1
|
Zeng P, Hu H, Wang Y, Liu J, Cheng H. Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137245. [PMID: 39823868 DOI: 10.1016/j.jhazmat.2025.137245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas). We detected Cd(II) (0.6 -71.4 μg kg-1 in 100 % prawn but 63 % fish), methylmercury (MeHg, 0.5 -7.1 μg kg-1 in 100 % fish but 61 % shrimp), Pb(II) (0.4 -1.0 μg kg-1 in 57 % fish and 39 % prawn), and trimethyltin and triethyltin (0.4 -0.7 μg kg-1), which were much lower than the maximum limits in China. Pb(II), Cd(II), and Hg(II) up to 0.38 mg kg-1 were main contaminants in sediment while Cd(II) and Pb(II) up to 0.44 mg kg-1 were major contaminants in feedstuff compared with Cd(II), Sn(II), Hg(II), and Pb(II) majored in water at ng L-1 levels. Ecological risks were low in water but high for tributyltin in sediment. Additionally, light bioaccumulation of Cd(II) from sediment for prawn and methylmercury from feedstuff/sediment for crucian and bighead carp was induced. We also found light health risk of triethyl- and trimethyl lead, and Cd(II) (to children) associated with fish/shrimp consumption (edible muscle). This study proved high necessity of chemical-specific assessment, and shall trigger increasing interest to more metallic compounds in a wide range of uncultured and cultured plants and animals.
Collapse
Affiliation(s)
- Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Liu L, Du RY, Jia RL, Wang JX, Chen CZ, Li P, Kong LM, Li ZH. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123079. [PMID: 38061435 DOI: 10.1016/j.envpol.2023.123079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 μm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 μg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ruo-Lan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling-Ming Kong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
4
|
Liu F, Yu R, Xie Y, Xie Z, Wu J, Wu Y, Zhang X. Organotins in fish, shrimp, and cephalopods from the Pearl River Estuary, China: Dietary exposure risk to Indo-Pacific humpback dolphin and human. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166634. [PMID: 37643713 DOI: 10.1016/j.scitotenv.2023.166634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Food has regularly been proven to be a key source of exposure to environmental pollutants, drawing attention to the dietary exposure risks of contaminants to mammals with significant daily food intake. Here, the levels of six organotin compounds (OTs) in 18 fish (n = 310), three cephalopods (n = 50), and one shrimp (n = 34) from the Lingdingyang (LDY) and west four region (WFR) of the Pearl River Estuary (PRE) and their dietary exposure risks to Indo-Pacific humpback dolphins and humans were first investigated. Total OT levels ranged from 3.84 to 901. 48 ng/g wet weight (ww) in 22 prey species from the LDY, and from 14.37 to 1364.64 ng/g ww in 19 species from the WFR. The LDY marine species generally accumulated higher butyltin levels but lower phentyltin levels than those in the WFR. All species have a phenyltin degradation index <1 and over 60 % of the sampled species have a butyltin degradation index <1, suggesting the PRE marine species might be exposed to the fresh discharge of OTs. A total of nine marine species exceeded the threshold levels of OT intake for adverse health effects on human juveniles by consumption, all 22 marine species posed high dietary risks to the PRE humpback dolphins. Moreover, probabilistic risk assessment using Monte Carlo simulation revealed that the probabilities of RQ values associated with WFR OT exposure higher than 1 were 18.87 % for human adults, 40.55 % for human juveniles, 100 % for both humpback dolphin adults and humpback dolphin juveniles. Our results highlighted the potentially high dietary exposure risks of OTs to marine mammals and residents in the PRE.
