1
|
Qiu L, Guo X, Shim H, Hao T, Liang Z, Wang S, Lu Z, Lu Q, He Z. Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137313. [PMID: 39862779 DOI: 10.1016/j.jhazmat.2025.137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp. W03 for degrading TCS metabolically at concentrations up to 10 mg/L. This strain exhibited optimal degradation activity at 30°C and pH 7.0, and retained substantial activity at pH 4.0, although it was sensitive to alkaline conditions. Genomic analysis of strain W03 revealed a circular chromosome comprising 6075,907 bp with a GC content of 65.08 %. A novel TCS degradation pathway, involving dechlorination, oxidation, ether bond fission, and reoxidation processes, was identified. Also, the study mapped the global distribution of analogous Pseudomonas using 16S rRNA gene sequences, revealing their widespread presence in diverse aquatic environments, with a significant abundance in wastewater systems. These findings indicated that these bacteria play a critical ecological role in both natural and engineered environments, particularly in the degradation of organic pollutants. This study enhances our understanding of microbial degradation of emerging contaminants and presents a promising candidate for bioremediation strategies aimed at mitigating TCS-related water pollution.
Collapse
Affiliation(s)
- Lan Qiu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Zhiwei Liang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qihong Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China.
| |
Collapse
|
2
|
Pan P, Gu Y, Li T, Zhou NY, Xu Y. Deciphering the triclosan degradation mechanism in Sphingomonas sp. strain YL-JM2C: Implications for wastewater treatment and marine resources. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135511. [PMID: 39173390 DOI: 10.1016/j.jhazmat.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Triclosan (TCS), an antimicrobial agent extensively incorporated into pharmaceuticals and personal care products, poses significant environmental risks because of its persistence and ecotoxicity. So far, a few microorganisms were suggested to degrade TCS, but the microbial degradation mechanism remains elusive. Here, a two-component angular dioxygenase (TcsAaAb) responsible for the initial TCS degradation was characterized in Sphingomonas sp. strain YL-JM2C. Whole-cell biotransformation and crude enzyme assays demonstrated that TcsAaAb catalyzed the conversion of TCS to 4-chlorocatechol and 3,5-dichlorocatechol rather than the commonly suggested product 2,4-dichlorophenol. Then two intermediates were catabolized by tcsCDEF cluster via an ortho-cleavage pathway. Critical residues (N262, F279, and F391) for substrate binding were identified via molecular docking and mutagenesis. Further, TcsAaAb showed activity toward methyl triclosan and nitrofen, suggesting its versatile potential for bioremediation. In addition, TCS-degrading genes were also present in diverse bacterial genomes in wastewater, ocean and soil, and a relatively high gene abundance was observed in marine metagenomes, revealing the transformation fate of TCS in environments and the microbial potential in pollutant removal. These findings extend the understanding of the microbe-mediated TCS degradation and contribute to the mining of TCS-degrading strains and enzymes, as well as their application in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yichao Gu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
3
|
Nandikes G, Pathak P, Singh L. Unveiling microbial degradation of triclosan: Degradation mechanism, pathways, and catalyzing clean energy. CHEMOSPHERE 2024; 357:142053. [PMID: 38636917 DOI: 10.1016/j.chemosphere.2024.142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Emerging organic contaminants present in the environment can be biodegraded in anodic biofilms of microbial fuel cells (MFCs). However, there is a notable gap existing in deducing the degradation mechanism, intermediate products, and the microbial communities involved in degradation of broad-spectrum antibiotic such as triclosan (TCS). Herein, the possible degradation of TCS is explored using TCS acclimatized biofilms in MFCs. 95% of 5 mgL-1 TCS are been biodegraded within 84 h with a chemical oxygen demand (COD) reduction of 62% in an acclimatized-MFC (A-MFC). The degradation of TCS resulted in 8 intermediate products including 2,4 -dichlorophenol which gets further mineralized within the system. Concurrently, the 16S rRNA V3-V4 sequencing revealed that there is a large shift in microbial communities after TCS acclimatization and MFC operation. Moreover, 30 dominant bacterial species (relative intensity >1%) are identified in the biofilm in which Sulfuricurvum kujiense, Halomonas phosphatis, Proteiniphilum acetatigens, and Azoarcus indigens significantly contribute to dihydroxylation, ring cleavage and dechlorination of TCS. Additionally, the MFC was able to produce 818 ± 20 mV voltage output with a maximum power density of 766.44 mWm-2. The antibacterial activity tests revealed that the biotoxicity of TCS drastically reduced in the MFC effluent, signifying the non-toxic nature of the degraded products. Hence, this work provides a proof-of-concept strategy for sustainable mitigation of TCS in wastewaters with enhanced bioelectricity generation.
Collapse
Affiliation(s)
- Gopa Nandikes
- Resource Management Lab, Department of Environmental Science and Engineering, SRM University-AP, Andhra Pradesh, 522503, India
| | - Pankaj Pathak
- Resource Management Lab, Department of Environmental Science and Engineering, SRM University-AP, Andhra Pradesh, 522503, India.
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, H.P., India, 175001
| |
Collapse
|
4
|
Skinner JP, Palar S, Allen C, Raderstorf A, Blake P, Morán Reyes A, Berg RN, Muse C, Robles A, Hamdan N, Chu MY, Delgado AG. Acetylene Tunes Microbial Growth During Aerobic Cometabolism of Trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6274-6283. [PMID: 38531380 PMCID: PMC11008246 DOI: 10.1021/acs.est.3c08068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.
