1
|
Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022; 10:microorganisms10051007. [PMID: 35630450 PMCID: PMC9142973 DOI: 10.3390/microorganisms10051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial electrolysis cells (MECs) are an emerging technology capable of harvesting part of the potential chemical energy in organic compounds while producing hydrogen. One of the main obstacles in MECs is the bacterial anode, which usually contains mixed cultures. Non-exoelectrogens can act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with the exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In addition, the bacterial anode needs to withstand the shear and friction forces existing in domestic wastewater plants. In this study, a bacterial anode was encapsulated by a microfiltration membrane. The novel encapsulation technology is based on a small bioreactor platform (SBP) recently developed for achieving successful bioaugmentation in wastewater treatment plants. The 3D capsule (2.5 cm in length, 0.8 cm in diameter) physically separates the exoelectrogenic biofilm on the carbon cloth anode material from the natural microorganisms in the wastewater, while enabling the diffusion of nutrients through the capsule membrane. MECs based on the SBP anode (MEC-SBPs) and the MECs based on a nonencapsulated anode (MEC control) were fed with Geobacter medium supplied with acetate for 32 days, and then with artificial wastewater for another 46 days. The electrochemical activity, chemical oxygen demand (COD), bacterial anode viability and relative distribution on the MEC-SBP anode were compared with the MEC control. When the MECs were fed with artificial wastewater, the MEC-SBP produced (at −0.6 V) 1.70 ± 0.22 A m−2, twice that of the MEC control. The hydrogen evolution rates were 0.017 and 0.005 m3 m−3 day−1, respectively. The COD consumption rate for both was about the same at 650 ± 70 mg L−1. We assume that developing the encapsulated bacterial anode using the SBP technology will help overcome the problem of contamination by non-exoelectrogenic bacteria, as well as the shear and friction forces in wastewater plants.
Collapse
|
2
|
Mabrouki J, Abbassi MA, Khiari B, Jellali S, Zorpas AA, Jeguirim M. The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. CHEMOSPHERE 2022; 293:133567. [PMID: 35026199 DOI: 10.1016/j.chemosphere.2022.133567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
In order to set up a cost-efficient biorefinery in a Tunisian dairy industry, the production unit effluents are recovered. The main objective is to develop an optimum method for the production of bioethanol from whey. An energy analysis as well as environmental and economic analyses are performed for a bioethanol production plant. Four production scenarios are examined in order to determine the most provident as well as the less polluting ones. The process and cost models were developed using SuperPro Designer software which a simulation program that is able to estimate both process and economic parameters. This software uses energy and mass balances. The model can be used to assess the efficiency, the resources consumption, the profitability and the environmental impact of each scenario. The results demonstrate that the third scenario, in which a reverse osmosis procedure is added to concentrate the whey, a continuous stoichiometric reaction procedure is integrated to model the biotransformation in the fermenter and where streams are added in order to recycle the biomass, produces the highest amount of bioethanol with 1.65 MT/year but the second one (where no streams were added) is the most profitable one with revenues as high as 570 000 $/year. The corresponding cost of ethanol production is 0.271 US $ ethanol per liter. The net present value (NPV) and the return on investment (ROI) of each scenario are positive. Such result indicates that all these investments could be undertaken in order to find an eco-friendly issue for the dairy industry effluents. Cheese whey could serve as an alternative raw material for producing ethanol.
Collapse
Affiliation(s)
- Jemaa Mabrouki
- Unité de Recherche Matériaux, Energie et Energies Renouvelables (MEER), Faculté des Sciences de Gafsa, B.P.19, Zarroug, Gafsa, 2112, Tunisia.