Collapse
Affiliation(s)
- Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
5
|
Li Y, Huang X, Ge N, Zhang J, Cao Y, Cui Z. Occurrence of organotin compounds in food: increasing challenge of phenyltin compounds. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 59:9-14. [PMID: 37961984 DOI: 10.1080/03601234.2023.2278385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Concentrations and distribution for 16 organotin compounds were studied in all kinds of foods, including seafood, agricultural products, and wine. Meanwhile, the degradation of the TBT or TPhT was also evaluated. Concentrations of total organotins in seafood, agricultural products, and wine were 1047.2, 469.4, and 13.5 μg Sn/kg. Meanwhile, the most frequently detected organotin in three kinds of samples were TPhT, MPhT, and MPhT, respectively. The results demonstrated that phenyltin may probably become an emerging organotin pollutant. Regarding seafood, organotin concentrations of fish and mollusks were much higher than those of crustaceans. At the same time, a significant positive correlation was observed between the concentrations of TBT and MBT (p < 0.05), and between DBT and MBT(p < 0.0001). Moreover, TPhT was significantly and positively associated with DPhT (p < 0.0001), suggesting that TPhT was the precursor of DPhT. Apart from the likely illegal use of OTs as biocides in antifouling paints for ships, anthropogenic activity like agricultural activity or industrial activity also caused organotin contamination. Further research and more effective measures should be formulated to protect the food safety. Meanwhile, monitoring of the organotin contamination should not only in Qinhuangdao, but also expand to the cities along Bohai Bay.
Collapse
Affiliation(s)
- Yan Li
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, P.R. China
| | - Xuezhe Huang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Na Ge
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Jinjie Zhang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Yanzhong Cao
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Zongyan Cui
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, P.R. China
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| |
Collapse
|
6
|
Moscoso-Pérez CM, Fernández-González V, Moreda-Piñeiro J, López Mahía P, Muniategui-Lorenzo S. Organotin compounds in seafood by ultrasonic assisted extraction and gas chromatography-triple quadrupole tandem mass spectrometry. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:219-233. [PMID: 37458108 DOI: 10.1080/19393210.2023.2207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Although restricting environmental quality values for organotin compounds (OTs) are set by Directive 2013/39/EU of the European Parliament, marine environment remains being affected due to maritime circulation at global scale. Fish and seafood accumulate OTs, making fish and seafood consumption the main source of OTs in humans. Because of the fish and seafood matrices complexity and the required low limits of detection, a robust and fast procedure for the quantification of OTs in fish and seafood, using ultrasound-assisted extraction and gas chromatography-tandem mass spectrometry, was validated and applied. Detection (2.7 µg Sn kg-1) and quantification (8.0 µg Sn kg-1) limits, repeatability and intermediate precision (<10%), accuracy by analysing ERM®-CE477 Mussel Tissue and analytical recoveries (65-122%) were assessed. Multivariate analysis shown that the matrix effect for some OTs displayed good negative correlation with the fat and protein content. Health risk assessment of OTs intake revealed no serious risk for human consumption.
Collapse
Affiliation(s)
- Carmen Maria Moscoso-Pérez
- Department of Chemistry, Faculty of Sciences, University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), A Coruña, Spain
| | - Verónica Fernández-González
- Department of Chemistry, Faculty of Sciences, University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- Department of Chemistry, Faculty of Sciences, University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), A Coruña, Spain
| | - Purificación López Mahía
- Department of Chemistry, Faculty of Sciences, University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Department of Chemistry, Faculty of Sciences, University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), A Coruña, Spain
| |
Collapse
|
7
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
8
|
Uc-Peraza RG, Delgado-Blas VH, Osten JRV, Castro ÍB, Carneiro Proietti M, Fillmann G. Organotin contamination in seafood from the Yucatán Peninsula, Mexico: Is there a potential risk for the health of consumers? CHEMOSPHERE 2022; 308:136178. [PMID: 36037943 DOI: 10.1016/j.chemosphere.2022.136178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Since seafood is considered an important source of organotin compounds (OTCs), the present study assessed the potential risk to human health of ingesting butyltins (BTs) and phenyltins (PhTs) along with this type of food. Seafood samples were collected at five fishing sites in the Yucatán Peninsula (Mexico) during February and March 2018. In general, organotins were detected in all samples, suggesting a widespread occurrence of these compounds in the investigated region. The average concentration of total organotins in the muscle of demersal fish (Lutjanus synagris, Lutjanus campechanus, Calamus pennatula, Haemulon plumierii, Rhomboplites aurorubens), pelagic fish (Euthynnus alletteratus, and Opisthonema oglinum), gastropods (Melongena bispinosa and Strombus pugilis), oyster (Crassostrea virginica) and shrimp (Penaeus duorarum) was 146.7 ± 76.2, 93.1 ± 92.6, 61.0 ± 53.0, 76.7 ± 2.6, and 28.8 ± 2.7 ng Sn g-1 dry weight, respectively. Overall, MPhT among PhTs was the dominant compound in fish, while TBT among BTs was the dominant compound in shellfish. Regarding the toxic OTCs, TBT followed by DBT were the predominant compounds in all seafood species, while TPhT was below the quantification limit in most samples. The estimated daily intake values were lower than the tolerable daily intake (TDI) for the sum of organotins established by the European Food Safety Authority (EFSA). Furthermore, the hazard quotients (HQ) and hazard indices (HI) values were all lower than 1, suggesting that daily exposure to these levels of organotins is unlikely to cause any harm to the human health of seafood consumers at the Yucatán Peninsula. Thus, consumers may not be at risk through the inclusion of these investigated seafood species in their normal diet. However, due to the increasing coastal urbanization, maritime activities, and the likely illegal use of tin-based paints in Mexico, additional monitoring is needed to assess organotin levels in other regions along the Mexican coastal zone and using other seafood species.
