1
|
Cai QL, Huang CY, Tong L, Zhong N, Dai XR, Li JR, Zheng J, He MM, Xiao H. Sampling efficiency of a polyurethane foam air sampler: Effect of temperature. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100327. [PMID: 37908224 PMCID: PMC10613919 DOI: 10.1016/j.ese.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants (POPs). This task, particularly challenging in polar regions due to low air concentrations and temperature fluctuations, requires robust sampling techniques. Furthermore, the influence of temperature on the sampling efficiency of polyurethane foam discs remains unclear. Here we employ a flow-through sampling (FTS) column coupled with an active pump to collect air samples at varying temperatures. We delved into breakthrough profiles of key pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), and organochlorine pesticides (OCPs), and examined the temperature-dependent behaviors of the theoretical plate number (N) and breakthrough volume (VB) using frontal chromatography theory. Our findings reveal a significant relationship between temperature dependence coefficients (KTN, KTV) and compound volatility, with decreasing values as volatility increases. While distinct trends are noted for PAHs, PCBs, and OCPs in KTN, KTV values exhibit similar patterns across all chemicals. Moreover, we establish a binary linear correlation between log (VB/m3), 1/(T/K), and N, simplifying breakthrough level estimation by enabling easy conversion between N and VB. Finally, an empirical linear solvation energy relationship incorporating a temperature term is developed, yielding satisfactory results for N at various temperatures. This approach holds the potential to rectify temperature-related effects and loss rates in historical data from long-term monitoring networks, benefiting polar and remote regions.
Collapse
Affiliation(s)
- Qiu-Liang Cai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Ecological Environment Analysis and Pollution Control in Western Guangxi Region, College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Cen-Yan Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Lei Tong
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ning Zhong
- Minnan Normal University, Zhangzhou, 363000, China
| | - Xiao-Rong Dai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jian-Rong Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Jie Zheng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Meng-Meng He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
2
|
Keshavarz MH, Shirazi Z, Jafari M, Jannesari F. The use of simple structural parameters of organic compounds to assess their PUF-air partition coefficients. CHEMOSPHERE 2024; 349:140855. [PMID: 38048827 DOI: 10.1016/j.chemosphere.2023.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
A novel approach is introduced for the reliable prediction of PUF-air partition coefficients of organic compounds, which can determine the environmental fate of organic compounds during interactions with air, soil, and water. The biggest accessible measured data of PUF-air partition coefficients for 170 chemicals are used to develop and test the novel model. In comparison to available quantitative structure-property relationship (QSPR) methods for the prediction of PUF-air partition coefficients that need complex descriptors, the here used descriptors are simpler. The assessed various statistical factors of the simple method containing 147 (training) and 23 (test) organic compounds can verify the external and internal cross-validations. Various statistical parameters confirm the high reliability of the novel model as compared with the outputs of complex multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM) methods. The values of R-squared (R2), and root mean square error (RMSE) of the new model are for training/test sets are 0.924/0.894 and 0.374/0.318, respectively. Meanwhile, R2 and RMSE values for three comparative models training/test sets are (i) MLR: 0.848/0.670 (R2) and 0.531/0.573 (RMSE); (ii) ANN: 0.902/0.664 (R2) and 0.425/0.560 (RMSE); (iii) SVM: 0.935/0.794 (R2) and 0.351/0.419 (RMSE). Thus, the new model the simplest approach with higher reliability in comparison to the best available methods.
