading Diaphorobacter sp. isolated from PAH-contaminated river sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140455. [PMID: 32758981 DOI: 10.1016/j.scitotenv.2020.140455] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutants that accumulate in the environment, mainly from anthropogenic activities. Microbial degradation is the main pathway of PAHs degradation in the natural environment. Therefore, the widen of the available bank of microbial resources and exploration of the molecular degradation mechanisms of PAHs are crucial to the proper management of PAHs-polluted sites. In this work, a bacterial strain, YM-6, which has a high ability to utilize phenanthrene (PHE) as its sole source of carbon and energy, was isolated from sediment contaminated with PAHs. The strain YM-6 was found to degrade 96.3% of 100 mg/L of PHE in liquid cultures within 52 h. The strain was identified as Diaphorobacter sp. by 16S rDNA sequencing. The optimum growth conditions of the YM-6 strain were studied, and the results indicated that the optimum growth temperature of the strain was 30 °C, and the optimum growth pH was 7. The stain is well-suited for high-temperature stress (40 °C), and it could withstand 400 mg/L of PHE. The strain's PHE metabolism was assayed using GC-MS analyses. The results revealed that the YM-6 strain metabolized PHE via the phthalic acid pathway because the intermediates, such as phthalic acid, diethyl ester and phthalaldehydic acid, methyl ester, were detected. The use of this strain may be an attractive alternative for the bioremediation of polycyclic aromatic hydrocarbons in an aquatic environment.
Collapse
Affiliation(s)
- Ping Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan 243002, China.
| | - Yongmin Zhang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Jie Jin
- Appraisal Center for Environment & Engineering, Ministry of Ecology and Environment,Beijing 100012,China
| | - Tianhui Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Jie Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Bingyu Jiang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
17
|
Li X, Peng D, Zhang Y, Ju D, Guan C. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110804. [PMID: 32502907 DOI: 10.1016/j.ecoenv.2020.110804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Phenanthrene (PHE) is harmful to human health and is difficult to be eliminated from environment. In this study, an aerobic bacterium capable of use PHE as a sole carbon source and energy was isolated and classified as Klebsiella sp. PD3 according to 16S rDNA analysis. The degradation efficiency of PHE reached to about 78.6% after 12 days of incubation with strain PD3. Identification of metabolites formed during PHE degradation process by this strain was carried out by GC-MS. The first degradation step of PHE by PD3 was proposed to generate 1-hydroxy-2-naphthoic acid. Two subsequent different routes for the metabolism of 1-hydroxy-2-naphthoic acid were proposed. Strain PD3 also showed two plant growth promoting properties like phosphate solubilization and ACC deaminase activity. Inoculation with Klebsiella sp. PD3 significantly improved growth performance, biomass production, seed germination rate, photosynthetic capacity, antioxidant levels, relative water content and chlorophyll accumulation in rice (Oryza sativa L.) plants under PHE stress conditions in comparison with non-inoculation treatment. Moreover, PD3-inoculated rice showed lower ROS accumulation, ethylene production, ACC content, ACC oxidase activity and electrolyte leakage under PHE treatment compared to non-inoculated ones. The combination use of rice plants and strain PD3 was also shown to enhance the removal efficiency of PHE from the soil and decline the PHE accumulation in plants. Synergistic use of plants and bacteria with PHE degradation ability and PGPR attributes to remediate the PHE-contaminated soil will be an important and effective way in the phytoremediation of PHE-contaminated soils.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Danliu Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Duan Ju
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
18
|
Mishra A, Rathour R, Singh R, Kumari T, Thakur IS. Degradation and detoxification of phenanthrene by actinobacterium Zhihengliuella sp. ISTPL4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27256-27267. [PMID: 31172432 DOI: 10.1007/s11356-019-05478-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are universal environmental contaminants of great concern with regard to their potential exposure and deleterious effect on human health. The current study is the first report of phenanthrene degradation by a psychrotolerant (15 °C), halophilic (5% NaCl), and alkalophilic (pH 8) bacterial strain Zhihengliuella sp. ISTPL4, isolated from the sediment sample of the Pangong Lake, Ladakh, Jammu and Kashmir, India. Degradation studies revealed that the optimum specific growth rate was observed at 250 ppm of phenanthrene with 81% and 87% removal of phenanthrene in 72 h and 168 h, respectively. During the degradation of phenanthrene; 9,10-dihydrophenanthrene; 1-phenanthrenecarboxylic acid; and phthalic acid were detected as intermediates. Whole-genome sequencing of strain ISTPL4 has predicted phenanthrene; 9,10-monooxygense; and epoxide hydrolase B that are involved in the phenanthrene metabolism. Phenanthrene cytotoxicity was evaluated with human hepatic carcinoma cell line (HepG2) and it was observed that the cytotoxicity decreased with increased duration of bacterial incubation and maximum cell viability was observed at 168 h (89.92%). Our results suggest, Zhihengliuella sp. ISTPL4 may promise a great potential for environmental remediation applications.