Collapse
Affiliation(s)
- Russell Giovanni Uc-Peraza
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Victor Hugo Delgado-Blas
- División de Ciencias, Ingeniería y Tecnología, Universidad Autónoma del Estado de Quintana Roo (DCI-UQROO), 77010, Chetumal, Quintana Roo, Mexico
| | - Jaime Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus VI, 24030, San Francisco de Campeche, Campeche, Mexico
| | - Ítalo Braga Castro
- PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100, Santos, SP, Brazil
| | - Maíra Carneiro Proietti
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanografia Biológica, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; PPG em Oceanologia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
9
|
You J, Gao JM, Fu PT, LeBlanc GA, Guo JS, Zhang LX, Li MQ. Organotins in a food web from the Three Gorges Reservoir, China: Trophic enrichment and potential health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157276. [PMID: 35835194 DOI: 10.1016/j.scitotenv.2022.157276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPhT) and tributyltin (TBT) remain widely present in various aquatic environments despite restrictions on their use in many countries for many years. The biomagnification of these compounds in the aquatic food web remains controversial. This study reports the bioaccumulation of TPhT and TBT in aquatic animals in the Three Gorges Reservoir (TGR), a deep-water river channel-type reservoir and the largest reservoir in China. We measured TPhT, TBT and their metabolites in 2 invertebrates, 27 fish and the aquatic environment. The logarithmic bioaccumulation factors of TPhT and TBT were 4.37 and 3.77, respectively, indicating that TPhT and TBT were enriched in organisms of the TGR. Both TPhT and TBT concentrations were significantly and positively correlated with trophic level, with trophic magnification factors of 3.71 and 3.63, respectively, indicating that TPhT and TBT exhibited similar trophic enrichment in the freshwater food web of the TGR. The results of health risk assessment showed that although all hazard index (HI) values were <1, more attention should be paid to the health risk to children associated with consumption of aquatic products (HI = 0.67). This study provides powerful evidence of trophic enrichment of TPhT and TBT in a freshwater food web in a deep-water river channel-type reservoir and provides valuable data regarding organotins in aquatic animals in the TGR.
Collapse
Affiliation(s)
- Jia You
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Ping-Ting Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Gerald A LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Li-Xia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mao-Qiu Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
10
|
Chen C, Chen L, Huang Q, Zhang W, Leung KMY. Pulsed distribution of organotins in the turbidity maximum zone of the Yangtze Estuary throughout a tidal cycle. MARINE POLLUTION BULLETIN 2022; 178:113600. [PMID: 35349865 DOI: 10.1016/j.marpolbul.2022.113600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the concentration fluctuation of organotin compounds in the Turbidity Maximum Zone (TMZ) of the Yangtze Estuary within a tidal cycle. Organotin concentrations varied greatly during the tidal cycle with dissolved organotins ranged from 39 to 682 ng Sn·L-1 and 40-1588 ng Sn·L-1, and particulate organotins ranged from 59 to 467 ng Sn·g-1 dw and 21-429 ng Sn·g-1 dw in TMZ water close to Hengsha Island and Jiuduansha Island, respectively. Meanwhile, the maximum levels of organotins appeared at each period of tidal transition, suggesting the tidal-driven pulsed exposure of organotins was prevalent in the estuaries. Besides, the organic carbon-normalized partition coefficients (Koc) of tri-organotins between suspended particulate matter (SPM) and aqueous phase were correlated with the phase distribution of natural organic matter (NOM). The dissolved tri-organotins were also associated with the properties of dissolved organic carbon (DOC) including aromaticity, hydrophobicity, and chromophoricity. Hence, pulsed exposure on organotins in the TMZ are highly dictated by the dynamic environmental conditions (i.e., SPM and NOM) with the tidal currents, which could further provide information to assess organotin ecological risks accurately in estuaries.