Collapse
Affiliation(s)
| | - Zeinab Shirazi
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
| | - Mohammad Jafari
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
| | | |
Collapse
|
3
|
Zhao M, Wu J, Figueiredo DM, Zhang Y, Zou Z, Cao Y, Li J, Chen X, Shi S, Wei Z, Li J, Zhang H, Zhao E, Geissen V, Ritsema CJ, Liu X, Han J, Wang K. Spatial-temporal distribution and potential risk of pesticides in ambient air in the North China Plain. ENVIRONMENT INTERNATIONAL 2023; 182:108342. [PMID: 38006771 DOI: 10.1016/j.envint.2023.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The intensive use of pesticides in the North China Plain (NCP) has resulted in widespread contamination of pesticides in the local atmosphere, posing risks to air quality and human health. However, the occurrence and distribution of atmospheric pesticides in the NCP as well as their risk assessment have not been well investigated. In this study, 300 monthly samples were collected using passive air samplers with polyurethane foam at ten rural sites with different crop systems in Quzhou county, the NCP, from June 2021 to May 2022. The pesticides were quantified using mass-spectrometric techniques. Our results revealed that chlorpyrifos, carbendazim, and atrazine were the most frequently found pesticides in the air samples, with detection frequencies of ≥ 87 % across the samples. The average concentrations of atmospheric pesticides during spring (7.47 pg m-3) and summer (16.05 pg m-3) were significantly higher than those during autumn (2.04 pg m-3) and winter (1.71 pg m-3), attributable to the intensified application of pesticides during the warmer seasons. Additionally, cash crop sites exhibited higher concentrations (10.26 pg m-3) of atmospheric pesticides compared to grain crop (5.59 pg m-3) and greenhouse sites (3.81 pg m-3), primarily due to more frequent pesticides spraying events in cash crop fields. These findings indicate a distinct spatial-temporal distribution pattern of atmospheric pesticides influenced by both seasons and crop systems. Furthermore, the model-based inhalation risk assessment indicates that inhalation exposure to atmospheric pesticides is unlikely to pose a significant public concern.
Collapse
Affiliation(s)
- Mingyu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Daniel M Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands
| | - Yun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ziyu Zou
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yuxuan Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Jingjing Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Xue Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Shuping Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Zhiyun Wei
- Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taigu 030801, China; Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ercheng Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, Netherlands
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Jiajun Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Tao C, Chen Y, Tao T, Cao Z, Chen W, Zhu T. Versatile in silico modeling of XAD-air partition coefficients for POPs based on abraham descriptor and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119857. [PMID: 35944777 DOI: 10.1016/j.envpol.2022.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The concentration of persistent organic pollutants (POPs) makes remarkable difference to environmental fate. In the field of passive sampling, the partition coefficients between polystyrene-divinylbenzene resin (XAD) and air (i.e., KXAD-A) are indispensable to obtain POPs concentration, and the KXAD-A is generally thought to be governed by temperature and molecular structure of POPs. However, experimental determination of KXAD-A is unrealistic for countless and novel chemicals. Herein, the Abraham solute descriptors of poly parameter linear free energy relationship (pp-LFER) and temperature were utilized to develop models, namely pp-LFER-T, for predicting KXAD-A values. Two linear (MLR and LASSO) and four nonlinear (ANN, SVM, kNN and RF) machine learning algorithms were employed to develop models based on a data set of 307 sample points. For the aforementioned six models, R2adj and Q2ext were both beyond 0.90, indicating distinguished goodness-of-fit and robust generalization ability. By comparing the established models, the best model was observed as the RF model with R2adj = 0.991, Q2ext = 0.935, RMSEtra = 0.271 and RMSEext = 0.868. The mechanism interpretation revealed that the temperature, size of molecules and dipole-type interactions were the predominant factors affecting KXAD-A values. Concurrently, the developed models with the broad applicability domain provide available tools to fill the experimental data gap for untested chemicals. In addition, the developed models were helpful to preliminarily evaluate the environmental ecological risk and understand the adsorption behavior of POPs between XAD membrane and air.
Collapse
Affiliation(s)
- Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ying Chen
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tianyun Tao
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zaizhi Cao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Wenxuan Chen
- School of Civil Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
5
|
South L, Saini A, Harner T, Niu S, Parnis JM, Mastin J. Medium- and long-chain chlorinated paraffins in air: A review of levels, physicochemical properties, and analytical considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157094. [PMID: 35779735 DOI: 10.1016/j.scitotenv.2022.157094] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.