| | - Mohammed Ammar Abbassi
- Unité de Recherche Matériaux, Energie et Energies Renouvelables (MEER), Faculté des Sciences de Gafsa, B.P.19, Zarroug, Gafsa, 2112, Tunisia.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Antonis A Zorpas
- Open University of Cyprus, Faculty of Pure and Applied Sciences, Laboratory of Chemical Engineering and Engineering Sustainability, P.O.Box 12794, Giannou Kranidioti, 33, Latsia, 2220, Nicosia, Cyprus.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
3
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
4
|
Managing the Effluents of Anaerobic Fermentations by Bioprocess Schemes Involving Membrane Bioreactors and Bio-Electrochemical Systems: A Mini-Review. ENERGIES 2022. [DOI: 10.3390/en15051643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Anaerobic bioprocesses, such as anaerobic digestion and dark fermentation, provide energy carriers in the form of methane and hydrogen gases, respectively. However, their wastewater-type residues, that is, the fermentation effluents, must be treated carefully due to the incomplete and non-selective conversion of organic matter fed to the actual system. For these reasons, the effluents contain various secondary metabolites and unutilized substrate, in most cases. Only a fraction of anaerobic effluents can be directly applied for fertilization under a moderate climate. Conventional wastewater treatment technologies may be used to clean the remainder, but that approach leads to a net loss of energy and of potentially useful agricultural input materials (organic carbon and NPK fertilizer substitutes). The rationale of this paper is to provide an overview of promising new research results in anaerobic effluent management strategies as a part of technological downstream that could fit the concept of new-generation biorefinery schemes aiming towards zero-waste discharge, while keeping in mind environmental protection, as well as economical perspectives. According to the literature, the effluents of the two above processes can be treated and valorized relying either on membrane bioreactors (in case of anaerobic digestion) or bio-electrochemical apparatus (for dark fermentation). In this work, relevant findings in the literature will be reviewed and analyzed to demonstrate the possibilities, challenges, and useful technical suggestions for realizing enhanced anaerobic effluent management. Both membrane technology and bio-electrochemical systems have the potential to improve the quality of anaerobic effluents, either separately or in combination as an integrated system.
Collapse
|
5
|
Chaurasia AK, Mondal P. Enhancing biohydrogen production from sugar industry wastewater using Ni, Ni-Co and Ni-Co-P electrodeposits as cathodes in microbial electrolysis cells. CHEMOSPHERE 2022; 286:131728. [PMID: 34416586 DOI: 10.1016/j.chemosphere.2021.131728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microbial electrolysis cell (MEC) can be utilized for the simultaneous treatment of actual industry wastewater and biohydrogen production. However, efficient and cost-effective cathode, working at ambient conditions and neutral pH, are required to make the MEC as a sustainable technology. In this study, MEC with electrodeposited cathodes (co-deposits of Ni, Ni-Co and Ni-Co-P) were utilized to evaluate the treatment efficiency and hydrogen recovery of sugar industry wastewater. MECs operation was carried out at 30 ± 2 °C temperature in batch mode at an applied voltage of 0.6 V in neutral pH with sugar industry effluent (COD 4850 ± 50 mg L-1, BOD 1950 ± 20 mg L-1) and activated sludge as a source of microorganism. The Ni-Co-P electrodeposit on both cases achieved the maximum H2 production rate of 0.24 ± 0.005 m3(H2) m-3 d-1 and 0.21 ± 0.005 m3(H2) m-3 d-1 with ~50 % treatment efficiency for a 500 ml effluent in 7 days' batch cycles. It was also found that fabricated cathodes can treat real wastewater efficiently with considerable energy recovery than previously reported literature. This study showed the potentiality of the real-time industrial effluents treatment and biohydrogen production near to ambient atmospheric conditions that emphasizes the waste to energy bio-electrochemical system.
Collapse
Affiliation(s)
- Amit Kumar Chaurasia
- Sustainable Processing and Water Treatment Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Prasenjit Mondal
- Sustainable Processing and Water Treatment Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Ong ES, Rabbani AH, Habashy MM, Abdeldayem OM, Al-Sakkari EG, Rene ER. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118160. [PMID: 34562690 DOI: 10.1016/j.envpol.2021.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H2/L-medium/h and 6 L-H2/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Collapse
Affiliation(s)
- Ee Shen Ong
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Alija Haydar Rabbani
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
7
|
The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters. ENERGIES 2021. [DOI: 10.3390/en14248375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to assess the effect of anode materials, namely a carbon nanotube (CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber microbial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics. The experiments were performed using both acetate-based synthetic wastewater and real wastewater, specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the better colonization of the CP electrode with electroactive microorganisms, due to the negative effects of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate, a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step, to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is provided, combining sustainable bioenergy generation together with wastewater treatment, a fact that is also reinforced by the toxicity data of the current study.