Collapse
Affiliation(s)
- Justin P. Skinner
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Skye Palar
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Channing Allen
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Alia Raderstorf
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Presley Blake
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Arantza Morán Reyes
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Instituto
de Energías Renovables, Universidad
Nacional Autónoma de México, Xochicalco s/n, Azteca, Temixco, Morelos 62588, Mexico
| | - Riley N. Berg
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Christopher Muse
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Aide Robles
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Nasser Hamdan
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Min-Ying Chu
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| |
Collapse
|
5
|
Ghafouri M, Pourjafar F, Ghobadi Nejad Z, Yaghmaei S. Biological treatment of triclosan using a novel strain of Enterobacter cloacae and introducing naphthalene dioxygenase as an effective enzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131833. [PMID: 37473572 DOI: 10.1016/j.jhazmat.2023.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12 h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.
Collapse
Affiliation(s)
- Mahsa Ghafouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Pourjafar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
6
|
Qiu L, Guo X, Liang Z, Lu Q, Wang S, Shim H. Uncovering the metabolic pathway of novel Burkholderia sp. for efficient triclosan degradation and implication: Insight from exogenous bioaugmentation and toxicity pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122111. [PMID: 37392866 DOI: 10.1016/j.envpol.2023.122111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.
Collapse
Affiliation(s)
- Lan Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhiwei Liang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qihong Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shanquan Wang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China.
| |
Collapse
|
7
|
Liu Q, Zhu J, Wang L, Wang X, Huang Z, Zhao F, Zou J, Liu Y, Ma J. Interpreting the degradation mechanism of triclosan in microbial fuel cell by combining analysis microbiome community and degradation pathway. CHEMOSPHERE 2023; 321:137983. [PMID: 36739987 DOI: 10.1016/j.chemosphere.2023.137983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microbes play a dominant role for the transformation of organic contaminants in the environment, while a significant gap exists in understanding the degradation mechanism and the function of different species. Herein, the possible bio-degradation of triclosan in microbial fuel cell was explored, with the investigation of degradation kinetics, microbial community, and possible degradation products. 5 mg/L of triclosan could be degraded within 3 days, and an intermediate degradation product (2,4-dichlorophen) could be further degraded in system. 32 kinds of dominant bacteria (relative intensity >0.5%) were identified in the biofilm, and 10 possible degradation products were identified. By analyzing the possible involved bioreactions (including decarboxylation, dehalogenation, dioxygenation, hydrolysis, hydroxylation, and ring-cleavage) of the dominant bacteria and possible degradation pathway of triclosan based on the identified products, biodegradation mechanism and function of the bacteria involved in the degradation of triclosan was clarified simultaneously. This study provides useful information for further interpreting the degradation mechanism of organic pollutants in mixed flora by combining analysis microbiome community and degradation pathway.
Collapse
Affiliation(s)
- Qingliang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinan Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Zou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China; Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Navrozidou E, Remmas N, Melidis P, Sylaios G, Ntougias S. Biotreatment efficiency, degradation mechanism and bacterial community structure in an immobilized cell bioreactor treating triclosan-rich wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:1518-1529. [PMID: 34781849 DOI: 10.1080/09593330.2021.2007287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Biotreatment of triclosan is mainly performed in conventional activated sludge systems, which, however, are not capable of completely removing this antibacterial agent. As a consequence, triclosan ends up in surface and groundwater, constituting an environmental threat, due to its toxicity to aquatic life. However, little is known regarding the diversity and mechanism of action of microbiota capable of degrading triclosan. In this work, an immobilized cell bioreactor was setup to treat triclosan-rich wastewater. Bioreactor operation resulted in high triclosan removal efficiency, even greater than 99.5%. Nitrogen assimilation was mainly occurred in immobilized biomass, although nitrification was inhibited. Based on Illumina sequencing, Bradyrhizobiaceae, followed by Ferruginibacter, Thermomonas, Lysobacter and Gordonia, were the dominant genera in the bioreactor, representing 38.40 ± 0.62% of the total reads. However, a broad number of taxa (15 genera), mainly members of Xanthomonadaceae, Bradyrhizobiaceae and Chitinophagaceae, showed relative abundances between 1% and 3%. Liquid Chromatography coupled to Quadrupole Time-Of-Flight Mass Spectrometry (LC-QTOF-MS) resulted in the identification of catabolic routes of triclosan in the immobilized cell bioreactor. Seven intermediates of triclosan were detected, with 2,4-dichlorophenol, 4-chlorocatechol and 2-chlorohydroquinone being the key breakdown products of triclosan. Thus, the immobilized cell bioreactor accommodated a diverse bacterial community capable of degrading triclosan.