Collapse
Affiliation(s)
- Lauren South
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jacob Mastin
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
6
|
Mendoza-Sanchez I, Uwak I, Myatt L, Van Cleve A, Pulczinski JC, Rychlik KA, Sweet S, Ramani T, Zietsman J, Zamora ML, Koehler K, Carrillo G, Johnson NM. Maternal exposure to polycyclic aromatic hydrocarbons in South Texas, evaluation of silicone wristbands as personal passive samplers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:280-288. [PMID: 34131287 PMCID: PMC8920889 DOI: 10.1038/s41370-021-00348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in children. Valid exposure assessment methods with accurate spatial and temporal resolution across pregnancy is a critical need for advancing environmental health studies. OBJECTIVE The objective of this study was to quantify maternal PAH exposure in pregnant women residing in McAllen, Texas where the prematurity rate and childhood asthma prevalence rates are high. A secondary objective was to compare PAH levels in silicone wristbands deployed as passive samplers with concentrations measured using standardized active air-sampling techniques. METHODS Participants carried a backpack that contained air-sampling equipment (i.e., filter and XAD sorbent) and a silicone wristband (i.e., passive sampler) for three nonconsecutive 24-h periods. Filters, XAD tubes, and wristbands were analyzed for PAHs. RESULTS The median level of exposure for the sum of 16 PAHs measured via active sampling over 24 h was 5.54 ng/m3 (filters) and 43.82 ng/m3 (XADs). The median level measured in wristbands (WB) was 586.82 ng/band. Concentrations of the PAH compounds varied across sampling matrix type. Phenanthrene and fluorene were consistently measured for all participants and in all matrix types. Eight additional volatile PAHs were measured in XADs and WBs; the median level of exposure for the sum of these eight PAHs was 342.98 ng/m3 (XADs) and 632.27 ng/band. The silicone wristbands (WB) and XAD sorbents bound 1-methynaphthalyne, 2-methylnaphthalene, biphenyl following similar patterns of detection. SIGNIFICANCE Since prior studies indicate linkages between PAH exposure and adverse health outcomes in children at the PAH levels detected in our study, further investigation on the associated health effects is needed. Data reflect the ability of silicone wristbands to bind smaller molecular weight, semivolatile PAHs similar to XAD resin. Application of wristbands as passive samplers may be useful in studies evaluating semivolatile PAHs.
Collapse
Affiliation(s)
- Itza Mendoza-Sanchez
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA
| | - Inyang Uwak
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA
| | - Louise Myatt
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA
| | - Allison Van Cleve
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA
| | - Jairus C Pulczinski
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristal A Rychlik
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen Sweet
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Tara Ramani
- Environment and Air Quality Division, Texas A&M Transportation Institute, College Station, TX, USA
| | - Josias Zietsman
- Environment and Air Quality Division, Texas A&M Transportation Institute, College Station, TX, USA
| | - Misti Levy Zamora
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University School of Public Health, College Station, TX, USA.
| |
Collapse
|
7
|
Veludo AF, Martins Figueiredo D, Degrendele C, Masinyana L, Curchod L, Kohoutek J, Kukučka P, Martiník J, Přibylová P, Klánová J, Dalvie MA, Röösli M, Fuhrimann S. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa. CHEMOSPHERE 2022; 289:133162. [PMID: 34875296 DOI: 10.1016/j.chemosphere.2021.133162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, γ-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m3) and chlorpyrifos (median 0.70 ng/m3) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides.