Collapse
Affiliation(s)
- Chunzhao Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
He S, Yu D, Li P, Zhang M, Xing S, Sun C, Li ZH. Triphenyltin exposure causes changes in health-associated gut microbiome and metabolites in marine medaka. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117751. [PMID: 34252717 DOI: 10.1016/j.envpol.2021.117751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Triphenyltin (TPT), an organic compound with a wide range of applications, is often detected in water bodies and aquatic animals. However, the mechanism underlying the biological metabolic health problems caused by long-term exposure to environment concentrations of TPT remains unclear. The morphology and gene expression in the gut and liver were investigated; and 16SrRNA gene amplification sequencing and non-targeted LC-MS/MS metabonomics were investigated after marine medaka (Oryzias melastigma) was treated with 1, 10, and 100 ng/L TPT for 21 days. During prolonged exposure to TPT, the adaptation mechanism maximized the energy of absorption, increased the length of intestinal microvilli, reduced the number of rough endoplasmic reticulum in the liver, and caused loss of weight. TPT exposure significantly changed the intestinal microbiome of marine medaka, thereby resulting in a significant decrease in microbial diversity. Following exposure to 100 ng/L TPT, the metabolic profiles were significantly changed and the altered metabolites were mainly concentrated in the lipid metabolic pathway. Finally, based on comprehensive network analysis, the association between the significantly changed bacteria and metabolites contributed further to the prediction of the impact of TPT on the host. This study provides a novel insight into the underlying mechanisms of host metabolic diseases caused by TPT and emphasizes the importance of monitoring pollutants in the environment.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, 266104, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
12
|
Zhang C, Jiang D, Wang J, Qi Q. The effects of TPT and dietary quercetin on growth, hepatic oxidative damage and apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112697. [PMID: 34450426 DOI: 10.1016/j.ecoenv.2021.112697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the effects of triphenyltin (TPT) and dietary quercetin on the growth, oxidative stress and apoptosis in zebrafish. A total of 240 fish were divided into 4 groups with three replicates as follows: fish were fed with the basal diet as the control group (D1), only 10 ng/L TPT (D2), 10 ng/L TPT + 100 mg/kg quercetin (D3), and only 100 mg/Kg quercetin as the D4 group. At the end of the study period (56 d), the results showed that the growth performance of the fish that were fed 100 mg/kg quercetin was significantly higher than that of fish that were exposed to 10 ng/L TPT. Quercetin ameliorated oxidative stress, which decreased malondialdehyde (MDA) and nitric oxide (NO) levels and improved antioxidant enzyme activities. The mRNA expressions of the key apoptotic gene and pro-inflammatory cytokines were significantly induced by TPT exposure. However, dietary quercetin prevented a marked increase in the Bax, caspase3 and caspase9 transcript abundances that were induced by TPT. In addition, the quercetin treatments decreased inflammation by regulating the NF-kB signalling pathway. In conclusion, our findings suggested that TPT induced oxidative stress and apoptosis in zebrafish and that the pretreatment with quercetin showed an ameliorative role. Dietary 100 mg/ kg quercetin helps to prevent oxidative damage, apoptosis and inflammation in TPT treated zebrafish.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| | - Dongxue Jiang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Junhui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
13
|
