1
|
Olivera C, Laura Tondo M, Girardi V, Sol Herrero M, Lucía Balaban C, Matías Salvatierra L. High-performance diesel biodegradation using biogas digestate as microbial inoculum in lab-scale solid supported bioreactors. CHEMOSPHERE 2024; 352:141384. [PMID: 38350516 DOI: 10.1016/j.chemosphere.2024.141384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Industrial anaerobic digestion (AD) produces biogas and a digestate that is usually applied as a biofertilizer. However, the study and application of this by-product in terms of its rich microbial diversity and high metabolic activity have been barely investigated. In this work, the digestate regarded as an inoculum-without any further manipulation-was faced to a target hydrocarbon (i.e., diesel oil) to explore its biodegradation capability and potential application in bioaugmentation strategies. Lab-scale single batch bioreactors with solid support (i.e., sand or gravel) embedded with the inoculum and diesel were used to improve bioaccessibility and biofilm formation. In addition, different experimental conditions were assayed varying the initial diesel concentration, microbial load, type of solid support, inoculum aging time, and presence or absence of oxygen. Remaining diesel concentration, dehydrogenase activity and microbial community structure were periodically determined. Remarkably, this low-cost consortium was capable of a significant reduction (>90%) in the concentration of diesel, within 14 days and when the initial load was as high as 6950 mg/kg dry solid support. Furthermore, a 10-fold increment in dehydrogenase activity, alongside an increase in the abundance of hydrocarbon-degrading bacterial groups, and the enrichment of genes for alkane monooxygenase and aromatic ring-hydroxylating dioxygenases, encourage further study of this consortium for bioremediation purposes.
Collapse
Affiliation(s)
- Camila Olivera
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Laura Tondo
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Valentina Girardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Sol Herrero
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina
| | - Cecilia Lucía Balaban
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lucas Matías Salvatierra
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, (S2002QEO), Rosario, (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Azuazu IN, Sam K, Campo P, Coulon F. Challenges and opportunities for low-carbon remediation in the Niger Delta: Towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165739. [PMID: 37499826 DOI: 10.1016/j.scitotenv.2023.165739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
There is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.
Collapse
Affiliation(s)
| | - Kabari Sam
- School of the Environment, Geography and Geosciences, University of Portsmouth, PO1 3QL, UK
| | - Pablo Campo
- School of Water Energy and Environment, Cranfield University, MK430AL, UK
| | - Frederic Coulon
- School of Water Energy and Environment, Cranfield University, MK430AL, UK.
| |
Collapse
|
3
|
Di Marcantonio C, Chiavola A, Noce A, Straccamore E, Giannuzzi A, Jirillo J, Gallo F, Boni MR. A sustainable approach to enhance heavy hydrocarbons removal in landfarming treatment. Biodegradation 2023; 34:417-430. [PMID: 36964873 PMCID: PMC10442250 DOI: 10.1007/s10532-023-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
The present study aimed to evaluate the best strategy to enhance the degradation rate of heavy petroleum hydrocarbons (HPH) contaminated soil in a landfarming plant. Samples of real contaminated soil, further spiked with HPH, were treated in mesocosm reactors simulating the landfarming system. One reactor was operated without any modification compared to the real landfarming plant. The other three reactors were operated with different strategies to improve the removal rate: biostimulation (BS) through the addition of nitrogen and phosphorus; bioaugmentation (BA) with the inoculation of sludge produced in the treatment of the process water from the oil re-fining plant of the same industrial area; combination of biostimulation and bioaugmentation (BAS). The biostimulation (BS) was the most effective strategy, leading to a reduction of the remediation time by 35% as compared to the traditional treatment. Bioaugmentation (BA) also provided positive effects leading to a reduction of the remediation time by 24%; its performance improved further when the addition of sludge was combined with the increase of phosphorous (BAS). Therefore, the key tool was represented by the phosphorous availability, whereas the application of sludge was most useful to provide waste with a new possibility of reuse, thus fulfilling the principles of the circular economy. The final characterization showed that the treated soil was suitable for reuse in industrial areas according to the legislation in force.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy.
| | - Agostina Chiavola
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| | - Alessandra Noce
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Talukdar P, Bordoloi P, Bora PP, Yadav A, Saikia R, Geed SR. Assessment of oily sludge biodegradation in lab scale composting and slurry bioreactor by bacterial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118360. [PMID: 37315467 DOI: 10.1016/j.jenvman.2023.118360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate biodegradability of oily sludge in lab scale composting and slurry bioreactor using a potential bacterial consortium isolated from petroleum-contaminated sites. The consortium used in the study consisted of bacterial genera, including Enterobacter, Bacillus, Microbacterium, Alcaligenes Pseudomonas, Ochrobactrum, Micrococcus, and Shinella which were obtained after rigorous screening using different hydrocarbons. The meticulously designed lab scale composting experiments were carried out and showed that the combination of 10% oily sludge (A1) exhibited the highest total carbon (TC) removal, which was 40.33% within 90 days. To assess the composting experiments' efficiency, the first (k1) and second (k2) order rate constants were evaluated and was found to be 0.0004-0.0067 per day and second (k2) 0.0000008-0.00005 g/kg. day respectively. To further enhance the biodegradation rate of A1 combination, a slurry bioreactor was used. The maximum total petroleum hydrocarbon (TPH) removals in a slurry bioreactor for cycle-I and -II were 48.8% and 46.5%, respectively, on the 78th and 140th days of the treatment. The results obtained in the study will be a technological platform for the development of slurry phase treatment of petroleum waste in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Pooja Talukdar
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palakshi Bordoloi
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Priyankush Protim Bora
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Yadav
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Ratul Saikia
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Rameshrao Geed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
García-García R, Bocanegra-García V, Vital-López L, García-Mena J, Zamora-Antuñano MA, Cruz-Hernández MA, Rodríguez-Reséndiz J, Mendoza-Herrera A. Assessment of the Microbial Communities in Soil Contaminated with Petroleum Using Next-Generation Sequencing Tools. APPLIED SCIENCES 2023; 13:6922. [DOI: 10.3390/app13126922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Microbial communities are known to play a principal role in petroleum degradation. This study tries to determine the composition of bacteria in selected crude oil-contaminated soil from Tabasco and Tamaulipas states, Mexico. We determined the microbial populations living under these conditions. We evaluated the structure and diversity of bacterial communities in the contaminated soil samples. The most abundant phylum is proteobacteria. Next Generation Sequencing (NGS) analysis of the sampled soils from both states revealed that this phylum has the most relative abundance among the identified bacteria phyla. The heatmap represented the relative percentage of each genus within each sample and clustered the four samples into two groups. Moreover, this allowed us to identify many genera in alkaline soil from Tamaulipas, such as Skermanella sp., Azospirillum sp. and Unclassified species from the Rhodospirillaceae family in higher abundance. Meanwhile, in acidic soil from Tabasco, we identified Thalassospira, Unclassified members of the Sphingomonadaceae family and Unclassified members of the Alphaproteobacteria class with higher abundance. Alpha diversity analysis showed a low diversity (Shannon and Simpson index); Chao observed species in both Regions. These results suggest that the bacteria identified in these genera may possess the ability to degrade petroleum, and further studies in the future should elucidate their role in petroleum degradation.