Collapse
Affiliation(s)
- Arti Mishra
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rashmi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Taruna Kumari
- Department of Statistics, University of Delhi, New Delhi, 110007, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Shon JC, Noh YJ, Kwon YS, Kim JH, Wu Z, Seo JS. The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110254. [PMID: 32007746 DOI: 10.1016/j.ecoenv.2020.110254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhexue Wu
- Mass Spectrometry Convergence Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
20
|
Sun S, Wang H, Fu B, Zhang H, Lou J, Wu L, Xu J. Non-bioavailability of extracellular 1-hydroxy-2-naphthoic acid restricts the mineralization of phenanthrene by Rhodococcus sp. WB9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135331. [PMID: 31831232 DOI: 10.1016/j.scitotenv.2019.135331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. WB9, a strain isolated from polycyclic aromatic hydrocarbons contaminated soil, degraded phenanthrene (PHE, 100 mg L-1) completely within 4 days. 18 metabolites were identified during PHE degradation, including 5 different hydroxyphenanthrene compounds resulted from multiple routes of initial monooxygenase attack. Initial dioxygenation dominantly occurred on 3,4-C positions, followed by meta-cleavage to form 1-hydroxy-2-naphthoic acid (1H2N). More than 95.2% of 1H2N was transported to and kept in extracellular solution without further degradation. However, intracellular 1H2N was converted to 1,2-naphthalenediol that was branched to produce salicylate and phthalate. Furthermore, 131 genes in strain WB9 genome were related to aromatic hydrocarbons catabolism, including the gene coding for salicylate 1-monooxygenase that catalyzed the oxidation of 1H2N to 1,2-naphthalenediol, and complete gene sets for the transformation of salicylate and phthalate toward tricarboxylic acid (TCA) cycle. Metabolic and genomic analyses reveal that strain WB9 has the ability to metabolize intracellular 1H2N to TCA cycle intermediates, but the extracellular 1H2N can't enter the cells, restricting 1H2N bioavailability and PHE mineralization.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Binxin Fu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Ji D, Mao Z, He J, Peng S, Wen H. Characterization and genomic function analysis of phenanthrene-degrading bacterium Pseudomonas sp. Lphe-2. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:549-562. [PMID: 31913782 DOI: 10.1080/10934529.2019.1711352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
A stain of Pseudomonas sp. Lphe-2, which could degrade phenanthrene as the main carbon and energy source, was isolated from the aerobic sludge of a coking plant. Then its biodegradation characteristics, whole genome sequence and biodegradation pathway were examined. The Lphe-2 strain exhibited broad-spectrum degradation activities for various polycyclic aromatic hydrocarbons (PAHs), including naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR). Under the optimal conditions, the degradation efficiency of phenanthrene (100 mg/L) is 92.76% on the 7th day, and 2-carboxybenzaldehyde and 1-hydroxy-2-naphthoic acid are the major metabolites found in phenanthrene metabolism. Genomic analysis of Pseudomonas sp. Lphe-2 showed that a total of 3879 genes from the Lphe-2 strain were annotated based on the COG classification, and the genomic information was annotated to 185 metabolic pathways. Based on the intermediate metabolites detected by Gas Chromatography-Mass Spectrometer (GC-MS) and all potential phenanthrene-degrading genes identified by BLAST search, a phenanthrene biodegradation pathway of Lphe-2 strain was proposed. These results suggested that Lphe-2 strain has a good prospect in the bioremediation of PAHs pollution.
