1
|
Torget V, Bernhoft A, Hb Müller M, Polder A, Viljugrein H, Madslien K, Ludvig Lyche J. The red listed eagle owl (Bubo bubo) population in Norway is exposed to POP levels exceeding threshold values for adverse health effects. ENVIRONMENT INTERNATIONAL 2024; 186:108650. [PMID: 38613936 DOI: 10.1016/j.envint.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The eagle owl (Bubo bubo) population in Norway is today classified as critically endangered on the red list of endangered species. Because previous studies have detected high concentrations of Persistent Organic Pollutants (POPs) in birds of prey, concerns have been raised whether POPs exposure are a significant factor to the substantial decline of the eagle owl population. The aims of this study were to measure the levels of POPs in eagle owls and to assess whether POPs may represent a potential health risk. POPs were analysed in liver samples from 100 eagle owls collected between 1994 and 2014. The concentrations of POPs were generally very high and individual birds had levels among the highest measured worldwide. The contaminant groups analysed were highly correlated (p < 0.0001). The concentrations of sum of Polychlorinated Biphenyls (∑PCB) exceeded the threshold value from moderate to severe health risk in 90% of the birds. The birds with cachectic or lean body condition had significantly higher levels of contaminants than those with higher body condition scores. No significant temporal or spatial trends were noted. The lack of temporal trends, suggest that the downward trend of POPs, appear to be levelling off. The lack of differences between inland and coastal regions suggest that the risk of exposure may be comparable between predatory birds feeding in marine or terrestrial food webs. The significantly higher POPs levels detected in individuals with poor body condition may be due to reduced fat stores and thereby higher concentration in the remaining fat and/or the weight loss could be induced by toxic effects. The high proportion of birds exceeding the threshold values for severe and high risk of adverse effects, suggest that the high contamination load may reduce the eagle owl's fitness and survival and, thus, contribute to decline of the eagle owl population.
Collapse
Affiliation(s)
- Vidar Torget
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Mette Hb Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | | | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
2
|
Krüger SC, Botha A, Bowerman W, Coverdale B, Gore ML, van den Heever L, Shaffer LJ, Smit-Robinson H, Thompson LJ, Ottinger MA. Old World Vultures Reflect Effects of Environmental Pollutants Through Human Encroachment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1586-1603. [PMID: 35673892 DOI: 10.1002/etc.5358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
African wildlife face challenges from many stressors including current and emerging contaminants, habitat and resource loss, poaching, intentional and unintentional poisoning, and climate-related environmental change. The plight of African vultures exemplifies these challenges due to environmental contaminants and other stressors acting on individuals and populations that are already threatened or endangered. Many of these threats emanate from increasing human population size and settlement density, habitat loss from changing land use for agriculture, residential areas, and industry, and climate-related changes in resource availability. Environmental chemicals that are hazardous include legacy chemicals, emerging chemicals of concern, and high-volume-use chemicals that are employed as weed killers and in other agricultural applications. Furthermore, there are differences in risk for species living in close proximity to humans or in areas affected by habitat loss, climate, and industry. Monitoring programs are essential to track the status of nesting pairs, offspring survival, longevity, and lifetime productivity. This is important for long-lived birds, such as vultures, that may be especially vulnerable to chronic exposure to chemicals as obligate scavengers. Furthermore, their position in the food web may increase risk due to biomagnification of chemicals. We review the primary chemical hazards to Old World vultures and the interacting stressors affecting these and other birds. Habitat is a major consideration for vultures, with tree-nesters and cliff-nesters potentially experiencing different risks of exposure to environmental chemicals. The present review provides information from long-term monitoring programs and discusses a range of these threats and their effects on vulture populations. Environ Toxicol Chem 2022;41:1586-1603. © 2022 SETAC.
Collapse
Affiliation(s)
- Sonja C Krüger
- Ezemvelo KZN Wildlife, Scientific Services, Cascades, South Africa
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Andre Botha
- Endangered Wildlife Trust, Midrand, South Africa
| | - William Bowerman
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Brent Coverdale
- Ezemvelo KZN Wildlife, Scientific Services, Cascades, South Africa
| | - Meredith L Gore
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - L Jen Shaffer
- Department of Anthropology, University of Maryland, College Park, Maryland, USA
| | - Hanneline Smit-Robinson
- BirdLife South Africa, Johannesburg, South Africa
- Applied Behavioural Ecological & Ecosystem Research Unit, University of South Africa, Florida, South Africa
| | - Lindy J Thompson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- Endangered Wildlife Trust, Midrand, South Africa
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Li M, Wang R, Su C, Li J, Wu Z. Temporal Trends of Exposure to Organochlorine Pesticides in the United States: A Population Study from 2005 to 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073862. [PMID: 35409545 PMCID: PMC8997618 DOI: 10.3390/ijerph19073862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
The current study aimed to investigate temporal trends of serum organochlorine pesticide (OCP) concentrations in the general United States population, approximately 30 years after the prohibition of OCP usage, by using National Health and Nutrition Examination Survey data. The least square geometric means and percent change in OCP concentrations were calculated by a survey weighted multiple linear regression model. Over 2005–2016, OCP concentrations showed significant downward temporal trends. Females had substantially higher concentrations of β-Hexachlorocyclohexane (β-HCH), p,p′-DDE and p,p′-DDT, but lower concentrations of Hexachlorobenzene (HCB) and trans-nonachlor. In addition, females had a more rapid decrease in p,p′-DDT levels over time than males. The overall OCP concentrations increased with age, and the two oldest age groups (aged 40–59 and 60+ years) had substantially lower rates of decrease than the younger age groups (aged 12–39 years). Concentrations and declines in OCPs (except for trans-nonachlor) were higher in Mexican Americans than both non-Hispanic Whites and non-Hispanic Blacks. There is a particular need for the ongoing monitoring of these banned chemicals, and measures should be taken to mitigate the exposure of vulnerable populations, including adults aged over 60, Mexican Americans, females for β-HCH, p,p′-DDE and p,p′-DDT, and males for HCB and trans-nonachlor.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China;
| | - Rui Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (C.S.)