Collapse
Affiliation(s)
- Raul García-García
- Division of Chemistry and Renewable Energy, Universidad Tecnologica de San Juan del Rio (UTSJR), San Juan del Rio 76900, Queretaro, Mexico
| | - Virgilio Bocanegra-García
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| | - Lourdes Vital-López
- Carrera de Mantenimiento Industrial, Universidad Tecnológica de Tamaulipas Norte, Reynosa 88680, Tamaulipas, Mexico
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Cinvestav, Av. IPN# 2508, Col. Zacatenco, Mexico City 07360, Mexico
| | - Marco Antonio Zamora-Antuñano
- Engineering Area and Centro de Investigación, Innovación y Desarrollo Tecnológico de UVM (CIIDETEC-UVM), Universidad del Valle de Mexico (UVM), Santiago de Queretaro 76230, Queretaro, Mexico
| | - María Antonia Cruz-Hernández
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| | | | - Alberto Mendoza-Herrera
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| |
Collapse
|
6
|
Sam K, Onyena AP, Zabbey N, Odoh CK, Nwipie GN, Nkeeh DK, Osuji LC, Little DI. Prospects of emerging PAH sources and remediation technologies: insights from Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39451-39473. [PMID: 36773255 DOI: 10.1007/s11356-023-25833-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Remediation of polluted environmental media is critical to realization of the goals of the United Nations Decade on Ecosystem Restoration (UNDER) project. Many natural-resource dependent economies in Africa are characterized by numerous contaminated sites resulting from conventional and artisanal natural-resource mining. Alongside these extractive activities, there are refining, processing, and power plant operations, agriculture, urban, and infrastructure developments that contribute to increased discharges of toxins into the environment, particularly polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic in nature. As a result, human and environmental receptors (i.e., air, water, soil, and biota) face increasing risk of exposure to higher concentrations of PAH. Evidence exists of widespread PAH contamination and in some instances where corrective action has been taken, residual contaminant levels exceeding regulatory thresholds remain in the environment due to the use of inappropriate and unsustainable remedial methods. Considering the long-term harmful effects of PAH on human and ecosystem health, land use, and the complexity of Africa's environmental deterioration, it is essential to explore remediation strategies that benefit both the environment and the economy. This review examined the status, opportunities, and challenges related to the application of emerging green technologies to remediate PAH-contaminated sites in five African countries (South Africa, Nigeria, Angola, Egypt, and Kenya). This paper concludes that bioremediation presents a sustainable option, considering its low net emissions and environmental footprints, and its low economic cost to Africa's poor communities and overburdened economy. However, an integration of biological and physico-chemical approaches could address various compounds and concentrations of PAH contamination.
Collapse
Affiliation(s)
- Kabari Sam
- School of Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth, PO1 2UP, UK.,Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - Amarachi P Onyena
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.
| | - Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, East-West Road, PMB 5323, Choba, Port Harcourt, Rivers State, Nigeria.,Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), D-Line, Port Harcourt, Rivers State, Nigeria
| | - Chuks K Odoh
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
| | - Goodluck N Nwipie
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, East-West Road, PMB 5323, Choba, Port Harcourt, Rivers State, Nigeria
| | - Dumbari K Nkeeh
- Department of Environmental Technology and Management, World Bank Africa Centre of Excellence, Centre for Oilfield Chemicals Research, University of Port Harcourt, Choba, P.M.B.5323, Port Harcourt, Rivers State, Nigeria
| | - Leo C Osuji
- Petroleum Chemistry Research Group, Department of Pure and Industrial Chemistry, University of Port Harcourt, Choba, P.M.B 5323, Port Harcourt, Nigeria
| | - David I Little
- Environmental Consultancy, Swavesey, Cambridgeshire, Cambridge, CB24 4RL, UK
| |
Collapse
|
7
|
Rondon-Afanador C, Pinilla-Meza G, Casallas-Cuervo FC, Diaz-Vanegas C, Barreto-Gomez D, Benavides C, Buitrago N, Calvo M, Forero-Forero C, Galvis-Ibarra V, Moscoso-Urdaneta V, Perdomo-Rengifo MC, Torres L, Arbeli Z, Brigmon RL, Roldan F. Bioremediation of heavy oily sludge: a microcosms study. Biodegradation 2023; 34:1-20. [PMID: 36463546 PMCID: PMC9935733 DOI: 10.1007/s10532-022-10006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2022]
Abstract
Oily sludge is a residue from the petroleum industry composed of a mixture of sand, water, metals, and high content of hydrocarbons (HCs). The heavy oily sludge used in this study originated from Colombian crude oil with high density and low American Petroleum Institute (API) gravity. The residual waste from heavy oil processing was subject to thermal and centrifugal extraction, resulting in heavy oily sludge with very high density and viscosity. Biodegradation of the total petroleum hydrocarbons (TPH) was tested in microcosms using several bioremediation approaches, including: biostimulation with bulking agents and nutrients, the surfactant Tween 80, and bioaugmentation. Select HC degrading bacteria were isolated based on their ability to grow and produce clear zones on different HCs. Degradation of TPH in the microcosms was monitored gravimetrically and with gas chromatography (GC). The TPH removal in all treatments ranged between 2 and 67%, regardless of the addition of microbial consortiums, amendments, or surfactants within the tested parameters. The results of this study demonstrated that bioremediation of heavy oily sludge presents greater challenges to achieve regulatory requirements. Additional physicochemical treatments analysis to remediate this recalcitrant material may be required to achieve a desirable degradation rate.
Collapse
Affiliation(s)
- Cinthya Rondon-Afanador
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Gustavo Pinilla-Meza
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Francy C. Casallas-Cuervo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Diaz-Vanegas
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Daniela Barreto-Gomez
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Carolina Benavides
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Nicole Buitrago
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Melissa Calvo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Forero-Forero
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Valentina Galvis-Ibarra
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Victoria Moscoso-Urdaneta
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Maria C. Perdomo-Rengifo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Laura Torres
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Ziv Arbeli
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | | | - Fabio Roldan
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia.
| |
Collapse
|
8
|
Basim Y, Mohebali G, Jorfi S, Nabizadeh R, Moghadam MA, Ghadiri A, Haghighi Fard NJ. Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:601-608. [PMID: 36406594 PMCID: PMC9672257 DOI: 10.1007/s40201-020-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 06/16/2023]
Abstract
PURPOSE The main purpose of this research was investigating of bioremediation potential oily contaminated soils using native bacterial strains in an oil field. METHODS In this research, total bacterial consortium were identified in oily soils with sandy loam texture as case and non-contaminated soils as controls during six months. The dominant strains present on contaminated soil were identified by DNA extraction using 16S rDNA gene sequencing via NGS technique and compared with bacteria present in non-contaminated soil as control samples. Furthermore, quantitative variations of bacterial count along with total petroleum hydrocarbons (TPH) removal was performed in oily (case) samples to investigate the relation between TPH removal and changes in bacterial density. The TPH values were determined with gas chromatography equipped with a flame ionization detector (GC-FID). RESULTS The dominant identified bacteria in oily soil were as follows: Halomonas, Moraxellaceae, Thalassobacillus, Zhihengliuella and Enterobacteriaceae which varied significantly from those identified in control soil. The bacterial diversity was higher in contaminated soil and a TPH removal of 50.9% was observed over a period of six months monitoring. CONCLUSION Indigenous bacteria in oil-contaminated soils of an oilfield in south west of Iran were found to be able to degrade Total Petroleum Hydrocarbons. Our results showed that bioremediation of oil-contaminated soils can be implemented without need to amplification of heterogeneous bacteria. Considering sandy loam texture of soil samples, the identified strains of bacteria could be introduced as sufficient consortium for biodegradation of this soils with similar texture.
Collapse
Affiliation(s)
- Yalda Basim
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasemali Mohebali
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ata Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
9
|
Zhang H, Chao B, Wang H, Li X. Effects of carbon source on electricity generation and PAH removal in aquaculture sediment microbial fuel cells. ENVIRONMENTAL TECHNOLOGY 2022; 43:4066-4077. [PMID: 34129447 DOI: 10.1080/09593330.2021.1942557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Sediment microbial fuel cells (SMFCs) have been used for treating pollutants in sediment or overlying water. This study investigated the feasibility of constructing SMFCs under aquaculture conditions by employing indigenous carbohydrates as substrates to enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) in sediment, as well as the correlation between PAHs removal and electricity generation in SMFCs. The results showed that adding glucose could allow SMFCs to generate more electrical power and increase the removal efficiency of PAHs (by 57.2% for naphthalene, 41.3% for acenaphthene, and 36.5% for pyrene). In addition, starch enhanced PAHs removal by 49.9%, 35.8%, and 31.2%, respectively, whereas cellulose enhanced removal by 44.3%, 29.3%, and 26.9%, respectively. Pearson correlation coefficients between the level of electrical power generated and the removal masses of the three PAHs were 0.485, 0.830**, and 0.851**. Thus, the use of SMFCs could be an effective approach for PAH treatment in aquaculture, and the electrical power generated could be used as an in-situ indicator for the biodegradation rate of SMFCs.