Collapse
Affiliation(s)
- Efstathia Navrozidou
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Georgios Sylaios
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
9
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
10
|
Yin Y, Wu H, Jiang Z, Jiang J, Lu Z. Degradation of Triclosan in the Water Environment by Microorganisms: A Review. Microorganisms 2022; 10:1713. [PMID: 36144315 PMCID: PMC9505857 DOI: 10.3390/microorganisms10091713] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Triclosan (TCS), a kind of pharmaceuticals and personal care products (PPCPs), is widely used and has had a large production over years. It is an emerging pollutant in the water environment that has attracted global attention due to its toxic effects on organisms and aquatic ecosystems, and its concentrations in the water environment are expected to increase since the COVID-19 pandemic outbreak. Some researchers found that microbial degradation of TCS is an environmentally sustainable technique that results in the mineralization of large amounts of organic pollutants without toxic by-products. In this review, we focus on the fate of TCS in the water environment, the diversity of TCS-degrading microorganisms, biodegradation pathways and molecular mechanisms, in order to provide a reference for the efficient degradation of TCS and other PPCPs by microorganisms.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Jingwei Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Lam KY, Yu ZH, Flick R, Noble AJ, Passeport E. Triclosan uptake and transformation by the green algae Euglena gracilis strain Z. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155232. [PMID: 35427625 DOI: 10.1016/j.scitotenv.2022.155232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Triclosan is an antimicrobial chemical present in consumer products that is frequently detected in aquatic environments. In this research, we investigated the role of a common freshwater microalgae species, Euglena gracilis for triclosan uptake and transformation in open-water treatment wetlands. Lab-scale wetland bioreactors were created under various conditions of light (i.e., continuous (white) light, red light, and in the dark), media (i.e., wetland, autoclaved wetland, Milli-Q, and growth media water), and presence or absence of algae. Triclosan and its potential transformation products were identified in the water and algae phases. Triclosan transformation occurred most rapidly with reactors that received continuous (white) light, with pseudo first-order rate constants, k, ranging from 0.035 to 0.292 day-1. This indicates that phototransformation played a major role in triclosan transformation during the day, despite light screening by algae. Algae contributed to the uptake and transformation of triclosan in all reactors, and algae and bacteria both contributed to triclosan biotransformation under dark conditions, representative of nighttime conditions. Some transformation products were formed and further transformed, e.g., triclosan-O-sulfate, methoxy and diglucosyl conjugate of hydroxylated triclosan, and dimethoxy and glucosyl conjugate of 2,4-dichlorophenol, suggesting their minimal accumulation over the 25 days of the experiments. This study shows that the combined action of light, microbes, and algae allows the safe transfer and transformation of triclosan in open-water treatment wetlands.
Collapse
Affiliation(s)
- Ka Yee Lam
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Zhu Hao Yu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Adam J Noble
- Noblegen Inc., 2140 East Bank Dr., Peterborough, Ontario K9L 1Z8, Canada
| | - Elodie Passeport
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
12
|
Yang SH, Shi Y, Strynar M, Chu KH. Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127052. [PMID: 34523492 PMCID: PMC8823295 DOI: 10.1016/j.jhazmat.2021.127052] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 05/26/2023]
Abstract
6:2 fluorotelomer sulfonic acid (6:2 FTSA) is one per- and poly-fluoroalkyl substances commonly detected in the environment. While biotransformation of 6:2 FTSA has been reported, factors affecting desulfonation and defluorination of 6:2 FTSA remain poorly understood. This study elucidated the effects of carbon and sulfur sources on the gene expression of Rhodococcus jostii RHA1 which is responsible for the 6:2 FTSA biotransformation. While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. The desulfonation and defluorination ability of these enzymes toward 6:2 FTSA were validated through heterologous gene expression and in vitro assays. Four degradation metabolites were confirmed and one was identified as a tentative metabolite. The results provide a new understanding of 6:2 FTSA biotransformation by RHA1. The genes encoding these desulfonating- and defluorinating-enzymes are potential markers to be used to assess 6:2 FTSA biotransformation in the environment.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA
| | - Ying Shi
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA
| | - Mark Strynar
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Balakrishnan P, Mohan S. Treatment of triclosan through enhanced microbial biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126430. [PMID: 34252677 DOI: 10.1016/j.jhazmat.2021.126430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is extensively used in healthcare and personal care products as an antibacterial agent. Due to the persistent and toxic nature of TCS, it is not completely degraded in the biological wastewater treatment process. In this research work, identification of TCS degrading bacteria from municipal wastewater sludge and applying the same as bioaugmentation treatment for wastewater have been reported. Based on the 16S rRNA analysis of wastewater sludge, it was found that Providencia rettgeri MB-IIT strain was active and able to grow in higher TCS concentration. The identified bacterial strain was able to use TCS as carbon and energy source for its growth. The biodegradation experiment was optimized for the operational parameters viz. pH (5-10), inoculum size (1-5% (v/v)) and different initial concentration (2, 5, and 10 mg/L) of TCS. During the TCS degradation process, manganese peroxidase (MnP) and laccase (LAC) enzyme activity and specific growth rate of P. rettgeri strain were maximum at pH=7% and 2% (v/v) inoculum size, resulting in 98% of TCS removal efficiency. A total of six intermediate products were identified from the Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis, and the two mechanisms responsible for the degradation of TCS have been elucidated. The study highlights that P. rettgeri MB-IIT strain could be advantageously used to degrade triclosan present in the wastewater.