Collapse
Affiliation(s)
- Dan Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhen Mao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Jian He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Sihan Peng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Hongyu Wen
- School of life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
22
|
Sarma H, Sonowal S, Prasad MNV. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds ─ a microcosmic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:288-299. [PMID: 30947032 DOI: 10.1016/j.ecoenv.2019.03.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 05/18/2023]
Abstract
The study has been carried out to develop a plant-microbes assisted remediation technology to accelerate polyaromatic hydrocarbons (PAHs) degradation and heavy metals (HMs) removal in a microcosmic experiment. The quaternary mixture of PAHs (phenanthrene, anthracene, pyrene, and benzo[a] pyrene) and metals (Cr, Ni, and Pb) spiked the soil, constructing a microcosm; the microcosms were bioaugmented with newly developed plant bacterial consortia (Cpm1 and Cpm2). The microcosms were amended with biochar (sieved particle size 0.5-2 mm) as redox regulators to reduce oxidative stress of plant-microbe systems. To formulate the two plant-bacterial consortia, plant species were collected and bacteria were isolated from oil spill soil. The bacterial strains used in two formulated consortia includes ─ Cpm1 (Enterobacter cloacae HS32, Brevibacillus reuszeri HS37, and Stenotrophomonas sp. HS16) and Cpm2 (Acinetobacter junii HS29, Enterobacter aerogenes HS39 and Enterobacter asburiae HS22). The PAHs degradation and metal removal efficacy of the consortia (Cpm1 and Cpm2) were studied after 24 weeks of trial. The physicochemical properties of microcosm's soil (M2 and M3) were assessed after experimentation, which resulted in the finding that the soil exhibits dropped in pH from basic to neutral after application of the plant microbe's consortium. The electrical conductivity was lower in M2 and M3 soils, with a range between 1.60 and 1.80 mS/cm after the treatment. The Gas Chromatography/Mass Spectrometry (GC/MS) results illustrate how metabolites with the different molecular weight (M.W) were found in M2 and M3 soils (184─446), as a result of the plant-microbes mediated rhizodegradation of four spiked PAHs. The metals in microcosm's soil are very low in concentration after 24 weeks of trial when compared to control(M1). The Cr, Ni and Pb removal percentages were found in 45.79, 42.19 and 44.85 in M2. However, the removal percentages were found to be 45.41, 41.47 and 44.25 respectively for these same HMs in M3 soil. Both the consortia that were newly developed showed similar trends of metals removal and PAHs degradation. This study provides a breakthrough in the area of rhizosphere engineering with the goal of maintaining a sustainable application of plant-microbes in ecosystem services.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N N Saikia College, Titabar, 785630, Assam, India.