Collapse
Affiliation(s)
- Haochi Zhang
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Bo Chao
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Sattar S, Hussain R, Shah SM, Bibi S, Ahmad SR, Shahzad A, Zamir A, Rauf Z, Noshad A, Ahmad L. Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon 2022; 8:e11101. [PMID: 36281410 PMCID: PMC9586903 DOI: 10.1016/j.heliyon.2022.e11101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/12/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to hazardous wastes, especially petroleum wastes hydrocarbon (PWHCs), can damage human health and biological diversity. A huge amount of petroleum waste along with persistent organic pollutants is being generated during exploration and processing of crude oil. The dumping of petroleum waste hydrocarbons in an open pit contaminates the soil which can cause severe threats to human health and agro-geo-environmental ecosystem. The current study aimed to evaluate the mode of occurrence, composition, environmental, and health impacts of petroleum waste by using recent literature. The extracted results show that oil emulsion contains 48% oil, suspension 23%, settled emulsion 42%, and sludge emulsion 36%. The study discusses the possible biological techniques for rehabilitation of petroleum waste-contaminated areas. Several physical and chemical techniques are available for remediation of petroleum waste, but they are either costly or environmentally not feasible. Whereas, biological remediation namely, Bioremediation (Biostimulation and Bioaugmentation), Phytoremediation (Phytodegradation, Rhizoremediation, Phytovolatilization, and Rhizo-filtration) is a cheap and environmentally friendly way to remove petroleum waste hydrocarbons from contaminated soil and water. Some important enzymes (i.e., peroxidase, nitrilase, nitroreductase, phosphatase) and plant species i.e., Acacia and Chloris species are prominent methods to remediate the PWHCs. The knowledge assembled in this review is expected to create new doors for researchers to develop more efficient techniques to control the harmful impacts of PWHCs on the environment and health.
Collapse
Affiliation(s)
- Shehla Sattar
- Department of Environmental Sciences, University of Swabi, KP 23561, Pakistan,National Centre of Excellence in Geology, University of Peshawar, KP, Pakistan
| | - Rahib Hussain
- National Centre of Excellence in Geology, University of Peshawar, KP, Pakistan,College of Earth and Environmental Sciences, University of the Punjab, 54590, Pakistan,Corresponding author.
| | | | - Salma Bibi
- Department of Environmental Sciences, University of Swabi, KP 23561, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, 54590, Pakistan
| | - Asim Shahzad
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Ahmad Zamir
- Pakistan Forest Institute, Peshawar, KP, Pakistan
| | - Zahid Rauf
- Department of Geology, University of Swabi, KP 23561, Pakistan
| | - Asma Noshad
- Department of Agriculture, Bacha Khan University, KP, Pakistan
| | - Laeiq Ahmad
- Department of Geology, University of Swabi, KP 23561, Pakistan
| |
Collapse
|
11
|
An S, Kim K, Woo H, Yun ST, Chung J, Lee S. Coupled effect of porous network and water content on the natural attenuation of diesel in unsaturated soils. CHEMOSPHERE 2022; 302:134804. [PMID: 35533929 DOI: 10.1016/j.chemosphere.2022.134804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The natural attenuation potential of a vadose zone against diesel is critical for optimizing remedial actions and determining groundwater vulnerability to contamination. Here, diesel attenuation in unsaturated soils was systematically examined to develop a qualitative relationship between physical soil properties and the natural attenuation capacity of a vadose zone against diesel. The uniformity coefficient (Cu) and water saturation (Sw, %) were considered as the proxies reflecting the degree of effects by porous network and water content in different soils, respectively. These, in turn, are related to the primary diesel attenuation mechanisms of volatilization and biodegradation. The volatilization of diesel was inversely proportional to Cu and Sw, which could be attributed to effective pore channels facilitating gas transport. Conversely, biodegradation was highly proportional to Cu under unsaturated conditions (Sw = 35-71%), owing to nutrients typically associated with fine soil particles. The microbial community in unsaturated soils was affected by Sw rather than Cu. The overall diesel attenuation including volatilization and biodegradation was optimized at Sw = 35% for all tested soils.
Collapse
Affiliation(s)
- Seongnam An
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Kibeum Kim
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Kahraman BF, Altin A, Ozdogan N. Remediation of Pb-diesel fuel co-contaminated soil using nano/bio process: subsequent use of nanoscale zero-valent iron and bioremediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41110-41124. [PMID: 35091952 DOI: 10.1007/s11356-022-18857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of the nano/bio process was investigated as a remediation option for co-contaminated soils. Nano/bio process is a hybrid treatment method that may be defined as the use of nanoscale zero-valent iron (nZVI) and bioremediation approaches subsequently/concurrently. Different bioremediation approaches (bioattenuation, biostimulation, and/or bioaugmentation) were performed together with nZVI application to remediate Pb- and diesel fuel-spiked soils. Nutrient (N and P) and activated sludge amendment were made to realize biostimulation and bioaugmentation, respectively. The nZVI application decreased the total percentage of the most mobile and bioavailable soil Pb fractions (exchangeable and carbonate-bound) from 68.3 to 31.7%. The biodegradation levels of nZVI-applied co-contaminated soils were significantly higher than the soils without nZVI indicating the positive effect of the reduced mobility, bioavailability, and toxicity of Pb content. The use of nano/biostimulation or nano/bioaugmentation treatments resulted in higher than 60% total n-alkane degradation, whereas 89.5% degradation was obtained by using nano/biostimulation + bioaugmentation. Hydrocarbon-degrader strains belonging to phyla Actinobacteria, Proteobacteria, or Firmicutes were identified from samples subjected to nano/bio process and the strains from biostimulation and bioaugmentation treatments were different. These results indicate that the stress on the microbial population caused by the co-contamination might be subsided and the biodegradation of alkanes might be improved by using the nano/bio process.
Collapse
Affiliation(s)
- Bekir Fatih Kahraman
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey.
| | - Ahmet Altin
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| | - Nizamettin Ozdogan
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| |
Collapse
|
13
|
Wu Y, Liu X, Dong Q, Xiao M, Li B, Topalović O, Tao Q, Tang X, Huang R, Chen G, Li H, Chen Y, Feng Y, Wang C. Remediation of petroleum hydrocarbons-contaminated soil: Analysis based on Chinese patents. CHEMOSPHERE 2022; 297:134173. [PMID: 35276108 DOI: 10.1016/j.chemosphere.2022.134173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Increasing soil petroleum hydrocarbons (PHs) pollution have caused world-wide concerns. The removal of PHs from soils mainly involves physical, chemical, biological processes and their combinations. To date, most reviews in this field based on research articles, but limited papers focused on the integration of remediation technologies from the perspective of patents. In this study, 20-years Chinese patents related to the remediation of soil PHs were comprehensively analyzed. It showed an increasing number of patent applications and the patents' quantity were positively correlated with Chinese GDP over the years, suggesting the more the economy developed the more environmental problems and corresponding solutions emerged. In addition, chemical technologies were mostly used in a combination to achieve faster and better effects, while the physical technologies were often used alone due to high costs. In all PHs remediation techniques, bacteria-based bioremediation was the most used from 2000 to 2019. Bacillus spp. and Pseudomonas spp. were the most used bacteria for PHs treatment because these taxa were widely harboring functions such as biosurfactant production and hydrocarbon degradation. The future research on joint technologies combining microbial and physicochemical ones for better remediation effect and application are highly encouraged.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xipeng Liu
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747, AG Groningen, the Netherlands
| | - Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meijuan Xiao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Olivera Topalović
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yulan Chen
- Liangshan Branch of Sichuan Provincial Tobacco Company, Xichang, 615000, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Ossai IC, Hamid FS, Hassan A. Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kim SH, Woo H, An S, Chung J, Lee S, Lee S. What determines the efficacy of landfarming for petroleum-contaminated soils: Significance of contaminant characteristics. CHEMOSPHERE 2022; 290:133392. [PMID: 34952012 DOI: 10.1016/j.chemosphere.2021.133392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Identifying the cause of inconsistent landfarming efficacy is critical to designing optimal remedial strategies for petroleum-contaminated sites. We assessed contaminated soils collected from two former military bases in South Korea to better understand the role and influence of different factors. Landfarming remediation was simulated in the laboratory by applying comparable practices (such as tillage and bioaugmentation) and the relevant mechanism was examined. We then systematically examined potential factors affecting petroleum-removal efficacy, including the content of fine soil particles, the initial concentration and composition of petroleum contaminants, and the degree of soil-contaminant interaction. The distribution range of total petroleum hydrocarbons (TPHs) and the size of unresolved complex mixture (UCM) found in gas chromatography data showed that petroleum composed of TPHs with lower carbon numbers and having smaller size of UCM could be treated more effectively by landfarming. Incorporating the evaluation of the distribution range and UCM properties of petroleum, rather than simply considering its total concentration, is a more accurate and efficient method for determining the site-specific suitability of landfarming as a remedial option, as well as for assessing the necessity of supplementary processes.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Heesoo Woo
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Seongnam An
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, South Korea.