Liu H, Jiang W, Ye Y, Yang B, Shen X, Lu S, Zhu J, Liu M, Yang C, Kuang H. Maternal exposure to tributyltin during early gestation increases adverse pregnancy outcomes by impairing placental development. ENVIRONMENTAL TOXICOLOGY 2021; 36:1303-1315. [PMID: 33720505 DOI: 10.1002/tox.23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a persistent organotin pollutant widely used as agricultural and wood biocides, exhibiting well-documented toxicity to reproductive functions in aquatic organisms. However, the effect of TBT on early pregnancy and placental development has been rarely studied in mice. Pregnant mice were fed with 0, 0.2, and 2 mg/kg/day TBT from gravid day 1 to day 8 or 13. TBT exposure led to an increase in the number of resorbed embryo and a reduction in the weight of fetus at gestational days 13. Further study showed that TBT significantly decreased placental weight and area, lowered laminin immunoreactivity and the expressions of placental development-related molecules including Fra1, Eomes, Hand1, and Ascl2. Moreover, TBT treatment markedly inhibited the placental proliferation and induced up-regulation of p53 and cleaved caspase-3 proteins, and down-regulation of Bcl-2 protein. In addition, TBT administration increased levels of malondialdehyde and H2 O2 and decreased activities of catalase and superoxide dismutase. Collectively, these results suggested TBT-induced adverse pregnancy outcomes during early pregnancy might be involved in developmental disorders of the placenta via dysregulation of key molecules, proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yafen Ye
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
15
|
Chung SWC, Lau JSY, Lau JPK. Occurrence of organotin compounds in seafood from Hong Kong market. MARINE POLLUTION BULLETIN 2020; 154:111116. [PMID: 32319930 DOI: 10.1016/j.marpolbul.2020.111116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The degree of organotin compounds (OTCs), including dibutyltin, tributyltin, triphenyltin and dioctyltin, contamination in seafood purchased in 2017 and 2018 from Hong Kong market was studied. Edible portions of 341 seafood samples, including fish, crustaceans and molluscs, were used for analysis by gas chromatograph coupled to an inductively coupled plasma mass spectrometry (GC-ICP/MS). The method detection limits and quantification limits of OTCs were below or equal to 0.25 and 1.0 μg Sn kg-1 respectively. Triphenyltin accounted for the majority amongst other OTCs and was detected in 53% of samples. In general, mean total OTCs levels of fish (24 μg Sn kg-1) were higher than crustaceans (14 μg Sn kg-1) and molluscs (15 μg Sn kg-1). The highest detected levels of triphenyltin, tributyltin, dibutyltin and dioctyltin were found to be 480, 24, 4.5 and 0.89 μg Sn kg-1 in a mangrove snapper, noodle fish, coral clam and giant grouper respectively.
Collapse
Affiliation(s)
- Stephen W C Chung
- Food Research Laboratory, Centre for Food Safety, Food and Environmental Hygiene Department, 4/F Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong.
| | - Jason S Y Lau
- Food Research Laboratory, Centre for Food Safety, Food and Environmental Hygiene Department, 4/F Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong
| | - Jasmine P K Lau
- Risk Assessment Section, Centre for Food Safety, Food and Environmental Hygiene Department, 3/F, 4 Hospital Road, Hong Kong
| |
Collapse
|
16
|
Ueno T, Oyama K, Hyung YJ, Ueno S, Oyama Y. Triphenyltin disrupts intracellular Zn 2+ homeostasis in rat thymic lymphocytes. Toxicol In Vitro 2020; 65:104782. [PMID: 31982641 DOI: 10.1016/j.tiv.2020.104782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Triphenyltin (TPT), previously used as an agricultural fungicide and industrial antifoulant, is now considered an environmental pollutant. The effect of TPT on human health is concerning due to its presence as a contaminant in seafood. In this study, the changes in intracellular Zn2+ concentration ([Zn2+]i) and cellular content of nonprotein thiols ([NPT]i) induced by triphenyltin chloride (TPTCH), were measured in rat thymic lymphocytes. This was studied by flow-cytometry using the fluorescent probes FluoZin-3-AM and 5-chloromethylfluorescein diacetate (5-CMF-DA). Incubation with TPTCH, at 0.1 μM or more (up to 3 μM), increased [Zn2+]i in a concentration-dependent manner. The TPTCH-induced elevation in [Zn2+]i was due to the increase in membrane Zn2+ permeability and intracellular Zn2+ release. Incubation with TPTCH at 0.3 μM significantly increased [NPT]i levels, whereas the addition of an intracellular Zn2+ chelator had no effect on the same. TPT at higher concentrations (1 or 3 μM) reduced [NPT]i. TPT may disturb intracellular Zn2+ signaling in lymphocytes that disturbs cellular functions.