Collapse
Affiliation(s)
- Adriana Fernandes Veludo
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584, Utrecht, the Netherlands
| | | | - Céline Degrendele
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Aix-Marseille University, CNRS, LCE, 13003, Marseille, France
| | - Lindile Masinyana
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925, Cape Town, South Africa
| | - Lou Curchod
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland
| | - Jiří Kohoutek
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Kukučka
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Martiník
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Přibylová
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klánová
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925, Cape Town, South Africa
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland
| | - Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584, Utrecht, the Netherlands; Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland.
| |
Collapse
|
8
|
Trhlíková O, Vlčková V, Abbrent S, Valešová K, Kanizsová L, Skleničková K, Paruzel A, Bujok S, Walterová Z, Innemanová P, Halecký M, Beneš H. Microbial and abiotic degradation of fully aliphatic polyurethane foam suitable for biotechnologies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li Y, Wania F. Partitioning between polyurethane foam and the gas phase: data compilation, uncertainty estimation and implications for air sampling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:723-734. [PMID: 33870398 DOI: 10.1039/d1em00036e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyurethane foam (PUF) is frequently applied for sampling semi-volatile organic compounds (SVOCs) in the gas phase. Equilibrium partition coefficients (KPUF/G) often are used to estimate the potential for breakthrough during active air sampling (AAS) and to correct for non-linear uptake during passive air sampling (PAS). KPUF/G is either determined experimentally or estimated, in both cases incurring uncertainties that can be carried over to other parameters. Here, a dataset of 547 measured KPUF/G values and chemical information for 281 distinct chemicals was compiled from the peer reviewed literature. Measured log KPUF/G were compared with predicted values to identify potential bias in data generated with a particular experimental approach. An analysis of the measured data suggests that the uncertainty of unbiased log KPUF/G values is at best 0.2 log units at 15 °C (e.g. for hexachlorobenzene and fluoranthene), but most likely much higher. This implies that inherent passive air sampling rates obtained from the loss of a depuration compound (SR) and breakthrough volumes during AAS can presently not be known with an uncertainty of less than ca. 50%. During short PAS deployment periods, the uncertainty in the effective sampling volume (Vair) derives mainly from the uncertainty in the SR, whereas the uncertainty in KPUF/G of the target compound will become important and even the main source of uncertainty for Vair if deployments are long or target chemicals are relatively volatile. This in turn implies that the uncertainty of Vair cannot be smaller than the uncertainty of SR and KPUF/G and therefore again is at least ca. 50%. We strongly recommend that the uncertainty of air concentrations obtained by non-linear PAS is quantified and reported and we outline a procedure on how to do that. Because the uncertainty in KPUF/G of target and depuration chemicals generally exceeds 30%, it may often be necessary to conduct Monte Carlo simulation.
Collapse
Affiliation(s)
- Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, CanadaM1C 1A4.
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, CanadaM1C 1A4.
| |
Collapse
|
10
|
Kim K, Shin HM, Wong L, Young TM, Bennett DH. Evaluating couch polyurethane foam for a potential passive sampler of semivolatile organic compounds. CHEMOSPHERE 2021; 271:129349. [PMID: 33429263 PMCID: PMC7969436 DOI: 10.1016/j.chemosphere.2020.129349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND/OBJECTIVE Polyurethane foam (PUF), a proven sampling medium for measuring air concentrations of organic compounds, is widely used in upholstered home furniture. We evaluated the potential utility of couch PUF as a passive sampler and as a reservoir for non-flame retardant semivolatile organic compounds (SVOCs). METHODS We collected PUF samples from 13 California home couches, measured concentrations (CPUF) of 64 SVOCs at three different depths (i.e., top, top-middle, and middle from couch surfaces facing outward), and examined concentration changes with depth. To calculate the PUF-air partition coefficient (KPUF-air = CPUF/Cair = CPUF × Kdust-air/Cdust), we used the calculated dust-air partition coefficient (Kdust-air) with the octanol-air partition coefficient (Koa) and dust concentrations (Cdust) simultaneously collected and measured. We used KPUF-air to compute fugacity capacity of PUF and chemical mass distribution among various indoor compartments and PUF. RESULTS Among 29 detected compounds, 11 compounds were detected in more than 50% of the samples at all depths. Among the 11 compounds, concentrations of phenanthrene, 2-benzylideneoctanal, galaxolide, tonalide, and homosalate decreased with depth. Among the studied SVOCs, more than 20% of the total mass was distributed to couch PUF for phenol and compounds in skin-applied products (i.e., 2-benzylideoneoctanal, galaxolide, and homosalate). CONCLUSIONS Our results showed that couch PUF can absorb many SVOCs and may be an important reservoir for some SVOCs. However, it may not be an effective passive sampling medium for those that have relatively high Koa values. Direct dermal contact with couch seats may be an important exposure route for non-users of skin-applied compounds.