| | - Seungwoo Lee
- Daeil Engineering and Consulting Co., Ltd, Seoul, 06719, South Korea
| |
Collapse
|
16
|
Liu H, Wu M, Guo X, Gao H, Xu Y. Isotope fractionation (δ 13C, δ 15N) and microbial community response in degradation of petroleum hydrocarbons by biostimulation in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7604-7613. [PMID: 34480300 DOI: 10.1007/s11356-021-16055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the isotope effects of δ13C and δ15N and microbial response during biodegradation of hydrocarbons by biostimulation with nitrate or compost in the petroleum-contaminated soil. Compost and KNO3 amendments promoted the total petroleum hydrocarbon (TPH) removal accompanied by a significant increase of Actinobacteria and Firmicutes phyla. Soil alpha diversity decreased after 90 days of biostimulation. An inverse significant carbon isotope effect (εc = 16.6 ± 0.8‰) and strong significant nitrogen isotope effect (εN = -24.20 ± 9.54‰) were shown by the KNO3 supplementation. For compost amendment, significant carbon and nitrogen isotope effect were εc = 38.8 ± 1.1‰ and εN = -79.49 ± 16.41‰, respectively. A clear difference of the carbon and nitrogen stable isotope fractionation was evident by KNO3 or compost amendment, which indicated that the mechanisms of petroleum degradation by adding compost or KNO3 may be different.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Xiqian Guo
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yinrui Xu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Kim JW, Hong YK, Kim HS, Oh EJ, Park YH, Kim SC. Metagenomic Analysis for Evaluating Change in Bacterial Diversity in TPH-Contaminated Soil after Soil Remediation. TOXICS 2021; 9:toxics9120319. [PMID: 34941754 PMCID: PMC8708857 DOI: 10.3390/toxics9120319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Hyuck-Soo Kim
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea;
| | - Eun-Ji Oh
- Korea Environment Institute, Sejong 30147, Korea;
| | - Yong-Ha Park
- Korea Environment Institute, Sejong 30147, Korea;
- Correspondence: (Y.-H.P.); (S.-C.K.)
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
- Correspondence: (Y.-H.P.); (S.-C.K.)
| |
Collapse
|
18
|
Bodor A, Bounedjoum N, Feigl G, Duzs Á, Laczi K, Szilágyi Á, Rákhely G, Perei K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125996. [PMID: 33992922 DOI: 10.1016/j.jhazmat.2021.125996] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Chronic pollution by used lubricant oils (ULOs) poses a serious challenge to the environment. Under stress conditions, microorganisms, including potential degraders, can enter a viable but non-culturable (VBNC) state, complicating the bioremediation of ULO-polluted areas. Resuscitation-promoting factors (Rpfs) can reverse this transition and/or enhance the biodegradation performance of both native and augmented strains. Here, Rpf-containing extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the ex situ ULO removal in biostimulated and bioaugmented (with Rhodococcus qingshengii KAG C, R. erythropolis PR4) soils. ULO bioconversion, microbial activity, and CFUs were significantly higher in EOM-treated soils compared to corresponding control soils. After 60 days, the initial ULO concentration (52,500 mg kg-1) was reduced by 37% and 45% with EOM-supplemented biostimulation and bioaugmentation, respectively. Based on high-throughput 16S rRNA analysis, the enhancement was attributable both to the reactivation of EOM-responsive hydrocarbonoclastic bacterial genera (e.g., Pseudomonas, Comamonas, Stenotrophomonas, Gordonia) and to the long-term positive effect of EOM on the degradative efficacy of the introduced rhodococci. Ecotoxicological responses revealed that reduced ULO concentration did not correlate with decreased soil toxicity. Our findings provide an insight into the applicability of EOM in bioremediation and its effects on the soil microbial activity and community composition.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Ágnes Duzs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Macci C, Peruzzi E, Doni S, Vannucchi F, Masciandaro G. Landfarming as a sustainable management strategy for fresh and phytoremediated sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39692-39707. [PMID: 33761078 DOI: 10.1007/s11356-021-13134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the effectiveness of a landfarming process (LP) in recovering sediments at different biodegradation phases: phytoremediated dredged sediments (PDS) and fresh dredged sediments (FDS). The PDS landfarming was applied to (1) reduce residual contamination and (2) improve the biological activities in order to obtain a decontaminated matrix rich in organic matter and enzymatic activity to be reused as agronomic substrate. In 3 months of LP, a microbial activity stimulation (from 7 to 48%) and a decrease in organic contamination (about 15%) were recorded. In addition, no phytotoxicity and the content in total organic carbon and nitrogen make the sediments suitable to be reused in agriculture. The FDS landfarming was carried out to (1) reduce water content, (2) transform the organic matter into a more stable form, and (3) decrease organic contaminant level. Five months of LP led to a considerable reduction in water content (40%) and to the activation of microbial biomass metabolism (from 4 to 50 times higher), which achieved proper mineralization of organic matter and contaminants (polycyclic aromatic hydrocarbons near to zero and a total petroleum hydrocarbon reduction of about 60%). The LP also enhanced the stoichiometric ratios of nutrients and enzymes. In conclusion, the LP was a promising and economical methodology to improve the physical, chemical, and biological properties of polluted sediments at different biodegradation phases, creating a substrate ready for several environmental applications. Notably, the PDS resulted appropriate for agricultural use and FDS for civil applications.
Collapse
Affiliation(s)
- Cristina Macci
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Eleonora Peruzzi
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy.
| | - Serena Doni
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Francesca Vannucchi
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Grazia Masciandaro
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
20
|
Assessment of the Suitability of Melilotus officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. TOXICS 2021; 9:toxics9070148. [PMID: 34202316 PMCID: PMC8309879 DOI: 10.3390/toxics9070148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
The article presents issues related to the possibility of using toxicological tests as a tool to monitor the progress of soil treatment contaminated with petroleum substances (TPH, PAH), Zn, Pb and Cd in bio-phytoremediation processes. In order to reduce the high content of petroleum pollutants (TPH = 56,371 mg kg−1 dry mass, PAH = 139.3 mg kg−1 dry mass), the technology of stepwise soil treatment was applied, including basic bioremediation and inoculation with biopreparations based of indigenous non-pathogenic species of bacteria, fungi and yeasts. As a result of basic bioremediation in laboratory conditions (ex-situ method), the reduction of petroleum pollutants TPH by 33.9% and PAH by 9.5% was achieved. The introduction of inoculation with biopraparation-1 prepared on the basis of non-pathogenic species of indigenous bacteria made it possible to reduce the TPH content by 86.3%, PAH by 40.3%. The use of a biopreparation-1 enriched with indigenous non-pathogenic species of fungi and yeasts in the third series of inoculation increased to an increase in the degree of biodegradation of aliphatic hydrocarbons with long carbon chains and PAH by a further 28.9%. In the next stage of soil treatment after biodegradation processes, which was characterized by an increased content of heavy metals (Zn, Pb, Cd) and naphthalene, chrysene, benzo(a)anthracene and benzo(ghi)perylene belonging to polycyclic aromatic hydrocarbons, phytoremediation with the use of Melilotus officinalis was applied. After the six-month phytoremediation process, the following was achieved: Zn content by 25.1%, Pb by 27.9%, Cd by 23.2% and TPH by 42.2% and PAH by 49.9%. The rate of removal of individual groups of hydrocarbons was in the decreasing order: C12–C18 > C6–C12 > C18–C25 > C25–C36. PAHs tended to be removed in the following order: chrysene > naphthalene > benzo(a)anthracene > benzo(ghi)perylene. The TF and BCF coefficients were calculated to assess the capacity of M. officinalis to accumulate metal in tissues, uptake from soil and transfer from roots to shoots. The values of TF translocation coefficients were, respectively, for Zn (0.44), Pb (0.12), Cd (0.40). The calculated BCF concentration factors (BCFroots > BCFshoots) show that heavy metals taken up by M. officinalis are mainly accumulated in the root tissues in the following order Zn > Pb > Cd, revealing a poor metal translocation from the root to the shoots. This process was carried out in laboratory conditions for a period of 6 months. The process of phytoremediation of contaminated soil using M. officinalis assisted with fertilization was monitored by means of toxicological tests: Microtox, Ostracodtoxkit FTM, MARA and PhytotoxkitTM. The performed phytotoxicity tests have indicated variable sensitivity of the tested plants on contaminants occurring in the studied soils, following the sequence: Lepidium sativum < Sorghum saccharatum < Sinapis alba. The sensitivity of toxicological tests was comparable and increased in the order: MARA < Ostracodtoxkit FTM < Microtox. The results of the toxicological monitoring as a function of the time of soil treatment, together with chemical analyses determining the content of toxicants in soil and biomass M. officinalis, clearly confirmed the effectiveness of the applied concept of bioremediation of soils contaminated with zinc, lead and cadmium in the presence of petroleum hydrocarbons.