| | - S Sonowal
- Department of Botany, N N Saikia College, Titabar, 785630, Assam, India
| | - M N V Prasad
- School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telengana, India
| |
Collapse
|
23
|
Abo-State M, Riad B, Bakr A, Abdel Aziz M. Biodegradation of naphthalene byBordetella aviumisolated from petroleum refinery wastewater in Egypt and its pathway. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M.A.M. Abo-State
- Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - B.Y. Riad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - A.A. Bakr
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI), Egypt
| | - M.F. Abdel Aziz
- Department of Biochemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Li X, Li H, Qu C. A Review of the Mechanism of Microbial Degradation of Petroleum Pollution. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/484/1/012060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
26
|
Sun S, Wang H, Chen Y, Lou J, Wu L, Xu J. Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:509-518. [PMID: 30388634 DOI: 10.1016/j.jhazmat.2018.10.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Mycobacterium sp. WY10 was a highly effective PAHs-degrading bacterium that can degrade phenanthrene (PHE, 100 mg L-1) completely within 60 h and 83% of pyrene (PYR, 50 mg L-1) in 72 h. In this study, ten and eleven metabolites, respectively, were identified in PHE and PYR degradation cultures, and a detailed PHE and PYR metabolism maps were constructed based on the metabolic results. The strain WY10 degraded PHE and PYR with initial dioxygenation mainly on 3,4- and 4,5-carbon positions, respectively. Thereafter, PYR degradation entered the PHE degradation pathway via the ortho-cleavage. It was observed that the "lower pathway" of PHE and PYR degradations were different. Based on the kinetics of residual metabolites, PHE was degraded in a dominant phthalate pathway and a minor salicylate pathway. However, both phthalate and salicylate pathways played important roles on PYR degradation. The WY10 genome revealed there were fifty-three genes related to PAHs degradations, including a complete gene set for PHE and PYR degradation via the phthalate pathway. The candidate gene/ORF, BOH72_19755, encoding salicylate synthase might contribute in the salicylate pathway.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Romaniuk K, Golec P, Dziewit L. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments. Front Microbiol 2018; 9:3144. [PMID: 30619210 PMCID: PMC6305408 DOI: 10.3389/fmicb.2018.03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Arthrobacter spp. are coryneform Gram-positive aerobic bacteria, belonging to the class Actinobacteria. Representatives of this genus have mainly been isolated from soil, mud, sludge or sewage, and are usually mesophiles. In recent years, the presence of Arthrobacter spp. was also confirmed in various extreme, including permanently cold, environments. In this study, 36 psychrotolerant and metalotolerant Arthrobacter strains isolated from petroleum-contaminated soil from the King George Island (Antarctica), were screened for the presence of plasmids. The identified replicons were thoroughly characterized in order to assess their diversity and role in the adaptation of Arthrobacter spp. to harsh Antarctic conditions. The screening process identified 11 different plasmids, ranging in size from 8.4 to 90.6 kb. A thorough genomic analysis of these replicons detected the presence of numerous genes encoding proteins that potentially perform roles in adaptive processes such as (i) protection against ultraviolet (UV) radiation, (ii) resistance to heavy metals, (iii) transport and metabolism of organic compounds, (iv) sulfur metabolism, and (v) protection against exogenous DNA. Moreover, 10 of the plasmids carry genetic modules enabling conjugal transfer, which may facilitate their spread among bacteria in Antarctic soil. In addition, transposable elements were identified within the analyzed plasmids. Some of these elements carry passenger genes, which suggests that these replicons may be actively changing, and novel genetic modules of adaptive value could be acquired by transposition events. A comparative genomic analysis of plasmids identified in this study and other available Arthrobacter plasmids was performed. This showed only limited similarities between plasmids of Antarctic Arthrobacter strains and replicons of other, mostly mesophilic, isolates. This indicates that the plasmids identified in this study are novel and unique replicons. In addition, a thorough meta-analysis of 247 plasmids of psychrotolerant bacteria was performed, revealing the important role of these replicons in the adaptation of their hosts to extreme environments.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Front Microbiol 2018; 9:2992. [PMID: 30568644 PMCID: PMC6289982 DOI: 10.3389/fmicb.2018.02992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Lisa Pataczek
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Thomas H. Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | | | - Svein Ø. Solberg
- World Vegetable Center, Tainan, China
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
29
|
Production of new rhamnolipids Rha C16-C16 by Burkholderia sp. through biodegradation of diesel and biodiesel. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Kaushal J, Mehandia S, Singh G, Raina A, Arya SK. Catalase enzyme: Application in bioremediation and food industry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. CHEMOSPHERE 2017; 188:280-291. [PMID: 28888116 DOI: 10.1016/j.chemosphere.2017.09.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 05/22/2023]
Abstract
Control and prevention of environmental pollution has become a worldwide issue of concern. Aromatic hydrocarbons including benzene, toluene, ethyl benzene, xylene (BTEX) and polyaromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs), released into the environment mainly by exploration activities of petroleum industry. These pollutants are mutagenic, carcinogenic, immunotoxic and teratogenic to lower and higher forms of life i.e. microorganisms to humans. According to the International Agency for Research on Cancer (IARC) and United States Environmental Protection Agency (U.S. EPA), Benzo[a]pyrene (BaP) is carcinogenic in laboratory animals and humans. Aromatic hydrocarbons are highly lipid soluble and thus readily absorbed from environment in gastrointestinal tract of mammals. Treatment and remediation of petroleum refinery waste have been shown either to reduce or to eliminate genotoxicity of these pollutants. Bioremediation by using microorganisms to treat this waste is showing a promising technology as it is safe and cost-effective option among various technologies tested. The main aim of this review is to provide contemporary information on variety of aromatic hydrocarbons present in crude oil (with special focus to mono- and poly-aromatic hydrocarbons), exposure routes and their adverse effects on humans. This review also provides a synthesis of scientific literature on remediation technologies available for aromatic hydrocarbons, knowledge gaps and future research developments in this field.