Collapse
Affiliation(s)
- Toshiya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Youn Jae Hyung
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Shinya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
17
|
Fernandez MA. Populations Collapses in Marine Invertebrates Due to Endocrine Disruption: A Cause for Concern? Front Endocrinol (Lausanne) 2019; 10:721. [PMID: 31736872 PMCID: PMC6828821 DOI: 10.3389/fendo.2019.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/07/2019] [Indexed: 01/17/2023] Open
Abstract
In the beginning of the twenty first century, the International Program on Chemical Safety published a document entitled Global Assessment of the State-Of-The-Science of Endocrine Disruptors. The work indicated only weak evidence of endocrine-related effects in human populations, and in wild animal populations. This document was revised in 2012 (State of the Science of Endocrine Disrupting Chemicals-2012) (1). The new document and the extensive scientific evidence it provided showed clearly that ED effects could be a risk to human and wildlife health. These works, however, were focused in human health and related animal models, mainly vertebrates and particularly mammals. It can be argued that invertebrates and many other taxa are important parts of all ecosystems, and, in many instances, have been shown to be also vulnerable to endocrine disruption. Thus, this work is aimed to show some observations on important marine invertebrate taxa, from an ecological point of view. The most important example of endocrine disruption in marine wild populations is the imposex response of marine gastropods, known for more than 40 years, and worldwide used to evaluate marine antifouling pollution. Among the mollusks, other important natural resources are bivalve species, used as human food sources and cephalopods, free-living, highly specialized mollusks, and also human food sources. Effects derived from endocrine disruptors in these species indicate that consumption could bring these compounds to human populations in an almost direct way, sometimes without any form of cooking or preparation. While discussing these questions, this work is also aimed to stimulate research on endocrine disruption among the invertebrate taxa that inhabited our oceans, and on which these effects are poorly known today.
Collapse
Affiliation(s)
- Marcos Antonio Fernandez
- Marine Ecotoxicology Laboratory, Chemical Oceanography Department, Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Chen C, Chen L, Huang Q, Chen Z, Zhang W. Organotin contamination in commercial and wild oysters from China: Increasing occurrence of triphenyltin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2527-2534. [PMID: 30293005 DOI: 10.1016/j.scitotenv.2018.09.310] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Organotin contamination in marine environment has been a public concern for many years due to its adverse impacts on biota and human health. This study investigated levels, distribution and health risks of six organotin compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT) and monophenyltin (MPhT) in commercial and wild oysters in China. The total organotin in commercial oysters ranged from 251 to 1949 ng Sn g-1 dw (dry weight) >. Two endocrine disruptors TBT and TPhT were detected in these samples with the highest level of 68.1 ± 20.1 ng Sn g-1 dw and 747 ± 7.3 ng Sn g-1 dw, respectively. For wild oysters, the concentrations of total organotins varied from 33.3 to 2671 ng Sn g-1 dw. Butyltins were dominated by TBT with the mean level of 26.1 ± 30.0 ng Sn·g-1 dw and showed no significant spatial variation between the southern and northern coastal zones (p > 0.05). However, compared with the north, phenyltin levels especially TPhT were much higher in the south coastline (246-1484 ng Sn·g-1 dw) due to the wider use of TPhT-based biocides in local mariculture and agriculture. Health risk assessment indicated that a daily exposure of TPhT-contaminated oysters (including commercial and wild ones) may pose adverse threats to human particularly children as the risk quotients (RQ) were higher than 1. Organotin contamination (e.g., TPhT) still occurs in the South China's coastal zones after the TBT ban, which deserves future research and effective measures to protect the marine ecosystem and human health.
Collapse
Affiliation(s)
- Chunzhao Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Chen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Zhaoying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
19
|
Intra-axonal Ca 2+ mobilization contributes to triphenyltin-induced facilitation in glycinergic transmission of rat spinal neurons. Toxicol In Vitro 2018; 55:11-14. [PMID: 30439410 DOI: 10.1016/j.tiv.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/12/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022]
Abstract
Triphenyltin (TPT) is an organotin compound causing environmental hazard to many wild creatures. Our previous findings show that TPT increases of the frequency of spontaneous glycinergic inhibitory postsynaptic currents (sIPSCs) in rat spinal neurons without changing the amplitude and 1/e decay time. In our study, the effects of 2-aminoethoxydiphenyl borate (2-APB), dantrolene sodium, and thapsigargin on sIPSC frequency were examined to reveal the contribution of intra-axonal Ca2+ mobilization by adding TPT. 2-APB considerably attenuated the TPT-induced facilitation of sIPSC frequency while dantrolene almost completely masked the TPT effects, suggesting that the TPT-induced synaptic facilitation results from the activation of both IP3 and ryanodine receptors on endoplasmic reticulum (ER) membrane, though inositol triphosphate (IP3) receptor is less sensitive to TPT. Thapsigargin itself significantly increased the sIPSC frequency without affecting the current amplitude and decay time. Successive addition of TPT could not further increase the sIPSC frequency in the presence of thapsigargin, indicating that thapsigargin completely masked the facilitatory action of TPT. Results suggest that TPT activates the IP3 and ryanodine receptors while TPT inhibits the Ca2+-pump of ER membranes, resulting in the elevation of intra-axonal Ca2+ levels, leading to the increase of spontaneous glycine release from synaptic vesicles.