Collapse
|
21
|
Bajagain R, Jeong SW. Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron. CHEMOSPHERE 2021; 270:128627. [PMID: 33109362 DOI: 10.1016/j.chemosphere.2020.128627] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Recently, the use of nanoscale zero-valent iron (nZVI) for removal of organic contaminants from aqueous and soil system has increased. In this study, we employ nZVI to activate peroxymonosulfate (PMS) for the degradation of total petroleum hydrocarbons (TPHs) in aged diesel-contaminated soil. Upon PMS activation by nZVI, PMS produces more highly reactive oxygen species (ROS) in both aqueous solution and soil compared to other compounds (PMS/Co(II)), as determined by electron paramagnetic resonance spectroscopy. Thus, nZVI is an effective catalyst for PMS activation, leading to the efficient degradation of diesel oil in soil compared to other catalysts and oxidants. The optimal concentrations of PMS and nZVI were found to be 3 and 0.2%, respectively, showing the best degradation efficiency (61.2% in 2 h). The observed TPH degradation was retarded (up to 19.1-37% efficiency) in the presence of radical scavengers, such as tert-butyl alcohol, nitrobenzene, ethyl alcohol, and isopropyl alcohol. These results also demonstrate that ROS (hydroxyl and sulfate free radicals) are generated via PMS activation by nZVI. Moreover, more than 96% of TPH can be degraded by sequential applications of PMS/nZVI. Factors affecting TPH degradation, namely PMS/nZVI concentration, soil:solution ratio, soil pH, activators, and oxidants, are also analyzed. The results demonstrate that TPH is degraded to below the residential soil quality limit using PMS/nZVI based on the advanced oxidation process (AOP), which is therefore an effective option for chemical remediation of diesel-contaminated soils over a wide range of pH.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Gunsan, 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Gunsan, 54150, South Korea.
| |
Collapse
|
22
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
23
|
Bajagain R, Gautam P, Jeong SW. Biodegradation and post-oxidation of fuel-weathered field soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139452. [PMID: 32464383 DOI: 10.1016/j.scitotenv.2020.139452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Owing to the less volatile and less biodegradable nature of weathered fuel-contaminated soil, it cannot be easily remediated using conventional bioremediation approaches. Therefore, this study was aimed to enhance the landfarming bioremediation process by introducing post-oxidation for the degradation of the residual total petroleum hydrocarbons (TPH) in fuel-contaminated field soil. A laboratory-scale landfarming bioaugmentation process was performed by using oil-degrading microbes, nutrients, and surfactants, followed by chemical oxidation as a post treatment. The results demonstrated that the addition of microbes and nutrients gradually decreased the TPH concentration of the soil (initial TPH = 5932 ± 267 mg/kg) with a removal efficiency of 70-72% (TPH > 800 mg/kg; Korean limit for non-residential sites). However, the use of post-oxidation treatments with 5% KMnO4 decreased the TPH to approximately 401-453 mg/kg (TPH below 500 mg/kg; residential site limit) with an overall efficiency of 92-93% compared to the corresponding value of 13% for the control (water treatment). Performing landfarming through biodegradation followed by chemical oxidation as a post treatment could successfully remove the weathered TPH in soil below the regulatory limits. Furthermore, the post-oxidation treatment may oxidize the less biodegradable portions only after biodegradation, thereby minimizing the oxidant demand and enhancing the soil properties such as the pH, amount of natural substrates and microbial population.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, South Korea
| | - Prakash Gautam
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, South Korea.
| |
Collapse
|
24
|
Liu H, Gao H, Wu M, Ma C, Wu J, Ye X. Distribution Characteristics of Bacterial Communities and Hydrocarbon Degradation Dynamics During the Remediation of Petroleum-Contaminated Soil by Enhancing Moisture Content. MICROBIAL ECOLOGY 2020; 80:202-211. [PMID: 31955225 DOI: 10.1007/s00248-019-01476-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 05/25/2023]
Abstract
Microorganisms are the driver of petroleum hydrocarbon degradation in soil micro-ecological systems. However, the distribution characteristics of microbial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content are not clear. In this study, polymerase chain reaction and high-throughput sequencing of soil microbial DNA were applied to investigate the compositions of microorganisms and alpha diversity in the oil-polluted soil, and the hydrocarbon removal also being analyzed using ultrasonic extraction and gravimetric method in a laboratory simulated ex-situ experiment. Results showed the distribution of petroleum hydrocarbon degrading microorganisms in the petroleum-contaminated loessal soil mainly was Proteobacteria phylum (96.26%)-Gamma-proteobacteria class (90.03%)-Pseudomonadales order (89.98%)-Pseudomonadaceae family (89.96%)-Pseudomonas sp. (87.22%). After 15% moisture content treatment, Actinobacteria, Proteobacteria, and Firmicutes still were the predominant phyla, but their relative abundances changed greatly. Also Bacillus sp. and Promicromonospora sp. became the predominant genera. Maintaining 15% moisture content increased the relative abundance of Firmicutes phylum and Bacillus sp. As the moisture-treated time increases, the uniformity and the richness of the soil bacterial community were decreased and increased respectively; the relative abundance of Pseudomonas sp. increased. Petroleum hydrocarbon degradation by enhancing soil moisture accorded with the pseudo-first-order reaction kinetic model (correlation coefficient of 0.81; half-life of 56 weeks). The richness of Firmicutes phylum and Bacillus sp. may be a main reason for promoting the removal of 18% petroleum hydrocarbons responded to 15% moisture treatment. Our results provided some beneficial microbiological information of oil-contaminated soil and will promote the exploration of remediation by changing soil moisture content for increasing petroleum hydrocarbon degradation efficiency.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Chuang Ma
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Jialuo Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Xiqiong Ye
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
25
|
Bodor A, Petrovszki P, Erdeiné Kis Á, Vincze GE, Laczi K, Bounedjoum N, Szilágyi Á, Szalontai B, Feigl G, Kovács KL, Rákhely G, Perei K. Intensification of Ex Situ Bioremediation of Soils Polluted with Used Lubricant Oils: A Comparison of Biostimulation and Bioaugmentation with a Special Focus on the Type and Size of the Inoculum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4106. [PMID: 32526873 PMCID: PMC7312492 DOI: 10.3390/ijerph17114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
Abstract
Used lubricant oils (ULOs) strongly bind to soil particles and cause persistent pollution. In this study, soil microcosm experiments were conducted to model the ex situ bioremediation of a long term ULO-polluted area. Biostimulation and various inoculation levels of bioaugmentation were applied to determine the efficacy of total petrol hydrocarbon (TPH) removal. ULO-contaminated soil microcosms were monitored for microbial respiration, colony-forming units (CFUs) and TPH bioconversion. Biostimulation with inorganic nutrients was responsible for 22% of ULO removal after 40 days. Bioaugmentation using two hydrocarbon-degrader strains: Rhodococcus quingshengii KAG C and Rhodococcus erythropolis PR4 at a small inoculum size (107 CFUs g-1 soil), reduced initial TPH concentration by 24% and 29%, respectively; the application of a higher inoculum size (109 CFUs g-1 soil) led to 41% and 32% bioconversion, respectively. After 20 days, all augmented CFUs decreased to the same level as measured in the biostimulated cases, substantiating the challenge for the newly introduced hydrocarbon-degrading strains to cope with environmental stressors. Our results not only highlight that an increased number of degrader cells does not always correlate with enhanced TPH bioconversion, but they also indicate that biostimulation might be an economical solution to promote ULO biodegradation in long term contaminated soils.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Institute of Environmental and Technological Sciences, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Petrovszki
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - György Erik Vincze
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Doctoral School of Environmental Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Institute of Environmental and Technological Sciences, University of Szeged, H-6726 Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
| | - Balázs Szalontai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Hungary;
| | - Kornél L. Kovács
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Department of Oral Biology and Experimental Dental Research, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Institute of Environmental and Technological Sciences, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary; (A.B.); (P.P.); (Á.E.K.); (G.E.V.); (K.L.); (N.B.); (Á.S.); (K.L.K.); (K.P.)