Collapse
Affiliation(s)
- P Balakrishnan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - S Mohan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
14
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
15
|
Zhu G, Xing F, Tao J, Chen S, Li K, Cao L, Yan N, Zhang Y, Rittmann BE. Synergy of strains that accelerate biodegradation of pyridine and quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112119. [PMID: 33581454 DOI: 10.1016/j.jenvman.2021.112119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Three bacterial strains were isolated from activated sludge acclimated to biodegrade pyridine and quinoline simultaneously. The strains were identified as Bacillus tropicus, Bacillus aquimaris, and Rhodococcus ruber. When the isolated bacteria were used for pyridine and quinoline biodegradation in separate or combined modes, R. ruber had much faster kinetics, and combining R. ruber with one or both of the Bacillus strains increased further the biodegradation kinetics. For example, the time needed for complete biodegradation of 1 mM quinoline and pyridine decreased to 20 h and 6 h, respectively, with the three strains combined, compared to 26 h and 7 h with R. ruber alone. Whereas quinoline was completely mineralized by all three strains, 10-14% of the pyridine persisted as a dead-end product, 2-hydroxypyridine (2HP). The acclimated sludge from which the three bacterial species were isolated was able to transform 2HP, and adding the bacterial strains (especially R. ruber) to the acclimated sludge accelerated the rate of 2HP removal and mineralization through a form of synergy.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Feifei Xing
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jinzhao Tao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ke Li
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lifeng Cao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; School of Environment, Tsinghua University, 100084, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, USA
| |
Collapse
|
16
|
Beiras R, Schönemann AM. Water quality criteria for selected pharmaceuticals and personal care products for the protection of marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143589. [PMID: 33203564 DOI: 10.1016/j.scitotenv.2020.143589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and personal care products (PPCP) are increasingly detected in estuarine and coastal waters and organisms but they are absent from lists of priority substances and no environmental quality criteria are available for these chemicals. Ten PPCP were selected on the basis of their occurrence and reported biological effects, oxytetracycline (OTC), sulfamethoxazole (SUL), ibuprofen (IBU), diclofenac (DCF), sertraline (SER), fluoxetine (FLU), carbamazepine (CAR), propranolol (PRO), benzophenone-3 (BP3), and triclosan (TCS). For these chemicals, probabilistic and deterministic water quality criteria (WQC) were derived from their species sensitive distribution (SSD) curves and the critical values respectively, prioritizing ecotoxicological information obtained with sensitive early-life stages of marine organisms. For most PPCP, the probability that the log-logistic model provided better fit than the log-normal model to the SSD was >95%. Using the lower end of the 5th percentile 95% confidence interval, resulting WQC ranged from 1 to 6 μg·L-1 for OTC, IBU, SER, FLU, PRO and TCS. In contrast WQC derived applying the assessment factor method were consistently more conservative, ranging from 0.01 to 0.54 for the same chemicals.
Collapse
Affiliation(s)
- Ricardo Beiras
- Department of Ecology and Animal Biology, Faculty of Marine Sciences, University of Vigo, 36310 Vigo, Galicia, Spain; ECIMAT-CIM, University of Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain.
| | - Alexandre M Schönemann
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Galicia, Spain; ECIMAT-CIM, University of Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain
| |
Collapse
|
17
|
Dai H, Gao J, Li D, Wang Z, Duan W. Metagenomics combined with DNA-based stable isotope probing provide comprehensive insights of active triclosan-degrading bacteria in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124192. [PMID: 33069997 DOI: 10.1016/j.jhazmat.2020.124192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation of triclosan (TCS) during wastewater treatment occurred frequently, while little researches are known the identity of microorganisms involved in the biodegradation process. In this work, DNA-based stable isotope probing (DNA-SIP) was occupied to investigate the TCS assimilation microbes originated from a full-scale cyclic activated sludge system in Beijing. Results of TCS removal pathway showed that the TCS removal in nitrification process was mainly contributed by the metabolism of heterotrophic bacteria, accounting for about 18.54%. DNA-SIP assay indicated that Sphingobium dominated the degradation of TCS. Oligotyping analysis further indicated that oligotype GCTAAT and ATGTTA of Sphingobium played important roles in degrading TCS. Furthermore, the Kyoto Encyclopedia of Genes and Genomes functional abundance statistics based on PICRUSt2 showed that glutathione transferase was the most prevalent enzyme involved in TCS metabolism, and TCS might be removed through microbial carbon metabolism. Metagenomics made clear that Sphingobium might play irrelevant role on the propagation of antibiotics resistance genes (ARGs), even though, it could degrade TCS. Thauera and Dechloromonas were identified as the key hosts of most ARGs. This study revealed the potential metabolic pathway and microbial ecology of TCS biodegradation in nitrification process of wastewater treatment system.
Collapse
Affiliation(s)
- Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wanjun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
18
|
Abbott T, Kor-Bicakci G, Islam MS, Eskicioglu C. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. Int J Mol Sci 2020; 21:ijms21239241. [PMID: 33287448 PMCID: PMC7729486 DOI: 10.3390/ijms21239241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial compounds are used in a broad range of personal care, consumer and healthcare products and are frequently encountered in modern life. The use of these compounds is being reexamined as their safety, effectiveness and necessity are increasingly being questioned by regulators and consumers alike. Wastewater often contains significant amounts of these chemicals, much of which ends up being released into the environment as existing wastewater and sludge treatment processes are simply not designed to treat many of these contaminants. Furthermore, many biotic and abiotic processes during wastewater treatment can generate significant quantities of potentially toxic and persistent antimicrobial metabolites and byproducts, many of which may be even more concerning than their parent antimicrobials. This review article explores the occurrence and fate of two of the most common legacy antimicrobials, triclosan and triclocarban, their metabolites/byproducts during wastewater and sludge treatment and their potential impacts on the environment. This article also explores the fate and transformation of emerging alternative antimicrobials and addresses some of the growing concerns regarding these compounds. This is becoming increasingly important as consumers and regulators alike shift away from legacy antimicrobials to alternative chemicals which may have similar environmental and human health concerns.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Mohammad S. Islam
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Correspondence: ; Tel.: +1-250-807-8544 (C.E)
| |
Collapse