Collapse
|
20
|
Noma K, Akaike H, Kurauchi Y, Katsuki H, Oyama Y, Akaike N. Effects of triphenyltin on glycinergic transmission on rat spinal neurons. ENVIRONMENTAL RESEARCH 2018; 163:186-193. [PMID: 29453030 DOI: 10.1016/j.envres.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Glycine is a fast inhibitory transmitter like γ-aminobutyric acid in the mammalian spinal cord and brainstem, and it is involved in motor reflex, nociception, and neuronal development. Triphenyltin (TPT) is an organometallic compound causing environmental hazard to many wild creatures. Our previous findings show that TPT ultimately induces a drain and/or exhaustion of glutamate in excitatory presynaptic nerve terminals, resulted in blockage of neurotransmission as well as methylmercury. Therefore, we have investigated the neurotoxic mechanism how TPT modulates inhibitory glycinergic transmission in the synaptic bouton preparation of rat isolated spinal neurons using a patch clamp technique. TPT at environmentally relevant concentrations (3-300 nM) significantly increased the number of frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC and mIPSC) without affecting the current amplitude and decay time. The TPT effects were also observed in external Ca2+-free solution containing tetrodotoxin (TTX) but removed in Ca2+-free solution with both TTX and BAPTA-AM (Ca2+ chelator). On the other hand, the amplitude of glycinergic evoked inhibitory postsynaptic currents (eIPSCs) increased with decreasing failure rate (Rf) and paired pulse ratio (PPR) in the presence of 300 nM TPT. At a high concentration (1 µM), TPT completely blocked eIPSCs after a transient facilitation. Overall, these results suggest that TPT directly acts transmitter-releasing machinery in glycinergic nerve terminals. Effects of TPT on the nerve terminals releasing fast transmitters were greater in the order of glycinergic > glutamatergic > GABAergic ones. Thus, TPT is supposed to cause a strong synaptic modulations on glycinergic neurotransmission in wild creatures.
Collapse
Affiliation(s)
- Kazuki Noma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuo Oyama
- Laboratory of Bioassessment, Faculty of Bioscience and Bioindustry, Tokushima University, Minami-Josanjima 2-1, Tokushima 770-8501, Japan
| | - Norio Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| |
Collapse
|
21
|
Deng T, Wu L, Gao JM, Zhou B, Zhang YL, Wu WN, Tang ZH, Jiang WC, Huang WL. Occurrence and health risk assessment of organotins in waterworks and the source water of the Three Gorges Reservoir Region, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15019-15028. [PMID: 29552717 DOI: 10.1007/s11356-018-1704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The occurrence and health risks of organotins (OTs) in the waterworks and source water in the Three Gorges Reservoir Region (TGRR), China were assessed in this study. Water samples were collected at four waterworks (A, B, C, and D) in March and July 2012 to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry (GC-MS) system. Our results showed that both the waterworks and their nearby water sources were polluted by OTs, with PTs being the most dominant species. Monobutyltin (MBT), monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were detected in most of the analyzed water samples. The highest concentrations of OTs in influents, effluents, and source water in March were 52.81, 17.93, and 55.32 ng Sn L-1, respectively. Furthermore, significant seasonal changes in OTs pollution were observed in all samples, showing pollution worse in spring compared with summer. The removal of OTs by the conventional treatment processes was not stable among the waterworks. The removal efficiency of OTs in July reached 100% at plant B, while that at plant C was only 38.8%. The source water and influents shared similar composition profiles, concentrations, and seasonal change of OTs, which indicated that OTs in the waterworks were derived from the source water. A health risk assessment indicated that the presence of OTs in the waterworks would not pose a significant health risk to the population, yet their presence should not be ignored.