Collapse
Affiliation(s)
- Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
32
|
Schrlau JE, Kramer AL, Chlebowski A, Truong L, Tanguay RL, Simonich SLM, Semprini L. Formation of Developmentally Toxic Phenanthrene Metabolite Mixtures by Mycobacterium sp. ELW1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8569-8578. [PMID: 28727453 PMCID: PMC5996983 DOI: 10.1021/acs.est.7b01377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mycobacterium sp. ELW1 co-metabolically degraded up to 1.8 μmol of phenanthrene (PHE) in ∼48 h, and hydroxyphenanthrene (OHPHE) metabolites, including 1-hydroxyphenanthrene (1-OHPHE), 3-hydroxyphenanthrene (3-OHPHE), 4-hydroxyphenanthrene (4-OHPHE), 9-hydroxyphenanthrene (9-OHPHE), 9,10-dihydroxyphenanthrene (1,9-OHPHE), and trans-9,10-dihydroxy-9,10-dihydrophenanthrene (trans-9,10-OHPHE), were identified and quantified over time. The monooxygenase responsible for co-metabolic transformation of PHE was inhibited by 1-octyne. First-order PHE transformation rates, kPHE, and half-lives, t1/2, for PHE-exposed cells were 0.16-0.51 h-1 and 1.4-4.3 h, respectively, and the 1-octyne controls ranged from 0.015-0.10 h-1 to 7.0-47 h, respectively. While single compound standards of PHE and trans-9,10-OHPHE, the major OHPHE metabolite formed by ELW1, were not toxic to embryonic zebrafish (Danio rerio), single compound standards of minor OHPHE metabolites, 1-OHPHE, 3-OHPHE, 4-OHPHE, 9-OHPHE, and 1,9-OHPHE, were toxic, with effective concentrations (EC50's) ranging from 0.5 to 5.5 μM. The metabolite mixtures formed by ELW1, and the reconstructed standard mixtures of the identified OHPHE metabolites, elicited a toxic response in zebrafish for the same three time points. EC50s for the metabolite mixtures formed by ELW1 were lower (more toxic) than those for the reconstructed standard mixtures of the identified OHPHE metabolites. Ten unidentified hydroxy PHE metabolites were measured in the derivatized mixtures formed by ELW1 and may explain the increased toxicity of the ELW1 metabolites mixture relative to the reconstructed standard mixtures of the identified OHPHE metabolites.
Collapse
Affiliation(s)
- Jill E. Schrlau
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Amber L. Kramer
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Anna Chlebowski
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Lewis Semprini
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| |
Collapse
|
33
|
Yan S, Wu G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J Appl Genet 2017; 58:545-563. [PMID: 28685384 PMCID: PMC5655620 DOI: 10.1007/s13353-017-0402-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/22/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) are harmful to human health, their elimination from the environment is not easy. Biodegradation of PAHs is promising since many bacteria have the ability to use hydrocarbons as their sole carbon and energy sources for growth. Of various microorganisms that can degrade PAHs, Pseudomonas aeruginosa is particularly important, not only because it causes a series of diseases including infection in cystic fibrosis patients, but also because it is a model bacterium in various studies. The genes that are responsible for degrading PAHs have been identified in P. aeruginosa, however, no gene acts alone as various stresses often initiate different metabolic pathways, quorum sensing, biofilm formation, antibiotic tolerance, etc. Therefore, it is important to study how PAH degradation genes behave under different conditions. In this study, we apply network analysis to investigating how 46 PAH degradation genes reorganized among 5549 genes in P. aeruginosa PAO1 under nine different conditions using publicly available gene coexpression data from GEO. The results provide six aspects of novelties: (i) comparing the number of gene clusters before and after stresses, (ii) comparing the membership in each gene cluster before and after stresses, (iii) defining which gene changed its membership together with PAH degradation genes before and after stresses, (iv) classifying membership-changed-genes in terms of category in Pseudomonas Genome Database, (v) postulating unknown gene’s function, and (vi) proposing new mechanisms for genes of interests. This study can shed light on understanding of cooperative mechanisms of PAH degradation from the level of entire genes in an organism, and paves the way to conduct the similar studies on other genes.