|
19
|
Wang Z, Gao J, Li D, Dai H, Zhao Y. Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123049. [PMID: 32526436 DOI: 10.1016/j.jhazmat.2020.123049] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
As more and more microplastics (MPs) and triclosan (TCS), which are added in consumer products, enter wastewater treatment plants with sewage, there are concerns about the impacts of the co-occurrence of MPs and TCS on biological wastewater treatment. In this study, the co-effects of four 1 mg/L MPs (polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and polyamide (PA)) and 0.5 mg/L TCS on nitrification were investigated in lab-scale nitrifying sequencing batch reactors (SBRs) (SBR-PE, SBR-PS, SBR-PVC and SBR-PA) relative to control which received no MPs (SBR-CK). The removal rates of NH4+-N and TCS in SBR-CK were around 100% and 92%, respectively. Compared with SBR-CK, no measurable inhibition was observed on nitrification in SBR-PE and SBR-PS, however, SBR-PVC and SBR-PA rapidly lost nitrification function during 14 days, which might be due to the reducing of MLSS caused by PVC, PA and TCS co-loading. Furthermore, PS, PVC and PA decreased the removal of TCS. The co-occurrence of TCS and PS, PVC, PA increased extracellular polymeric substances, reduced microbial diversity and shifted microbial communities. Notably, the acrA-03, mexF, fabI, intI1, intI3 and IS613 genes were enriched by MPs and TCS co-loading. Therefore, the removal of MPs and TCS from wastewater should be prioritized.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
20
|
Zhang D, Gao J, Zhang L, Zhang W, Jia J, Dai H, Wang Z. Responses of nitrification performance, triclosan resistome and diversity of microbes to continuous triclosan stress in activated sludge system. J Environ Sci (China) 2020; 92:211-223. [PMID: 32430124 DOI: 10.1016/j.jes.2020.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is commonly found in wastewater treatment plants, which often affects biological treatment processes. The responses of nitrification, antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study. The experiment was conducted in a sequencing batch reactor (SBR) for 240 days. Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered. And the abundances of nitrite oxidizing bacteria (NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge, which accounted for partial nitrification. When the addition of TCS was stopped, the abundance of NOB increased. The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system. Moreover, TCS increased the abundance of mexB, indicating the efflux pump might be the main TCS-resistance mechanism. As a response to TCS, bacteria could secrete more protein (PN) than polysaccharide. Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS. High-throughput sequencing found that the relative abundances of Paracoccus, Pseudoxanthomonas and Thauera increased, which could secrete extracellular polymeric substances (EPS). And Sphingopyxis might be the main TCS-degrading bacteria. Overall, TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.
Collapse
Affiliation(s)
- Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lifang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenzhi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingxin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
22
|
|
23
|
Watahiki S, Kimura N, Yamazoe A, Miura T, Sekiguchi Y, Noda N, Matsukura S, Kasai D, Takahata Y, Nojiri H, Fukuda M. Ecological impact assessment of a bioaugmentation site on remediation of chlorinated ethylenes by multi-omics analysis. J GEN APPL MICROBIOL 2019; 65:225-233. [PMID: 30853704 DOI: 10.2323/jgam.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.
Collapse
Affiliation(s)
- Saori Watahiki
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nobutada Kimura
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Satoko Matsukura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology
| | | | | | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
24
|
Abstract
Abstract
Subinhibitory concentrations of antibiotics and biocides in wastewaters and sewage sludge have a great impact on the development of antibiotic resistance and its spread among bacteria. The aim of this work was to determine the occurrence of coliform bacteria and enterococci resistant to biocide triclosan in samples of sewage sludge. Subsequently, isolated strains of coliform bacteria were identified and characterized in terms of their antibiotic susceptibility and ability to form a biofilm. Occurrence of the studied bacteria was monitored in three samples of stabilized sludge from three different wastewater treatment plants (Vrakuňa, Petržalka, and Senec). The number of triclosan-resistant coliforms was the highest in the sludge sample from the wastewater treatment plant in Senec and the lowest in the sludge sample from the wastewater treatment plant in Petržalka. Triclosan-resistant Enterococcus spp. were not found in any sample of stabilized sludge. Most isolates were identified as Citrobacter freundii and Serratia spp. Triclosan-resistant isolates showed also resistance to antibiotics and the majority of them were strong biofilm producers.
Collapse
|
25
|
Hwangbo M, Claycomb EC, Liu Y, Alivio TEG, Banerjee S, Chu KH. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1189-1197. [PMID: 30308890 PMCID: PMC7263876 DOI: 10.1016/j.scitotenv.2018.08.360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 05/28/2023]
Abstract
Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Everett Caleb Claycomb
- Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843-3116, USA
| | - Yina Liu
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843-3136, USA
| | - Theodore E G Alivio
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
26
|
Phandanouvong-Lozano V, Sun W, Sanders JM, Hay AG. Biochar does not attenuate triclosan's impact on soil bacterial communities. CHEMOSPHERE 2018; 213:215-225. [PMID: 30223126 DOI: 10.1016/j.chemosphere.2018.08.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Triclosan, a broad-spectrum antimicrobial, has been widely used in pharmaceutical and personal care products. It undergoes limited degradation during wastewater treatment and is present in biosolids, most of which are land applied in the United States. This study assessed the impact of triclosan (0-100 mg kg-1) with and without biochar on soil bacterial communities. Very little 14C-triclosan was mineralized to 14CO2 (<7%) over the course of the study (42 days). While biochar (1%) significantly lowered mineralization of triclosan, analysis of 16S rRNA gene sequences revealed that biochar impacted very few OTUs and did not alter the overall structure of the community. Triclosan, on the other hand, significantly affected bacterial diversity and community structure (alpha diversity, ANOVA, p < 0.001; beta diversity, AMOVA, p < 0.01). Dirichlet multinomial mixtures (DMM) modeling and complete linkage clustering (CLC) revealed a dose-dependent impact of triclosan. Non-Parametric Metastats (NPM) analysis showed that 150 of 734 OTUs from seven main phyla were significantly impacted by triclosan (adjusted p < 0.05). Genera harboring opportunistic pathogens such as Flavobacterium were enriched in the presence of triclosan, as was Stenotrophomonas. The latter has previously been implicated in triclosan degradation via stable isotope probing. Surprisingly, Sphingomonads, which include well-characterized triclosan degraders were negatively impacted by even low doses of triclosan. Analyses of published genomes showed that triclosan resistance determinants were rare in Sphingomonads which may explain why they were negatively impacted by triclosan in our soil.