Collapse
Affiliation(s)
- Kyunghoon Kim
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| | - Luann Wong
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
| | - Thomas M Young
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| |
Collapse
|
11
|
Zhu T, Gu L, Chen M, Sun F. Exploring QSPR models for predicting PUF-air partition coefficients of organic compounds with linear and nonlinear approaches. CHEMOSPHERE 2021; 266:128962. [PMID: 33218721 DOI: 10.1016/j.chemosphere.2020.128962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Partition coefficients are important parameters for measuring the concentration of chemicals by passive sampling devices. Considering the wide application of the polyurethane foam (PUF) in passive air sampling, an attempt for developing several quantitative structure-property relationship (QSPR) models was made in this work, to predict PUF-air partition coefficients (KPUF-air) using linear (multiple linear regression, MLR) and non-linear (artificial neural network, ANN and support vector machine, SVM) methods by machine learning. All of the developed models were performed on a dataset of 170 compounds comprising 9 distinct classes. A series of statistical parameters and validation results showed that models had good prediction ability, robustness and goodness-of-fit. Furthermore, the underlying mechanisms of molecular descriptors emphasized that ionization potential, molecular bond, hydrophilicity, size of molecule and valence electron number had dominating influence on the adsorption process of chemicals. Overall, the obtained models were all established on the extensive applicability domains, and thus can be used as effective tools to predict the KPUF-air of new organic compounds or those have not been synthesized yet which, in turn, could help researchers better understand the mechanistic basis of adsorption behavior of PUF.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Liming Gu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ming Chen
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Feng Sun
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
12
|
Odetayo AA, Reible DD, Acevedo-Mackey D, Price C, Thai L. Application of polyoxymethylene passive air sampler to monitor hydrophobic organics in air around a confined disposal facility. CHEMOSPHERE 2021; 263:127827. [PMID: 32835966 DOI: 10.1016/j.chemosphere.2020.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Volatile losses of hydrophobic organic contaminants from a confined disposal facility (CDF) containing dredged contaminated sediments is of substantial concern to surrounding communities. A partitioning passive sampling approach using polyoxymethylene (POM) was applied to measure long-term average (weeks to months) air concentrations resulting from evaporation at a CDF. Measurements at 10 locations surrounding the CDF using the POM air samplers indicated that the highest concentrations of ΣPCBs∼13 ng/m3 and ΣPAHs ∼65 ng/m3 were measured during an active dredge material placement period when the average temperature was 23 °C. The measurements were dominated by the more volatile, lower molecular weight compounds of each type. Partitioning to the POM during the post dredge material placement period with average temperature of 5 °C was corrected for temperature and the measured ∑PCBs and ∑PAHs were ∼3 ng/m3 and 45 ng/m3 respectively. The partitioning passive sampling measurements agreed well with the available weekly 24-h high-volume air samples (HVAS) averaged over the POM equilibration time for lower congener number PCBs (15, 18, 20/28 and 31) and naphthalene but were as much as 10 times lower than HVAS for high molecular weight PAHs. The difference was likely the result of the greater association of these PAHs with particulates and sources other than evaporation from the CDF. The POM air sampler achieved the goal of providing a long-term average air concentration without having to collect, analyze and average multiple HVAS samples although the technique is largely limited to the lower molecular weight PAHs and PCBs and different equilibration times for different compounds complicate its use and analysis.