- Institute of Environmental and Technological Sciences, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
26
|
Parhamfar M, Abtahi H, Godini K, Saeedi R, Sartaj M, Villaseñor J, Coulon F, Kumar V, Soltanighias T, Ghaznavi-Rad E, Koolivand A. Biodegradation of heavy oily sludge by a two-step inoculation composting process using synergistic effect of indigenous isolated bacteria. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Dadrasnia A, Maikudi Usman M, Tzin Lim K, Farahiyah FH, binti Mohd Rodzhan NS, Abdul Karim SH, Ismail S. Bio-Enhancement of Petroleum Hydrocarbon Polluted Soil Using Newly Isolated Bacteria. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2018.1454966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Arezoo Dadrasnia
- Institute of Research Management and Services, Deputy Vice Chancellor (Research & Innovation) Office, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Maikudi Usman
- Department of Biotechnology, School of Pure and Applied Sciences, Modibbo Adama University of Technology, Yola, Nigeria
| | - Kang Tzin Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Fairuz Hanani Farahiyah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Salmah Ismail
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Farzadkia M, Esrafili A, Gholami M, Koolivand A. Effect of immature and mature compost addition on petroleum contaminated soils composting: kinetics. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:839-846. [PMID: 32030157 PMCID: PMC6985388 DOI: 10.1007/s40201-019-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE The kinetic studies and effect of amendment addition on the performance of the composting process in reduction of total petroleum hydrocarbons (TPH) from petroleum contaminated soils (PCS) were investigated in the present research. METHODS Seven composting experiments containing various mixing ratios of PCS to unfinished compost (UC) and finished compost (FC) were set up and operated for 14 weeks. The mixing rations consisted of 1:0 (as control experiment), 1:0.3, 1:0.6, and 1:1. The initial C/N/P and moisture contents of the composting piles were adjusted to 100/5/1 and 50-55%, respectively. RESULTS Results showed that 50.09-79.49% of TPH was removed in the composting experiments after 14 weeks. The highest and lowest removal rates were achieved in the ratios of 1:1 and 1:0.3, respectively. Moreover, application of UC as amendments and bulking agent is more efficient than FC. The biodecomposition of TPH was fitted to the first-order kinetic with the half lives and rate constants of 5.63-11.55 days and 0.060-0.123 d-1, respectively. The bacteria detected from the composting treatments were Staphylococcus sp., Bacillus sp., and Pseudomonas sp. CONCLUSIONS The study confirmed the suitability of composting process for PCS bioremediation and superiority of UC than FC as bulking agent.
Collapse
Affiliation(s)
- Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, P.O. BOX: 3818146851 Iran
| |
Collapse
|
29
|
Khoshkholgh Sima NA, Ebadi A, Reiahisamani N, Rasekh B. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109476. [PMID: 31476519 DOI: 10.1016/j.jenvman.2019.109476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Exploiting synergism between plants and microbes offers a potential means of remediating soils contaminated with petroleum hydrocarbons (PHCs). Salinity alters the physicochemical characteristics of soils and suppresses the growth of both plants and soil microbes, so the bioremediation of saline soils requires the use of plants and in microbes which can tolerate salinity. This review focuses on the management of PHC-contaminated saline soils, surveying what is currently known with respect to the potential of halophytes (plants adapted to saline environments) acting in concert with synergistic microbes to degrade PHCs. The priority is to identify optimal combinations of halophyte(s) and the bacteria present as endophytes and/or associated with the rhizosphere, and to determine what are the factors which most strongly affect their viability.
Collapse
Affiliation(s)
- Nayer Azam Khoshkholgh Sima
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ali Ebadi
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Narges Reiahisamani
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran.
| |
Collapse
|
30
|
Bergsveinson J, Perry BJ, Simpson GL, Yost CK, Schutzman RJ, Hall BD, Cameron ADS. Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure. Microb Biotechnol 2019; 12:1199-1209. [PMID: 30927344 PMCID: PMC6801160 DOI: 10.1111/1751-7915.13397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 11/27/2022] Open
Abstract
Cultivation of dedicated soil plots called 'landfarms' is an effective technology for bioremediation of hydrocarbon waste generated by various industrial practices. To understand the influence of soil conditions on landfarm microbial communities, analysis of bacterial and fungal community structure using next-generation sequencing at different sections and depths was performed across a hydrocarbon-waste landfarm in Regina, Saskatchewan, Canada. While a core set of hydrocarbon-associated bacterial and fungal taxa are present throughout the landfarm, unique bacterial and fungal operational taxonomic units are differentially abundant at sections within the landfarm, which correlate with differences in soil physiochemical properties and management practices. Increased frequency of waste application resulted in strong positive correlations between bacterial community assemblages and elevated amounts of oil, grease and F3 - F4 hydrocarbon fractions. In areas of standing water and lower application of hydrocarbon, microbial community structure correlated with soil pH, trace nutrients and metals. Overall, diversity and structure of bacterial communities remain relatively stable across the landfarm, while in contrast, fungal community structure appears more responsive to soil oxygen conditions. Results are consistent with the hypothesis that years of bioremediation activity have shaped microbial communities; however, several management practices can be undertaken to increase efficiency of remediation, including the removal of standing water and soil tilling across the landfarm.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| | - Benjamin J. Perry
- Department of BiologyUniversity of ReginaReginaSKCanada
- Present address:
Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Gavin L. Simpson
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute of Environmental Change and SocietyUniversity of ReginaReginaSKCanada
| | - Christopher K. Yost
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| | | | - Britt D. Hall
- Department of BiologyUniversity of ReginaReginaSKCanada
| | - Andrew D. S. Cameron
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| |
Collapse
|
31
|
Koolivand A, Abtahi H, Parhamfar M, Didehdar M, Saeedi R, Fahimirad S. Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109228. [PMID: 31306924 DOI: 10.1016/j.jenvman.2019.06.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/25/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
The scale-up of petroleum hydrocarbons-rich sludge (PHRS) bioremediation from liquid medium to a composting method bioaugmentated with two indigenous bacteria, capable of degrading high levels of crude oil, was surveyed. After isolating the strains (Sphingomonas olei strain KA1 and Acinetobacter radioresistens strain KA2) and determining their biomass production, emulsification index (E24), bacterial adhesion to hydrocarbon (BATH), and crude oil degradation in liquid medium, they were inoculated into the composting experiments. In liquid medium, the removal rate of crude oil were 67.25, 70.86, 61.77, 42.13, and 27.92%, respectively for the initial oil levels of 1, 2, 3, 4, and 5% after 7 days. Degradation of 10, 20, 30, 40 and 50 g kg-1 concentrations of total petroleum hydrocarbons (TPH) were also calculated to be 91.24, 87.23, 84.69, 74.08, and 60.14%, respectively after a composting duration of 12 weeks. The values of the rate constants (k) and half-lives (t1/2) of petroleum hydrocarbons degradation were 0.083-0.212 day-1 and 3.27-8.35 days for the first-order and 0.003-0.089 g kg-1day-1 and 1.12-6.67 days for the second-order model, respectively. This study verified the suitability of the isolated strains for PHRS bioremediation. Successful scale-up of PHRS bioremediation from a liquid medium to a composting process for degrading high amounts of TPH was also confirmed.
Collapse
Affiliation(s)
- Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, P.O. Box, 3818146851, Arak, Iran.
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Parhamfar
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Reza Saeedi
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj, 31587-11167, Iran
| |
Collapse
|
32
|
Balseiro-Romero M, Monterroso C, Kidd PS, Lu-Chau TA, Gkorezis P, Vangronsveld J, Casares JJ. Modelling the ex situ bioremediation of diesel-contaminated soil in a slurry bioreactor using a hydrocarbon-degrading inoculant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:840-848. [PMID: 31229766 DOI: 10.1016/j.jenvman.2019.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation is a soil clean-up technique which exploits the metabolic capacity of microorganisms to degrade soil contaminants. A model was developed to simulate the ex situ bioremediation of a diesel-contaminated soil in a bio-slurry reactor inoculated with a diesel-degrading bacterial strain. Mass transfer processes involving desorption of diesel from soil to water and volatilization of diesel from water, and biodegradation by the bacterial inoculant were included in the model by using Weibull sigmoid kinetics and logistic/Monod kinetics respectively. Model parameters were estimated in batch-based abiotic and biodegradation experiments. Sensitivity analysis revealed the importance of maintaining a high bacterial density in the system for maximum bioremediation efficiency. The model was validated using a pilot bioreactor monitored for 528 h, which removed almost 90% of the diesel present in the system. The results revealed the capacity of the model to predict the bioremediation efficiency under different scenarios by adapting the input parameters to each system.