Collapse
Affiliation(s)
| | - Wen Sun
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie M Sanders
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Orhon AK, Orhon KB, Yetis U, Dilek FB. Fate of triclosan in laboratory-scale activated sludge reactors - Effect of culture acclimation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:320-327. [PMID: 28779976 DOI: 10.1016/j.jenvman.2017.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/02/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS); a widely used antimicrobial biocide, exists in several pharmaceutical and personal care products. Due to its wide usage, TCS is detected in wastewater at varying concentrations. Biological treatability of TCS and its effect on chemical oxygen demand (COD) removal efficiency were investigated running laboratory-scale pulse-fed sequencing batch reactors with acclimated and non-acclimated cultures. The culture was acclimatized to TCS by gradually increasing its concentration in the synthetic feed wastewater from 100 ng/L to 100 mg/L. There were no effects of TCS on COD removal efficiency up to the TCS concentration of 500 ng/L for both acclimatized and non-acclimatized cases. However, starting from a concentration of 1 mg/L, TCS affected the COD removal efficiency adversely. This effect was more pronounced with non-acclimatized culture. The decrease in the COD removal efficiency reached to 47% and 42% at the TCS concentration of 100 mg/L, under acclimation and non-acclimation conditions respectively. Adsorption of TCS into biomass was evidenced at higher TCS concentrations especially with non-acclimated cultures. 2,4-dichlorophenol and 2,4-dichloroanisole were identified as biodegradation by-products. The occurrence and distribution of these metabolites in the effluent and sludge matrices were found to be highly variable depending, especially, on the culture acclimation conditions.
Collapse
Affiliation(s)
- Aybala Koc Orhon
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Kemal Berk Orhon
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
28
|
Chen X, Zhuang J, Bester K. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment. Appl Microbiol Biotechnol 2018; 102:5403-5417. [PMID: 29732474 DOI: 10.1007/s00253-018-9029-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/27/2022]
Abstract
Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.
Collapse
Affiliation(s)
- Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
29
|
Gorovtsov AV, Sazykin IS, Sazykina MA. The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9283-9292. [PMID: 29453715 DOI: 10.1007/s11356-018-1465-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons (PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter, Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT) and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms.
Collapse
|
30
|
Tian H, Ma YJ, Li WY, Wang JW. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8963-8975. [PMID: 29332277 DOI: 10.1007/s11356-017-1186-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS), a widely used antimicrobial and preservative agent, is an emerging contaminant in aqueous and soil environment. Microbial degradation of TCS has not been reported frequently because of its inhibition of microbe growth. To explore the new microbial resources for TCS biodegradation, fungal endophytes were isolated and screened for the degradation potential. The endophytic strain B4 isolated from Artemisia annua L. showed higher degradation efficiency and was identified as Penicillium oxalicum based on its morphology and ITS sequences of ribosomal DNA. In both medium and synthetic wastewater, TCS (5 mg/L) was almost completely degraded within 2 h by the strain B4. The high capacity of TCS uptake (127.60 ± 8.57 mg/g dry weight, DW) of fungal mycelium was observed during the first 10 min after TCS addition. B4 rapidly reduced initial content (5.00 mg/L) of TCS to 0.41 mg/L in medium in 10 min. Then, the accumulation of TCS in mycelium was degraded from 0.45 to 0.05 mg/g DW after 1-h treatment. The degradation metabolites including 2-chlorohydroquinone, 2, 4-dichloropheno, and hydroquinone were found to be restrained in mycelia. The end products of the biodegradation in medium showed no toxicity to Escherichia coli. The new characteristics of high adsorption, fast degradation, and low residual toxicity highlight the potential of endophytic P. oxalicum B4 in TCS bioremediation.