Collapse
Affiliation(s)
- Shaomin Yan
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
34
|
Zhong J, Luo L, Chen B, Sha S, Qing Q, Tam NFY, Zhang Y, Luan T. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil. MARINE POLLUTION BULLETIN 2017; 114:926-933. [PMID: 27865521 DOI: 10.1016/j.marpolbul.2016.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in petroleum, and alkylated phenanthrenes are considered as the primary PAHs during some oil spill events. Bacterial strain of Sphingobium sp. MP9-4, isolated from petroleum-contaminated soil, was efficient to degrade 1-methylphenanthrene (1-MP). A detailed metabolism map of 1-MP in this strain was delineated based on analysis of metabolites with gas chromatograph-mass spectrometer (GC-MS). 1-MP was initially oxidized via two different biochemical strategies, including benzene ring and methyl-group attacks. Benzene ring attack was initiated with dioxygenation of the non-methylated aromatic ring via similar degradation pathways of phenanthrene (PHE) by bacteria. For methyl-group attack, mono oxygenase system was involved and more diverse enzymes were needed than that of PHE degradation. This study enhances the understanding of the metabolic pathways of alkylated PAHs and shows the significant potential of Sphingobium sp. MP9-4 for the bioremediation of alkylated PAHs contaminated environments.
Collapse
Affiliation(s)
- Jianan Zhong
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lijuan Luo
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sha Sha
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Qing
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nora F Y Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
35
|
Wang H, Lou J, Gu H, Luo X, Yang L, Wu L, Liu Y, Wu J, Xu J. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13378-13388. [PMID: 27026540 DOI: 10.1007/s11356-016-6515-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.
Collapse
Affiliation(s)
- Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Yong Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, China
| | - Jianjun Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
36
|
Lazim ZM, Hadibarata T. Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene. Braz J Microbiol 2016; 47:610-6. [PMID: 27287336 PMCID: PMC4927659 DOI: 10.1016/j.bjm.2016.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/22/2015] [Indexed: 11/26/2022] Open
Abstract
This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443 U/L) followed by mixed surfactant (1766 U/L) and Brij 35 (1655 U/L). UV–vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0 min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3 min and m/z 370), were identified in the treated medium.