Collapse
Affiliation(s)
- Ting Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Lei Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China.
| | - Bin Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ya-Li Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wen-Nan Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhuo-Heng Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wen-Chao Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wei-Lin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901-8551, USA.
| |
Collapse
|
22
|
Vogt ÉL, Model JFA, Vinagre AS. Effects of Organotins on Crustaceans: Update and Perspectives. Front Endocrinol (Lausanne) 2018; 9:65. [PMID: 29535684 PMCID: PMC5835110 DOI: 10.3389/fendo.2018.00065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
Organotins (OTs) are considered some of the most toxic chemicals introduced into aquatic environments by anthropogenic activities. They are widely used for agricultural and industrial purposes and as antifouling additives on boat hull's paints. Even though the use of OTs was banned in 2008, elevated levels of OTs can still be detected in aquatic environments. OTs' deleterious effects upon wildlife and experimental animals are well documented and include endocrine disruption, immunotoxicity, neurotoxicity, genotoxicity, and metabolic dysfunction. Crustaceans are key members of zooplankton and benthic communities and have vital roles in food chains, so the endocrine-disrupting effects of tributyltin (TBT) on crustaceans can affect other organisms. TBT can disrupt carbohydrate and lipid homeostasis of crustaceans by interacting with retinoid X receptor (RXR) and crustacean hyperglycemic hormone (CHH) signaling. Moreover, it can also interact with other nuclear receptors, disrupting methyl farnesoate and ecdysteroid signaling, thereby altering growth and sexual maturity, respectively. This compound also interferes in cytochrome P450 system disrupting steroid synthesis and reproduction. Crustaceans are also important fisheries worldwide, and its consumption can pose risks to human health. However, some questions remain unanswered. This mini review aims to update information about the effects of OTs on the metabolism, growth, and reproduction of crustaceans; to compare with known effects in mammals; and to point aspects that still needs to be addressed in future studies. Since both macrocrustaceans and microcrustaceans are good models to study the effects of sublethal TBT contamination, novel studies should be developed using multibiomarkers and omics technology.
Collapse
Affiliation(s)
- Éverton L. Vogt
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge F. A. Model
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Anapaula S. Vinagre
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
23
|
de Araújo JFP, Podratz PL, Merlo E, Sarmento IV, da Costa CS, Niño OMS, Faria RA, Freitas Lima LC, Graceli JB. Organotin Exposure and Vertebrate Reproduction: A Review. Front Endocrinol (Lausanne) 2018; 9:64. [PMID: 29545775 PMCID: PMC5838000 DOI: 10.3389/fendo.2018.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 11/30/2022] Open
Abstract
Organotin (OTs) compounds are organometallic compounds that are widely used in industry, such as in the manufacture of plastics, pesticides, paints, and others. OTs are released into the environment by anthropogenic actions, leading to contact with aquatic and terrestrial organisms that occur in animal feeding. Although OTs are degraded environmentally, reports have shown the effects of this contamination over the years because it can affect organisms of different trophic levels. OTs act as endocrine-disrupting chemicals (EDCs), which can lead to several abnormalities in organisms. In male animals, OTs decrease the weights of the testis and epididymis and reduce the spermatid count, among other dysfunctions. In female animals, OTs alter the weights of the ovaries and uteri and induce damage to the ovaries. In addition, OTs prevent fetal implantation and reduce mammalian pregnancy rates. OTs cross the placental barrier and accumulate in the placental and fetal tissues. Exposure to OTs in utero leads to the accumulation of lipid droplets in the Sertoli cells and gonocytes of male offspring in addition to inducing early puberty in females. In both genders, this damage is associated with the imbalance of sex hormones and the modulation of the hypothalamic-pituitary-gonadal axis. Here, we report that OTs act as reproductive disruptors in vertebrate studies; among the compounds are tetrabutyltin, tributyltin chloride, tributyltin acetate, triphenyltin chloride, triphenyltin hydroxide, dibutyltin chloride, dibutyltin dichloride, diphenyltin dichloride, monobutyltin, and azocyclotin.
Collapse
Affiliation(s)
| | - Priscila Lang Podratz
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
- *Correspondence: Priscila Lang Podratz,
| | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Rodrigo Alves Faria
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | | |
Collapse
|