Collapse
Affiliation(s)
- Hao Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Agricultural Product Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Wang L, Liu Y, Wang C, Zhao X, Mahadeva GD, Wu Y, Ma J, Zhao F. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:669-678. [PMID: 29154092 DOI: 10.1016/j.jhazmat.2017.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is an emerging organic contaminant in the environment. Here, the anoxic bio-degradation of TCS in microbial fuel cells (MFCs) was explored. It was found that anoxic biodegradation of TCS could be achieved in MFC, and the removal rate of TCS was accelerated after reactor acclimation. After 7 months of operation, 10mg/L TCS could be removed within 8days in MFCs. Fluorescence microscopy results revealed that the microbe cells in the reactors were intact, and the microbes were in active state. Flow cytometry test showed that the proliferation of inoculated microbe was higher in MFC effluent than that in TCS solution. These data indicate that the biotoxicity of TCS has been largely eliminated after the treatment. The microbial community shift during the TCS degradation process was investigated as well. Species such as Geothrix, Corynebacterium, Sulfobacillus, GOUTA19, Geobacter, Acidithiobacillus and Acinetobacter, which were capable for the degradation of benzene-related and dechlorination of chlorine-containing chemicals, were flourished in the electrode biofilm. They may participate in the biodegradation of TCS. This work provides a new perspective for the anoxic biodegradation of recalcitrant organics, and can be useful for the in-situ bioremediation of environmental pollutants with the removal of their biotoxicity.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Gurumurthy Dummi Mahadeva
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yicheng Wu
- Xiamen University of Technology, Xiamen 361021, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
32
|
Tato T, Salgueiro-González N, León VM, González S, Beiras R. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:173-182. [PMID: 28951039 DOI: 10.1016/j.envpol.2017.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 05/04/2023]
Abstract
This study assessed the environmental risk on coastal ecosystems posed by three phenolic compounds of special environmental and human health concern used in plastics and household products: bisphenol A (BPA), triclosan (TCS) and 4-nonylphenol (4-NP). These three chemicals are among the organic contaminants most frequently detected in wastewater. The most toxic compound tested was 4-NP, with 10% effective concentration at 11.1 μg L-1 for Isochrysis galbana, 110.5 μg L-1 for Mytilus galloprovincialis, 53.8 μg L-1 for Paracentrotus lividus, and 29.0 μg L-1 for Acartia clausi, followed by TCS (14.6 μg L-1 for I. galbana, 149.8 μg L-1 for M. galloprovincialis, 129.9 μg L-1 for P. lividus, and 64.8 μg L-1 for A. clausi). For all species tested, BPA was the less toxic chemical, with toxicity thresholds ranging between 400 and 1200 μg L-1 except for A. clausi nauplii (186 μg L-1). The relatively narrow range of variation in toxicity considering the broad physiological differences among the biological models used point at non-selective mechanisms of toxicity for these aromatic organics. Microalgae, the main primary producers in pelagic ecosystems, showed particularly high susceptibility to the chemicals tested. When the toxicity thresholds experimentally obtained were compared to the maximum environmental concentrations reported in coastal waters, the risk quotients obtained correspond to very low or low risk for BPA and TCS, and from low to high for 4-NP.
Collapse
Affiliation(s)
- Tania Tato
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain
| | - Noelia Salgueiro-González
- Grupo Química Analítica Aplicada, Departamento de Química, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Galicia, Spain
| | - Víctor M León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Sergio González
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain
| | - Ricardo Beiras
- Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain; Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36200 Vigo, Galicia, Spain.
| |
Collapse
|
33
|
Taştan BE, Tekinay T, Çelik HS, Özdemir C, Cakir DN. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies. Regul Toxicol Pharmacol 2017; 91:208-215. [DOI: 10.1016/j.yrtph.2017.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/24/2016] [Accepted: 10/26/2017] [Indexed: 11/28/2022]
|
34
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
35
|
Wang B, Chu KH. Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. CHEMOSPHERE 2017; 168:1494-1497. [PMID: 27939660 DOI: 10.1016/j.chemosphere.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant and suspected human carcinogen. TCP, a recalcitrant contaminant, has been detected in the subsurface near TCP manufacture facilities and many superfund sites. Considering the toxicity and the occurence of TCP, there is a need to seek for cost-effective treatment technologies for TCP-contaminated sites. This paper investigated TCP biodegradation by propane-oxidizing bacteria (PrOB) which are known to express propane monooxygenase (PrMO). PrMO can cometabolically degrade many different contaminants. Four PrOB, Rhodococus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus rubber ENV425 and one isolate Sphingopyxis sp. AX-A were examined for their ability to degrade TCP. All the four PrOB resting cells were able to degrade TCP. Strain JOB5 exhibited the best TCP degradation ability (vinitial = 9.7 ± 0.7 μg TCP (mg protein)-1h-1). No TCP was degraded in the presence of acetylene (an inhibitor for PrMO), suggesting that PrMO might be responsible for TCP degradation. Furthermore, competitive inhibition was observed between propane and TCP, and between trichloroethylene (TCE) and TCP.
Collapse
Affiliation(s)
- Baixin Wang
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
36
|
Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:447-469. [PMID: 29182464 PMCID: PMC6126357 DOI: 10.1080/10937404.2017.1399306] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS) is an antimicrobial used so ubiquitously that 75% of the US population is likely exposed to this compound via consumer goods and personal care products. In September 2016, TCS was banned from soap products following the risk assessment by the US Food and Drug Administration (FDA). However, TCS still remains, at high concentrations, in other personal care products such as toothpaste, mouthwash, hand sanitizer, and surgical soaps. TCS is readily absorbed into human skin and oral mucosa and found in various human tissues and fluids. The aim of this review was to describe TCS exposure routes and levels as well as metabolism and transformation processes. The burgeoning literature on human health effects associated with TCS exposure, such as reproductive problems, was also summarized.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A. Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| |
Collapse
|
37
|
Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 2016; 6:21965. [PMID: 26912101 PMCID: PMC4766416 DOI: 10.1038/srep21965] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/03/2016] [Indexed: 12/20/2022] Open
Abstract
Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L−1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L−1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment.
Collapse
|
38
|
Xin L, Sun Y, Feng J, Wang J, He D. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers. CHEMOSPHERE 2016; 144:855-863. [PMID: 26421625 DOI: 10.1016/j.chemosphere.2015.09.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.