Collapse
Affiliation(s)
- Zainab Mat Lazim
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Tony Hadibarata
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
| |
Collapse
|
37
|
Effects of Polycyclic Aromatic Hydrocarbon Mixtures on Degradation, Gene Expression, and Metabolite Production in Four Mycobacterium Species. Appl Environ Microbiol 2016; 82:3357-3369. [PMID: 27037123 DOI: 10.1128/aem.00100-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that are hazardous to human health. It has been demonstrated that members of the Mycobacterium genus are among the most effective degraders of PAHs, but few studies have focused on the degradation of PAH mixtures. In this study, single and mixed PAH metabolism was investigated in four phylogenetically distinct Mycobacterium species with respect to (i) parent compound degradation, (ii) bacterial growth, (iii) catabolic gene expression, and (iv) metabolite production. Synergistic and antagonistic effects on four model PAH compounds (benzo[a]pyrene, pyrene, fluoranthene, and phenanthrene) characterized degradation of mixtures in a strain- and mixture-dependent manner. The mixture of pyrene and phenanthrene, in particular, resulted in antagonized degradation by three out of four bacterial species, and further studies were narrowed to investigate the degradation of this mixture. Antagonistic effects persisted over time and were correlated with reduced bacterial growth. Antagonized degradation of PAH was not caused by preferential degradation of secondary PAHs, nor were mixture compounds or concentrations toxic to cells growing on sugars. Reverse transcription-PCR (RT-PCR) studies of the characterized catabolic pathway of phenanthrene showed that in one organism, antagonism of mixture degradation was associated with downregulated gene expression. Metabolite profiling revealed that antagonism in mixture degradation was associated with the shunting of substrate through alternative pathways not used during the degradation of single PAHs. The results of this study demonstrate metabolic differences between single and mixed PAH degradation with consequences for risk assessment and bioremediation of PAH-contaminated sites. IMPORTANCE Mycobacterium species are promising organisms for environmental bioremediation because of their ubiquitous presence in soils and their ability to catabolize aromatic compounds. PAHs can be degraded effectively as single compounds, but mixed substrates often are subject to degradative inhibition, which may explain the persistence of these pollutants in soils. Single and mixed PAH degradation by diverse Mycobacterium species was compared, with associated bacterial growth, gene expression, and metabolite production. The results demonstrate that antagonism characterized degradation in a strain- and mixture-dependent manner. One strain that was versatile in its pathway use of single chemicals also efficiently degraded the mixture, whereas antagonism in other the strains was associated with altered metabolic profiles, indicating unusual pathway use. The impacts of this work on risk assessment and bioremediation modeling studies indicate the need to account for mixture-generated intermediates and to recognize mixture degradation as a property distinct from that of PAH substrate range.
Collapse
|
38
|
|
39
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
40
|
Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 2015; 5:8642. [PMID: 25721465 PMCID: PMC4342571 DOI: 10.1038/srep08642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ(70) transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species.
Collapse
|
41
|
Nie M, Nie H, Cao W, Wang X, Guo Y, Tian X, Yin X, Wang Y. Phenanthrene Metabolites from a New Polycyclic Aromatic Hydrocarbon-Degrading BacteriumAeromonas salmonicidasubsp.AchromogenesStrain NY4. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2014.957406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Baker E, Tang Y, Chu F, Tisa LS. Molecular responses of Frankia sp. strain QA3 to naphthalene. Can J Microbiol 2015; 61:281-92. [PMID: 25742598 DOI: 10.1139/cjm-2014-0786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments.
Collapse
Affiliation(s)
- Ethan Baker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | | | | | | |
Collapse
|
43
|
Ye J, Yin H, Peng H, Bai J, Li Y. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:129-135. [PMID: 25232990 DOI: 10.1016/j.ecoenv.2014.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Phytoremediation is an attractive approach for the cleanup of polycyclic aromatic hydrocarbons-contaminated soil. The joint effect of alfalfa and microorganisms, including Arthrobacter oxydans, Staphylococcus auricularis and Stenotrophomonas maltophilia, on pyrene removal was investigated. The results showed that the joint effect primarily contributed to pyrene removal, and the concentration of residual pyrene in rhizosphere soil was lower than that in non-rhizosphere soil. After joint treatment for 45d, pyrene in rhizosphere soils decreased from 11.3, 52.5 and 106.0mg/kg to 2.0-3.0, 15.0-18.7, and 41.2-44.8mg/kg, respectively. These bacteria significantly enhanced pyrene accumulation and microbial community diversity, and increased soil dehydrogenase and polyphenol oxidase activities. Pyrene was initially degraded through ring cleavage. One of the main metabolites 4-dihydroxy-phenanthrene was transformed into naphthol and 1,2-dihydroxynaphthalene, which were further degraded through salicylic acid pathway and phthalic acid pathway, separately.