Collapse
|
8
|
Chaurasia AK, Shankar R, Mondal P. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113542. [PMID: 34426219 DOI: 10.1016/j.jenvman.2021.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Paper industries are water-intensive industries that produce large amount of wastewater containing dyes, toxicity and high nutrient content. These industries require sustainable technology for their waste disposal and MEC could be one of them. However, effective MEC operation at neutral pH and ambient temperature requires economical and efficient cathodes that are capable to treat indusial wastewater along with recovery of energy/biohydrogen. Co-deposits of Nickel, Nickel-Cobalt and Nickel-Cobalt-Phosphorous on the surface of SS and Cu base metals distinctly were used as cathodes in MEC for the concurrent treatment of real paper industry wastewater and biohydrogen production. MECs were utilized in batch mode at neutral pH, applied voltage of 0.6 V and 30 ± 2 °C temperature with paper industry wastewater and activated sludge as microbial sources. The fabricated Nickel-Cobalt-Phosphorous gives the higher hydrogen production rate of 0.16 ± 0.002 m3(H2) m-3d-1 and 0.14 ± 0.002 m3(H2) m -3d -1 respectively, with ~33-42 % treatment efficiency for a 500 ml wastewater in 7-day batch cycle in both the cases; while it is lowest in the case of the control cathodes (SS1 (0.07 ± 0.002 m3(H2) m-3d-1) & Cu1 (0.06 ± 0.004 m3(H2) m-3d-1)). It was also found that fabricated cathodes have the capability to treat industrial wastewater at ambient conditions efficiently with higher energy recovery. Prepared cathodes show enhanced hydrogen production and treatment efficiency as well as are competitive to some reported literature.
Collapse
Affiliation(s)
- Amit Kumar Chaurasia
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ravi Shankar
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, 273010, UP, India
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
9
|
Development and optimization of an innovative three-stage bioprocess for converting food wastes to hydrogen and methane. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zandona E, Blažić M, Režek Jambrak A. Whey Utilization: Sustainable Uses and Environmental Approach. Food Technol Biotechnol 2021; 59:147-161. [PMID: 34316276 PMCID: PMC8284110 DOI: 10.17113/ftb.59.02.21.6968] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
The dairy industry produces large amounts of whey as a by- or co-product, which has led to considerable environmental problems due to its high organic matter content. Over the past decades, possibilities of more environmentally and economically efficient whey utilisation have been studied, primarily to convert unwanted end products into a valuable raw material. Sustainable whey management is mostly oriented to biotechnological and food applications for the development of value-added products such as whey powders, whey proteins, functional food and beverages, edible films and coatings, lactic acid and other biochemicals, bioplastic, biofuels and similar valuable bioproducts. This paper provides an overview of the sustainable utilization of whey and its constituents, considering new refining approaches and integrated processes to convert whey, or lactose and whey proteins to high value-added whey-based products.
Collapse
Affiliation(s)
- Elizabeta Zandona
- Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia
| | - Marijana Blažić
- Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia
| | - Anet Režek Jambrak
- Faculty of Food technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Wang H, Du H, Zeng S, Pan X, Cheng H, Liu L, Luo F. Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance. Bioelectrochemistry 2021; 138:107726. [PMID: 33421897 DOI: 10.1016/j.bioelechem.2020.107726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Microbial electrosynthesis (MES) is an advanced technology for efficient treatment of organic wastewater and recovery of new energy, with the advantages and disadvantages of single-chamber and dual-chamber MES reactors being less understood. Therefore, we explored the effects of single-chamber and dual-chamber structures on the methane production performance and microbial community structure of MES. Results indicated that methane concentration and current density of single-chamber MES were higher than those of dual-chamber MES, and the system stability was better, while chemical oxygen demand (COD) removal rate and cumulative methane production were not significantly different. Analysis of microbial community structure showed the abundance of acidogens and H2-producing bacteria was higher in single-chamber MES, while fermentation bacteria and methanogens was lower. The abundance of methanogens of dual-chamber MES (21.74-24.70%) was superior to the single-chamber MES (8.23-10.10%). Moreover, in dual-chamber MES, methane was produced primarily through acetoclastic methanogenic pathway, while in single-chamber MES cathode, methane production was mainly by hydrogenotrophic methanogenic pathway. Information provided will be useful to select suitable reactors and optimize reaction design.