Collapse
Affiliation(s)
- María Balseiro-Romero
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France.
| | - Carmen Monterroso
- Department of Soil Science and Agricultural Chemistry, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Petra S Kidd
- Instituto de Investigacións Agrobiolóxicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), 15705, Santiago de Compostela, Spain
| | - Thelmo A Lu-Chau
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Panagiotis Gkorezis
- Centre for Environmental Sciences, University of Hasselt, BE3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, University of Hasselt, BE3590, Diepenbeek, Belgium
| | - Juan J Casares
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Lee TH, Cao WZ, Tsang DCW, Sheu YT, Shia KF, Kao CM. Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control - A field-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:839-848. [PMID: 30818208 DOI: 10.1016/j.scitotenv.2019.02.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 05/06/2023]
Abstract
The objective of this field-scale study was to assess the effectiveness of applying an emulsified polycolloid substrate (EPS; containing cane molasses, soybean oil, and surfactants) biobarrier in the control and remediation of a petroleum-hydrocarbon plume in natural waters. An abandoned petrochemical manufacturing facility site was contaminated by benzene and other petroleum products due to a leakage from a storage tank. Because benzene is a petroleum hydrocarbon with a high migration ability, it was used as the target compound in the field-scale study. Batch partition and sorption experiment results indicated that the EPS to water partition coefficient for benzene was 232 mg/mg at 25 °C. This suggests that benzene had a higher sorption affinity to EPS, which decreased the benzene concentrations in groundwater. The EPS solution was pressure-injected into three remediation wells (RWs; 150 L EPS in 800 L groundwater). Groundwater samples were collected from an upgradient background well, two downgradient monitor wells (MWs), and the three RWs for analyses. EPS injection increased total organic carbon (TOC) concentrations (up to 786 mg/L) in groundwater, which also resulted in the formation of anaerobic conditions. An abrupt drop in benzene concentration (from 6.9 to below 0.04 mg/L) was observed after EPS supplementation in the RWs due to both sorption and biodegradation mechanisms. Results show that the EPS supplement increased total viable bacteria and enhanced bioremediation efficiency, which accounted for the observed decrease in benzene concentration. The first-order decay rate in RW1 increased from 0.003 to 0.023 d-1 after EPS application. Injection of EPS resulted in significant growth of indigenous bacteria, and 23 petroleum-hydrocarbon-degrading bacterial species were detected, which enhanced the in situ benzene biodegradation efficiency. Results demonstrate that the EPS biobarrier can effectively contain a petroleum-hydrocarbon plume and prevent its migration to downgradient areas, which reduces the immediate risk presented to downgradient receptors.
Collapse
Affiliation(s)
- T H Lee
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - W Z Cao
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - D C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - K F Shia
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Koolivand A, Godini K, Saeedi R, Abtahi H, Ghamari F. Oily sludge biodegradation using a new two-phase composting method: Kinetics studies and effect of aeration rate and mode. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Lee TH, Tsang DCW, Chen WH, Verpoort F, Sheu YT, Kao CM. Application of an emulsified polycolloid substrate biobarrier to remediate petroleum-hydrocarbon contaminated groundwater. CHEMOSPHERE 2019; 219:444-455. [PMID: 30551111 DOI: 10.1016/j.chemosphere.2018.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Emulsified polycolloid substrate (EPS) was developed and applied in situ to form a biobarrier for the containment and enhanced bioremediation of a petroleum-hydrocarbon plume. EPS had a negative zeta potential (-35.7 mv), which promoted its even distribution after injection. Batch and column experiments were performed to evaluate the effectiveness of EPS on toluene containment and biodegradation. The EPS-to-water partition coefficient for toluene (target compound) was 943. Thus, toluene had a significant sorption affinity to EPS, which caused reduced toluene concentration in water phase in the EPS/water system. Groundwater containing toluene (18 mg/L) was pumped into the three-column system at a flow rate of 0.28 mL/min, while EPS was injected into the second column to form a biobarrier. A significant reduction of toluene concentration to 0.1 mg/L was observed immediately after EPS injection. This indicates that EPS could effectively contain toluene plume and prevent its further migration to farther downgradient zone. Approximately 99% of toluene was removed after 296 PVs of operation via sorption, natural attenuation, and EPS-enhanced biodegradation. Increase in total organic carbon and bacteria were also observed after EPS supplement. Supplement of EPS resulted in a growth of petroleum-hydrocarbon degrading bacteria, which enhanced the toluene biodegradation.
Collapse
Affiliation(s)
- T H Lee
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - D C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - W H Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - F Verpoort
- Department of Applied Chemistry, Wuhan University of Technology, Wuhan, China
| | - Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Montagnolli RN, Lopes PRM, Bidoia ED. Fluorinated waste and firefighting activities: biodegradation of hydrocarbons from petrochemical refinery soil co-contaminated with halogenated foams. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36002-36013. [PMID: 29484621 DOI: 10.1007/s11356-018-1593-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Perfluorinated compounds, including fluorotelomers, are important constituents of firefighting foams to extinguish fuel fires in the petrochemical industry, airports, and at fire-training sites. In this study, we monitored the biodegradation process in a co-contamination scenario with monoaromatic hydrocarbons commonly found in fuels (benzene, toluene) and fluorotelomers. The CO2 production rates were evaluated by a factorial design taking into account the effect of seasonality at in situ natural attenuation processes. Headspace analysis by gas chromatography with a thermal conductivity detector (GC-TCD) was applied to detect CO2 production, whereas monoaromatics were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). According to our results, seasonality had a detectable effect during summer, yielding different CO2 production rates. Higher temperatures increased CO2 production rate, while higher concentrations of fluorotelomer inhibited the biodegradation process. On average, benzene and toluene were depleted 17.5 days earlier in control assays without fluorotelomers. Toluene removal efficiency was also notably higher than benzene. The noticeable decrease in degradation rates of monoaromatics was caused by perfluorinated compounds that are possibly linked to metabolic inhibition mechanisms. Fluorotelomer diminished catabolism in all of our batch cultures. In addition to this, an alternative production of by-products could be detected. Thus, we propose that transient components of the benzene and toluene degradation may be differentially formed, causing the benzene, toluene, and perfluorinated co-contaminations to go through switched metabolic stages under the presence of fluoride in a contamination scenario.
Collapse
Affiliation(s)
- Renato Nallin Montagnolli
- Department of Biochemistry and Microbiology, Biosciences Institute, Sao Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Paulo Renato Matos Lopes
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| | - Ederio Dino Bidoia
- Department of Biochemistry and Microbiology, Biosciences Institute, Sao Paulo State University (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
37
|
Sam K, Zabbey N. Contaminated land and wetland remediation in Nigeria: Opportunities for sustainable livelihood creation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1560-1573. [PMID: 29929319 DOI: 10.1016/j.scitotenv.2018.05.266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The Niger Delta region of Nigeria is one of the most crude oil impacted deltas globally. The region has experienced over five decades of oil related contamination of the total environment (air, soil, water and biota). In 2011, UNEP released a seminal report on oil impact on Ogoniland environments, which up scaled demands for urgent clean up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. The Nigerian Government demonstrated renewed political will to remediate contaminated sites in Ogoniland with a launch of the clean-up exercise in June 2016. Stakeholders' expectations from the clean-up include not only environmental remediation but also restoration and creation of sustainable livelihood opportunities to reduce poverty in the region. Most studies have focused on the environmental restoration aspect and identified bioremediation as the likely appropriate remediation approach for Ogoniland, given its low environmental footprints, and low-cost burden on the weak and overstretched economy of Nigeria. This study mapped opportunities for sustainable livelihood creation during the Ogoniland remediation and restoration exercise. Given the value chain of bioremediation and its ancillary activities, the study analysed opportunities and mechanisms for skilled and unskilled job creation and prospects for sustainable livelihoods and knock-on effects. It is anticipated that the clean-up process would lead to economic prosperity and mitigate resource-driven conflicts in the Niger Delta. The study provides an exemplar for waste-to-wealth transformation in regions where natural resource mining has impacted communities, and has dislocated local economies and age-old livelihood structures.