Collapse
Affiliation(s)
- Jinshao Ye
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hua Yin
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jieqiong Bai
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yuepeng Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
44
|
Vandera E, Samiotaki M, Parapouli M, Panayotou G, Koukkou AI. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. J Proteomics 2014; 113:73-89. [PMID: 25257624 DOI: 10.1016/j.jprot.2014.08.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/18/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED In the present study, by applying comparative quantitative proteomics, we investigated the metabolic adaptation of Arthrobacter phenanthrenivorans Sphe3 when using phenanthrene, phthalate, glucose or glucose plus phenanthrene as sole carbon and energy sources. More than a third of the total Sphe3 proteins, with function prediction within the genome, were identified with confidence. Proteomic analysis data and annotated genomic information coincide, allowing us to clarify the phenanthrene catabolic pathway. We confirmed the implication of several proteins in aromatic substrate degradation by identifying those mediating the initial ring-hydroxylation and ring cleavage of phenanthrene to phthalate, phthalate degradation, as well as ortho- and meta-protocatechuate catabolism. Repression of catabolic genes by glucose was observed by both proteomic and transcriptional analyses. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in substrate and amino acid metabolism, stress response, detoxification and membrane and cell wall metabolism. Uptake and transport associated proteins differ in the substrates used, indicating the use of different uptake mechanisms for transport of each compound in the Sphe3 cells. Our results also suggest the activation of a glyoxylate shunt in the presence of aromatic compounds, based on the up-regulation of the key enzymes of this pathway. BIOLOGICAL SIGNIFICANCE A. phenanthrenivorans Sphe3, isolated from a creosote contaminated soil in Greece, can grow on phenanthrene as the sole source of carbon and energy. To explore the phenanthrene catabolic pathway by determining the key proteins involved in this pathway, as well as the global changes in proteins due to the adaptive response of Sphe3 cells grown on different substrates, we applied a gel-free quantitative proteomic analysis using nanoLC-MS/MS. To our knowledge this is the first study of comparative global proteomic changes occurring in the Sphe3 cells under exposure in different nutritional environments. The extended proteomic changes observed in Sphe3 grown on different substrates provide an insight in the complex interactions occurring in the presence of aromatic compounds and could serve as a basis for further investigations intended to elucidate the general regulatory mechanism by which Sphe3 adapts to such xenobiotic environments. This may light the way for more efficient engineering of bacteria towards more effective bioremediation applications.
Collapse
Affiliation(s)
- Elpiniki Vandera
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece.
| | - Maria Parapouli
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, Greece
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece
| | - Anna Irini Koukkou
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, Greece.
| |
Collapse
|
45
|
Muratova A, Pozdnyakova N, Makarov O, Baboshin M, Baskunov B, Myasoedova N, Golovleva L, Turkovskaya O. Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation 2014; 25:787-95. [DOI: 10.1007/s10532-014-9699-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
|
46
|
Maeda AH, Nishi S, Hatada Y, Ozeki Y, Kanaly RA. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Microb Biotechnol 2013; 7:114-29. [PMID: 24325265 PMCID: PMC3937716 DOI: 10.1111/1751-7915.12102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/19/2013] [Accepted: 10/27/2013] [Indexed: 11/29/2022] Open
Abstract
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium.
Collapse
Affiliation(s)
- Allyn H Maeda
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, 236-0027, Japan
| | | | | | | | | |
Collapse
|
47
|
Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 2013; 79:4410-20. [PMID: 23686261 DOI: 10.1128/aem.01129-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter(-1) benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter(-1)) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(-)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended.
Collapse
|
48
|
A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene. World J Microbiol Biotechnol 2013; 29:1685-94. [DOI: 10.1007/s11274-013-1331-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
49
|
Babin D, Ding GC, Pronk GJ, Heister K, Kögel-Knabner I, Smalla K. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiol Ecol 2013; 86:3-14. [DOI: 10.1111/1574-6941.12058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Doreen Babin
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Guo-Chun Ding
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | | | - Katja Heister
- Lehrstuhl für Bodenkunde; Technische Universität München; Freising-Weihenstephan; Germany
| | | | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| |
Collapse
|
50
|
Biodegradation Kinetics of Phenanthrene by a Fusant Strain. Curr Microbiol 2012; 65:225-30. [DOI: 10.1007/s00284-012-0147-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|