Collapse
Affiliation(s)
- Hui Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaoli Pan
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Lei Liu
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Asunis F, De Gioannis G, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111240. [PMID: 32866754 DOI: 10.1016/j.jenvman.2020.111240] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues. This review critically analyses the different treatment options available for energy and materials recovery from cheese whey, their combinations and perspectives for implementation. Thus, instead of focusing on a specific valorisation platform, in the present review the most relevant aspects of each strategy are analysed to support the integration of different routes, in order to identify the most appropriate treatment train.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Marco Isipato
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
13
|
Esquivel DYA, Guo Y, Brown RK, Müller S, Schröder U, Harnisch F. Investigating Community Dynamics and Performance During Microbial Electrochemical Degradation of Whey. ChemElectroChem 2020. [DOI: 10.1002/celc.201902109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Y. Alvarez Esquivel
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Yuting Guo
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
14
|
Biological hydrogen production: molecular and electrolytic perspectives. World J Microbiol Biotechnol 2019; 35:116. [PMID: 31332538 DOI: 10.1007/s11274-019-2692-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Exploration of renewable energy sources is an imperative task in order to replace fossil fuels and to diminish atmospheric pollution. Hydrogen is considered one of the most promising fuels for the future and implores further investigation to find eco-friendly ways toward viable production. Expansive processes like electrolysis and fossil fuels are currently being used to produce hydrogen. Biological hydrogen production (BHP) displays recyclable and economical traits, and is thus imperative for hydrogen economy. Three basic modes of BHP were investigated, including bio photolysis, photo fermentation and dark fermentation. Photosynthetic microorganisms could readily serve as powerhouses to successively produce this type of energy. Cyanobacteria, blue green algae (bio photolysis) and some purple non-sulfur bacteria (Photo fermentation) utilize solar energy and produce hydrogen during their metabolic processes. Ionic species, including hydrogen (H+) and electrons (e-) are combined into hydrogen gas (H2), with the use of special enzymes called hydrogenases in the case of bio photolysis, and nitrogenases catalyze the formation of hydrogen in the case of photo fermentation. Nevertheless, oxygen sensitivity of these enzymes is a drawback for bio photolysis and photo fermentation, whereas, the amount of hydrogen per unit substrate produced appears insufficient for dark fermentation. This review focuses on innovative advances in the bioprocess research, genetic engineering and bioprocess technologies such as microbial fuel cell technology, in developing bio hydrogen production.
Collapse
|
15
|
Flores-Estrella RA, Rodríguez-Valenzuela G, Ramírez-Landeros JR, Alcaraz-González V, González-Álvarez V. A simple microbial electrochemical cell model and dynamic analysis towards control design. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1605360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. A. Flores-Estrella
- Departamento de Procesos Tecnológicos e Industriales, Instituto Tecnológico y de Estudios Superiores de Occidente, ITESO-DPTI, Tlaquepaque, Mexico
| | | | | | | | | |
Collapse
|
16
|
Arvin A, Hosseini M, Amin MM, Najafpour Darzi G, Ghasemi Y. A comparative study of the anaerobic baffled reactor and an integrated anaerobic baffled reactor and microbial electrolysis cell for treatment of petrochemical wastewater. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Dos Passos VF, Marcilio R, Aquino-Neto S, Santana FB, Dias ACF, Andreote FD, de Andrade AR, Reginatto V. Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment. BIORESOURCE TECHNOLOGY 2019; 277:94-103. [PMID: 30660066 DOI: 10.1016/j.biortech.2019.01.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
This research work has succeeded in recovering energy from glucose by generating H2 with the aid of a Clostridium beijerinckii strain and obtaining electrical energy from compounds present in the H2 fermentation effluent in a microbial fuel cell (MFC) seeded with native port drainage sediment. In the fermentation step, 49.5% of the initial glucose concentration (56 mmol/L) was used to produce 104 mmol/L H2; 5, 33, 3, and 1 mmol/L acetate, butyrate, lactate, and ethanol also emerged, respectively. MFC tests by feeding the anodic compartment with acetate, butyrate, lactate (individually or as a mixture), or the H2 fermentation effluent provided power density values ranging between 0.6 and 1.2 W/m2. Acetate furnished the highest power density with a nanowire-rich biofilm despite the lowest anode bacterial concentration (1012 16S gene copies/g of sediment). Non-conventional exoelectrogenic microbial communities were observed in the acetate-fed MFC; e.g., Pseudomonadaceae (Pseudomonas) and Clostridia (Acidaminobacter, Fusibacter).