Collapse
Affiliation(s)
- K Sam
- Environment and Conservation Unit, Centre for Environment, Human Rights and Development, Legacy Centre, Abuja Lane, Port Harcourt, Nigeria.
| | - N Zabbey
- Environment and Conservation Unit, Centre for Environment, Human Rights and Development, Legacy Centre, Abuja Lane, Port Harcourt, Nigeria; Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB 5323, East-West Road, Choba, Rivers State, Nigeria
| |
Collapse
|
38
|
Bajagain R, Lee S, Jeong SW. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil. CHEMOSPHERE 2018; 207:565-572. [PMID: 29843033 DOI: 10.1016/j.chemosphere.2018.05.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/06/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C18 to C22) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Kunsan 54150, South Korea
| | - Sojin Lee
- Department of Environmental Engineering, Kunsan National University, Kunsan 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Kunsan 54150, South Korea.
| |
Collapse
|
39
|
Yeh CS, Wang R, Chang WC, Shih YH. Synthesis and characterization of stabilized oxygen-releasing CaO 2 nanoparticles for bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:17-22. [PMID: 29427937 DOI: 10.1016/j.jenvman.2018.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Bioremediation is one of the general methods to treat pollutants in soil, sediment, and groundwater. However, the low concentration and restricted dispersion of dissolved oxygen (DO) in these areas have limited the efficiency of remediation especially for microorganisms that require oxygen to grow. Calcium peroxide (CaO2) is one of the oxygen-releasing compounds and has been applied to magnify the remediation efficacy of polluting areas. In this study, CaO2 nanoparticles (NPs) were synthesized and evaluated by wet chemistry methods as well as dry and wet grinding processes. The characteristics of CaO2 particles and NPs were analyzed and compared by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and X-ray powder diffraction. Our results showed that wet-grinded CaO2 NPs had an average particle size of around 110 nm and were more stable compared to other particles from aggregation and sedimentation tests. In addition, we also observed that CaO2 NPs had better DO characteristics and patterns; these NPs generated higher DO levels than their non-grinded form. Accordingly, our results suggested that wet-grinding CaO2 particles to nanoscale could benefit their usage in bioremediation.
Collapse
Affiliation(s)
- Chia-Shen Yeh
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Brown DM, Okoro S, van Gils J, van Spanning R, Bonte M, Hutchings T, Linden O, Egbuche U, Bruun KB, Smith JWN. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:284-292. [PMID: 28437647 DOI: 10.1016/j.scitotenv.2017.04.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number.
Collapse
Affiliation(s)
- David M Brown
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands.
| | - Samson Okoro
- The Shell Petroleum Development Company of Nigeria Limited, Shell Industrial Area Rumuobiakani, Port Harcourt, Nigeria
| | - Juami van Gils
- Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob van Spanning
- Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matthijs Bonte
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands
| | - Tony Hutchings
- C-Cure Solutions Ltd, Alice Holt Lodge, Wrecclesham, Farnham, United Kingdom
| | - Olof Linden
- IUCN-NDP member, World Maritime University, Fiskehamnsgatan 1, 211 18 Malmö, Sweden
| | - Uzoamaka Egbuche
- IUCN-NDP Chair, Centre for Environmental Resources and Sustainable Ecosystems, Lagos, Nigeria
| | - Kim Bye Bruun
- The Shell Petroleum Development Company of Nigeria Limited, Shell Industrial Area Rumuobiakani, Port Harcourt, Nigeria
| | - Jonathan W N Smith
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Sheffield University, Groundwater Protection & Restoration Group, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
41
|
Electrokinetic oxidant soil flushing: A solution for in situ remediation of hydrocarbons polluted soils. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Koolivand A, Rajaei MS, Ghanadzadeh MJ, Saeedi R, Abtahi H, Godini K. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition. BIORESOURCE TECHNOLOGY 2017; 235:240-249. [PMID: 28371761 DOI: 10.1016/j.biortech.2017.03.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d-1 and 0.002-0.165gkg-1d-1, respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS.
Collapse
Affiliation(s)
- Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran.
| | - Mohammad Sadegh Rajaei
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Javad Ghanadzadeh
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Reza Saeedi
- Department of Health Sciences, School of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Kazem Godini
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
43
|
Mu L, Shi Y, Hua J, Zhuang W, Zhu J. Engineering Hydrogen Bonding Interaction and Charge Separation in Bio-Polymers for Green Lubrication. J Phys Chem B 2017; 121:5669-5678. [PMID: 28525712 DOI: 10.1021/acs.jpcb.7b03194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic additives are widely used in lubricants nowadays to upgrade lubrication properties. The potential of integrating sustainable components in modern lubricants has rarely been studied yet. In this work, two sustainable resources lignin and gelatin have been synergistically incorporated into ethylene glycol (EG), and their tribological properties were systematically investigated. The abundant hydrogen bonding sites in lignin and gelatin as well as their interchain interaction via hydrogen bonding play the dominating roles in tuning the physicochemical properties of the mixture and improving lubricating properties. Moreover, the synergistic combination of lignin and gelatin induces charge separation of gelatin that enables its preferable adsorption on the friction surface through electrostatic force and forms a robust lubrication layer. This layer will be strengthened by lignin through the interpolymer chain hydrogen bonding. At an optimized lignin:gelatin mass ratio of 1:1 and 19 wt % loading of each in EG, the friction coefficient can be greatly stabilized and the wear loss was reduced by 89% compared to pure EG. This work presents a unique synergistic phenomenon between gelatin and lignin, where hydrogen bonding and change separation are revealed as the key factor that bridges the individual components and improves overall lubricating properties.
Collapse
Affiliation(s)
- Liwen Mu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States.,Division of Machine Elements, Luleå University of Technology , Luleå 97187, Sweden
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology , Luleå 97187, Sweden
| | - Jing Hua
- Division of Machine Elements, Luleå University of Technology , Luleå 97187, Sweden
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30, Puzhu South Road, Nanjing 211816, P. R. China
| | - Jiahua Zhu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
44
|
Zabbey N, Sam K, Onyebuchi AT. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:952-965. [PMID: 28214111 DOI: 10.1016/j.scitotenv.2017.02.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Contamination of the total environment (air, soil, water and biota) by crude oil has become a paramount interest in the Niger Delta region of Nigeria. Studies have revealed variable impacts of oil toxicity on the environment and exposed populations. The revelation gained much international attention in 2011 with the release of Environmental Assessment of Ogoniland report by the United Nations Environment Programme (UNEP). This has up scaled local and international pressures for urgent clean-up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. Previous remediation attempts in the area had failed due to erroneous operational conclusions (such as conclusions by oil industry operators that the Niger Delta soil is covered by a layer of clay and as such oil percolation remains within the top soil and makes remediation by enhanced natural attenuation (RENA) suitable for the region) and the adoption of incompatible and ineffective approaches (i.e. RENA) for the complex and dynamic environments. Perennial conflicts, poor regulatory oversights and incoherent standards are also challenges. Following UNEP recommendations, the Federal Government of Nigeria recently commissioned the clean-up and remediation of Ogoniland project; it would be novel and trend setting. While UNEP outlined some measures of contaminated land remediation, no specific approach was identified to be most effective for the Niger Delta region. Resolving the technical dilemma and identified social impediments is the key success driver of the above project. In this paper, we reviewed the socio-economic and ecological impacts of contaminated land in the Niger Delta region and the global state-of-the-art remediation approaches. We use coastal environment clean-up case studies to demonstrate the effectiveness of bioremediation (sometimes in combination with other technologies) for remediating most of the polluted sites in the Niger Delta. Bioremediation should primarily be the preferred option considering its low greenhouse gas and environmental footprints, and low-cost burden on the weak and overstretched economy of Nigeria.
Collapse
Affiliation(s)
- Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB 5323, East-West Road, Choba, Rivers State, Nigeria; Environment and Conservation Unit, Center for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| | - Kabari Sam
- Cranfield University, School of Water, Energy, and Environment, College Road, Cranfield MK43 0AL, UK.
| | - Adaugo Trinitas Onyebuchi
- Environment and Conservation Unit, Center for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
45
|
Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. CHEMOSPHERE 2017; 168:944-968. [PMID: 27823779 DOI: 10.1016/j.chemosphere.2016.10.115] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 05/22/2023]
Abstract
For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
46
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|