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (C.S.)
| | - Jianwen Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
- Correspondence: (J.L.); (Z.W.)
| | - Zhenyu Wu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China;
- Correspondence: (J.L.); (Z.W.)
| |
Collapse
|
4
|
Løseth ME, Flo J, Sonne C, Krogh AKH, Nygård T, Bustnes JO, Jenssen BM, Jaspers VLB. The influence of natural variation and organohalogenated contaminants on physiological parameters in white-tailed eagle (Haliaeetus albicilla) nestlings from Norway. ENVIRONMENTAL RESEARCH 2019; 177:108586. [PMID: 31377582 DOI: 10.1016/j.envres.2019.108586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Environmental exposure to organohalogenated contaminants (OHCs), even at low concentrations, may cause detrimental effects on the development and health of wild birds. The present study investigated if environmental exposure to OHCs may influence the variation of multiple physiological parameters in Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. Plasma and feather samples were obtained from 70 nestlings at two archipelagos in Norway in 2015 and 2016. The selected physiological parameters were plasma concentrations of thyroid hormones (thyroxine, T4 and triiodothyronine, T3), plasma proteins (prealbumin, albumin, α1-, α2-, β- and γ-globulins) and selected blood clinical chemical parameters (BCCPs) associated with liver and kidney functioning. Feather concentrations of corticosterone (CORTf) were also included to investigate the overall stress level of the nestlings. Concentrations of all studied physiological parameters were within the ranges of those found in other species of free-living birds of prey nestlings and indicated that the white-tailed eagle nestlings were in good health. Our statistical models indicated that perfluoroalkyl substances (PFASs) and legacy OHCs, such as polychlorinated biphenyls, organochlorinated pesticides and polybrominated diphenyl ethers, influenced only a minor fraction of the variation of plasma thyroid hormones, prealbumin and CORTf (5-15%), and partly explained the selected BCCPs (<26%). Most of the variation in each studied physiological parameter was explained by variation between nests, which is most likely due to natural physiological variation of nestlings in these nests. This indicates the importance of accounting for between nest variation in future studies. In the present nestlings, OHC concentrations were relatively low and seem to have played a secondary role compared to natural variation concerning the variation of physiological parameters. However, our study also indicates a potential for OHC-induced effects on thyroid hormones, CORTf, prealbumin and BCCPs, which could be of concern in birds exposed to higher OHC concentrations than the present white-tailed eagle nestlings.
Collapse
Affiliation(s)
- Mari Engvig Løseth
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| | - Jørgen Flo
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University (AU), DK-4000, Roskilde, Denmark
| | - Anne Kirstine Havnsøe Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen (UCPH), Frederiksberg C, DK-1870, Denmark
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), NO-7034, Trondheim, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre on Climate and the Environment, NO-9007, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| |
Collapse
|
5
|
Bruggeman JE, Route WT, Redig PT, Key RL. Patterns and trends in lead (Pb) concentrations in bald eagle (Haliaeetus leucocephalus) nestlings from the western Great Lakes region. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:605-618. [PMID: 29637398 DOI: 10.1007/s10646-018-1933-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Most studies examining bald eagle (Haliaeetus leucocephalus) exposure to lead (Pb) have focused on adults that ingested spent Pb ammunition during the fall hunting season, often at clinical or lethal levels. We sampled live bald eagle nestlings along waterbodies to quantify Pb concentrations in 3 national park units and 2 nearby study areas in the western Great Lakes region. We collected 367 bald eagle nestling feather samples over 8 years during spring 2006-2015 and 188 whole blood samples over 4 years during spring 2010-2015. We used Tobit regression models to quantify relationships between Pb concentrations in nestling feathers and blood using study area, year, and nestling attributes as covariates. Pb in nestling feather samples decreased from 2006 to 2015, but there was no trend for Pb in blood samples. Pb concentrations in nestling feather and blood samples were significantly higher in study areas located closer to and within urban areas. Pb in feather and blood samples from the same nestling was positively correlated. Pb in feathers increased with nestling age, but this relationship was not observed for blood. Our results reflect how Pb accumulates in tissues as nestlings grow, with Pb in feathers and blood indexing exposure during feather development and before sampling, respectively. Some nestlings had Pb concentrations in blood that suggested a greater risk to sublethal effects from Pb exposure. Our data provides baselines for Pb concentrations in feathers and blood of nestling bald eagles from a variety of waterbody types spanning remote, lightly populated, and human-dominated landscapes.
Collapse
Affiliation(s)
- Jason E Bruggeman
- Minnesota Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - William T Route
- U.S. National Park Service, Great Lakes Inventory and Monitoring Network, Ashland, WI, 54806, USA
| | - Patrick T Redig
- The Raptor Center, University of Minnesota, St. Paul, MN, 55108, USA
| | - Rebecca L Key
- U.S. National Park Service, Great Lakes Inventory and Monitoring Network, Ashland, WI, 54806, USA
| |
Collapse
|