Collapse
Affiliation(s)
- Lu Xin
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Yabing Sun
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| | - Jingwei Feng
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, PR China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, PR China
| | - Jian Wang
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Dong He
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| |
Collapse
|
39
|
Ertit Taştan B, Özdemir C, Tekinay T. Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:473-481. [PMID: 27438253 DOI: 10.2166/wst.2016.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triclosan is an antimicrobial agent and a persistent pollutant. The biodegradation of triclosan is dependent on many variables including the biodegradation organism and the environmental conditions. Here, we evaluated the triclosan degradation potential of two fungi strains, Rhodotorula mucilaginosa and Penicillium sp., and the rate of its turnover to 2,4-dichlorophenol (2,4-DCP). Both of these strains showed less susceptibility to triclosan when grown in minimal salt medium. In order to further evaluate the effects of environmental conditions on triclosan degradation, three different culture conditions including original thermal power plant wastewater, T6 nutrimedia and ammonium mineral salts medium were used. The maximum triclosan degradation yield was 48% for R. mucilaginosa and 82% for Penicillium sp. at 2.7 mg/L triclosan concentration. Biodegradation experiments revealed that Penicillium sp. was more tolerant to triclosan. Scanning electron microscopy micrographs also showed the morphological changes of fungus when cells were treated with triclosan. Overall, these fungi strains could be used as effective microorganisms in active uptake (degradation) and passive uptake (sorption) of triclosan and their efficiency can be increased by optimizing the culture conditions.
Collapse
Affiliation(s)
- Burcu Ertit Taştan
- Life Sciences Application and Research Center, Gazi University, Golbası, Ankara 06830, Turkey E-mail: ; Health Services Vocational School, Gazi University, Golbası, Ankara 06830, Turkey
| | - Caner Özdemir
- ALGELA Biotechnology Ltd Company, Golbası, Ankara 06830, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Golbası, Ankara 06830, Turkey E-mail: ; Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| |
Collapse
|
40
|
Gerbersdorf SU, Cimatoribus C, Class H, Engesser KH, Helbich S, Hollert H, Lange C, Kranert M, Metzger J, Nowak W, Seiler TB, Steger K, Steinmetz H, Wieprecht S. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. ENVIRONMENT INTERNATIONAL 2015; 79:85-105. [PMID: 25801101 DOI: 10.1016/j.envint.2015.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.
Collapse
Affiliation(s)
- Sabine U Gerbersdorf
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Carla Cimatoribus
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Holger Class
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Karl-H Engesser
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Steffen Helbich
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Claudia Lange
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Jörg Metzger
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Wolfgang Nowak
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kristin Steger
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Heidrun Steinmetz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Silke Wieprecht
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| |
Collapse
|
41
|
Identification of a gene cluster associated with triclosan catabolism. Biodegradation 2015; 26:235-46. [DOI: 10.1007/s10532-015-9730-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
|
42
|
Narrowe AB, Albuthi-Lantz M, Smith EP, Bower KJ, Roane TM, Vajda AM, Miller CS. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. MICROBIOME 2015; 3:6. [PMID: 25815185 PMCID: PMC4374533 DOI: 10.1186/s40168-015-0069-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 01/29/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Triclosan is a widely used antimicrobial compound and emerging environmental contaminant. Although the role of the gut microbiome in health and disease is increasingly well established, the interaction between environmental contaminants and host microbiome is largely unexplored, with unknown consequences for host health. This study examined the effects of low, environmentally relevant levels of triclosan exposure on the fish gut microbiome. Developing fathead minnows (Pimephales promelas) were exposed to two low levels of triclosan over a 7-day exposure. Fish gastrointestinal tracts from exposed and control fish were harvested at four time points: immediately preceding and following the 7-day exposure and after 1 and 2 weeks of depuration. RESULTS A total of 103 fish gut bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene. By measures of both alpha and beta diversity, gut microbial communities were significantly differentiated by exposure history immediately following triclosan exposure. After 2 weeks of depuration, these differences disappear. Independent of exposure history, communities were also significantly structured by time. This first detailed census of the fathead minnow gut microbiome shows a bacterial community that is similar in composition to those of zebrafish and other freshwater fish. Among the triclosan-resilient members of this host-associated community are taxa associated with denitrification in wastewater treatment, taxa potentially able to degrade triclosan, and taxa from an unstudied host-associated candidate division. CONCLUSIONS The fathead minnow gut microbiome is rapidly and significantly altered by exposure to low, environmentally relevant levels of triclosan, yet largely recovers from this short-term perturbation over an equivalently brief time span. These results suggest that even low-level environmental exposure to a common antimicrobial compound can induce significant short-term changes to the gut microbiome, followed by restoration, demonstrating both the sensitivity and resilience of the gut flora to challenges by environmental toxicants. This short-term disruption in a developing organism may have important long-term consequences for host health. The identification of multiple taxa not often reported in the fish gut suggests that microbial nitrogen metabolism in the fish gut may be more complex than previously appreciated.
Collapse
Affiliation(s)
- Adrienne B Narrowe
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Munira Albuthi-Lantz
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Erin P Smith
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
- />Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
- />School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Kimberly J Bower
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Timberley M Roane
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Alan M Vajda
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| | - Christopher S Miller
- />Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO 80217 USA
| |
Collapse
|
43
|
Jiang R, Wang M, Xue J, Xu N, Hou G, Zhang W. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea. CHEMOSPHERE 2015; 119:896-901. [PMID: 25240954 DOI: 10.1016/j.chemosphere.2014.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023]
Abstract
Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved.
Collapse
Affiliation(s)
- Ruiyu Jiang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Mingqing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jianliang Xue
- Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ning Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Guihua Hou
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wubing Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|