Collapse
Affiliation(s)
- Adesewa A Odetayo
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, 911 Boston Avenue, Lubbock, TX, 79409, USA
| | - Danny D Reible
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, 911 Boston Avenue, Lubbock, TX, 79409, USA.
| | - Damarys Acevedo-Mackey
- U. S Army Engineer Research and Development Center, 3909 Halls Ferry Rd. Vicksburg, Mississippi, 39180, USA
| | - Cynthia Price
- U. S Army Engineer Research and Development Center, 3909 Halls Ferry Rd. Vicksburg, Mississippi, 39180, USA
| | - Le Thai
- U. S Army Corps of Engineers, Chicago District, USA
| |
Collapse
|
13
|
Ahad JME, Macdonald RW, Parrott JL, Yang Z, Zhang Y, Siddique T, Kuznetsova A, Rauert C, Galarneau E, Studabaker WB, Evans M, McMaster ME, Shang D. Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:114988. [PMID: 32679437 DOI: 10.1016/j.envpol.2020.114988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of sampling techniques and strategies are needed to analyze polycyclic aromatic compounds (PACs) and interpret their distributions in various environmental media (i.e., air, water, snow, soils, sediments, peat and biological material). In this review, we provide a summary of commonly employed sampling methods and strategies, as well as a discussion of routine and innovative approaches used to quantify and characterize PACs in frequently targeted environmental samples, with specific examples and applications in Canadian investigations. The pros and cons of different analytical techniques, including gas chromatography - flame ionization detection (GC-FID), GC low-resolution mass spectrometry (GC-LRMS), high performance liquid chromatography (HPLC) with ultraviolet, fluorescence or MS detection, GC high-resolution MS (GC-HRMS) and compound-specific stable (δ13C, δ2H) and radiocarbon (Δ14C) isotope analysis are considered. Using as an example research carried out in Canada's Athabasca oil sands region (AOSR), where alkylated polycyclic aromatic hydrocarbons and sulfur-containing dibenzothiophenes are frequently targeted, the need to move beyond the standard list of sixteen EPA priority PAHs and for adoption of an AOSR bitumen PAC reference standard are highlighted.
Collapse
Affiliation(s)
- Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, Sidney, BC, V8L 4B2, Canada
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Zeyu Yang
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Elisabeth Galarneau
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | | | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| | - Mark E McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Dayue Shang
- Pacific Environmental Science Centre, Environment and Climate Change Canada, North Vancouver, BC, V7H 1B1, Canada
| |
Collapse
|
14
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
15
|
Nguyen TNT, Kwon HO, Lammel G, Jung KS, Lee SJ, Choi SD. Spatially high-resolved monitoring and risk assessment of polycyclic aromatic hydrocarbons in an industrial city. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122409. [PMID: 32143159 DOI: 10.1016/j.jhazmat.2020.122409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were monitored at 20 sites in semi-rural, urban, and industrial areas of Ulsan, the largest industrial city in South Korea, for one year. The target compounds were the 16 priority PAHs designated by the US Environmental Protection Agency except for naphthalene, acenaphthene, and acenaphthylene. Gaseous PAHs collected using polyurethane foam-based passive air samplers (PUF-PASs) and particulate PAHs predicted using gas/particle partitioning models were used to estimate the human health risks. The mean total cancer risk through inhalation intake and dermal absorption for all target age groups (children, adolescents, adults, and lifetime) ranged from 0.10 × 10-7 to 2.62 × 10-7, lower than the acceptable risk level (10-6), thus representing a safe level for residents. The cancer risk through dermal absorption and inhalation intake was predicted to be highest in winter, mostly due to the higher concentrations of PAHs, especially high-molecular-weight species with greater toxicity. Additionally, gaseous and particulate PAHs contributed more to dermal absorption and inhalation intake, respectively. As a consequence of local emissions and advection, the risks were higher in the industrial and semi-rural areas. This study suggests that human health risks can be cost-effectively mapped on a local scale using passive air sampling.