Collapse
Affiliation(s)
- Vinícius Fabiano Dos Passos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaella Marcilio
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sidney Aquino-Neto
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Fenando Dini Andreote
- Luiz de Queiroz College of Agriculture - Department of Soil Science, University of São Paulo, Piracicaba, SP, Brazil
| | - Adalgisa Rodrigues de Andrade
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valeria Reginatto
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B. Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Sánchez-García D, Hernández-García H, Mendez-Acosta HO, Hernández-Aguirre A, Puebla H, Hernández-Martínez E. Fractal Analysis of pH Time-Series of an Anaerobic Digester for Cheese Whey Treatment. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2017-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cheese whey is a byproduct of the cheese industry and contains high concentrations of organic matter. Anaerobic digestion (AD) technology is an attractive solution to whey disposal since it allows the reduction of organic matter and simultaneously generates energy via biogas. The biological degradation of cheese whey is characterized by an unstable operation. A critical operational issue in the AD treatment of cheese whey is the tendency of rapid acidification of the waste requiring robust monitoring and control systems for reliable and efficient operation. Recent studies show that techniques based on fractal analysis of time series can be used for the indirect monitoring of critical variables of AD process (i. e., COD, VFA and methane production) for agro-industrial wastewaters. In this work, the application of the fractal analysis of pH time series obtained from an up-flow digester for cheese whey treatment is presented. The results suggest that fractal analysis can be applied to the indirect monitoring of a representative and high strength dairy wastewater. Furthermore, although the complex phenomena underlying in pH in the AD of cheese whey, the fractal analysis can unveil correlations of fractal parameters with key process variables.
Collapse
|
20
|
Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, Chang SW, Zhen G, Bélafi-Bakó K, Nemestóthy N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Bakonyi P, Kumar G, Koók L, Tóth G, Rózsenberszki T, Bélafi-Bakó K, Nemestóthy N. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons. BIORESOURCE TECHNOLOGY 2018; 251:381-389. [PMID: 29295757 DOI: 10.1016/j.biortech.2017.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances.
Collapse
Affiliation(s)
- Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Gopalakrishnan Kumar
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - László Koók
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Gábor Tóth
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Tamás Rózsenberszki
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
22
|
Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry 2018; 119:211-219. [DOI: 10.1016/j.bioelechem.2017.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022]
|
23
|
Liu R, Tursun H, Hou X, Odey F, Li Y, Wang X, Xie T. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage. BIORESOURCE TECHNOLOGY 2017; 241:439-447. [PMID: 28599222 DOI: 10.1016/j.biortech.2017.05.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
To investigate the effluent concentrations of pollutants, electricity production and microbial community structure, a pilot-scale microbial fuel cell coupled anaerobic-anoxic-oxic system for domestic sewage treatment was constructed, and continuously operated for more than 1 year under natural conditions. The results indicated that the treatment system ran well most of the whole period, but both effluent qualities and electricity production deteriorated at low temperature. The results of MiSeq sequencing showed that the microbial community structures of both anode and cathode biofilms changed extensively during long-term operation and were correlated with changes in effluent qualities. Fifteen genera of electricigens were detected in the anode biofilm, mainly including Clostridium, Paracoccus, Pseudomonas, and Arcobacter. Partial Mantel test results showed that the temperature had significant effects on the microbial community structure. The electricity production was found to have higher relevance to the variation of the anodic community than that of the cathodic community.
Collapse
Affiliation(s)
- Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China; Tsinghua University, Beijing, PR China
| | - Haireti Tursun
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China.
| | | | | | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China
| | - Tao Xie
- Institute of Resources and Environmental Science, MAPUNI, Beijing, PR China
| |
Collapse
|