Collapse
Affiliation(s)
- Tuyet Nam Thi Nguyen
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hye-Ok Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg1, 55128 Mainz, Germany; Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kun-Sik Jung
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Jin Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
16
|
Chen J, Xia X, Chu S, Wang H, Zhang Z, Xi N, Gan J. Cation-π Interactions with Coexisting Heavy Metals Enhanced the Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7261-7270. [PMID: 32434324 DOI: 10.1021/acs.est.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few studies have considered the effect of co-occurring heavy metals on plant accumulation of hydrophobic organic compounds (HOCs), and less is known about the role of intermolecular interactions. This study investigated the molecular mechanisms of Cu/Zn effects on hydroponic uptake of four deuterated polycyclic aromatic hydrocarbons (PAHs-d10) by spinach (Spinacia oleracea L.). Both solubility enhancement experiment and quantum mechanical calculations demonstrated the existence of [PAH-Cu(H2O)0-4]2+ and [2·PAH-Cu(H2O)0-2]2+ via cation-π interactions when Cu2+ concentration was ≤100 μmol/L. Notably, PAH-d10 concentrations in both roots and shoots increased significantly with Cu2+ concentration. This was because the formation of phytoavailable PAH-Cu2+ complexes decreased PAH-d10 hydrophobicity and consequently decreased their sorption onto dissolved organic carbon (DOC, i.e., root exudates), thereby increasing phytoavailable concentrations and uptake of PAHs-d10. X-ray absorption near-edge structure analysis showed that PAH-Cu2+ complexes could enter defective spinach roots via apoplastic pathway. However, Zn2+ and PAHs-d10 cannot form the cation-π interactions because of the high desolvation penalty of Zn2+. Actually, Zn2+ decreased the spinach uptake of PAHs-d10 due to the increase of DOC induced by Zn. This work provides molecular insights into how metals could selectively affect the plant uptake of HOCs and highlights the importance of considering the HOC phytoavailability with coexisting metals.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
17
|
Multifunctional and fully aliphatic biodegradable polyurethane foam as porous biomass carrier for biofiltration. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Chen J, Xia X, Wang H, Zhai Y, Xi N, Lin H, Wen W. Uptake pathway and accumulation of polycyclic aromatic hydrocarbons in spinach affected by warming in enclosed soil/water-air-plant microcosms. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120831. [PMID: 31271938 DOI: 10.1016/j.jhazmat.2019.120831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 05/13/2023]
Abstract
The partition of polycyclic aromatic hydrocarbons (PAHs) among water-soil-air is temperature-dependent. Thus, we hypothesized that climate warming will affect the accumulation and uptake pathway of PAHs in plants. To test this hypothesis, enclosed soil/water-air-plant microcosm experiments were conducted to investigate the impact of warming on the uptake and accumulation of four PAHs in spinach (Spinacia oleracea L.). The results showed that root uptake was the predominant pathway and its contribution increased with temperature due to the promoted acropetal translocation. Owing to the increase in freely dissolved concentrations of PAHs in soil pore water, the four PAH concentrations in roots increased by 60.8-111.5% when temperature elevated from 15/10 to 21/16 °C. A model was established to describe the relationship between bioconcentration factor of PAHs in root and temperature. Compared with 15/10 °C, the PAH concentrations in leaves at both 18/13 and 21/16 °C elevated due to the increase in PAH concentrations in air, while slightly decreased when temperature elevated from 18/13 to 21/16 °C because the PAH concentrations in air decreased, resulting from accelerated biodegradation of PAHs in topsoil. This study suggests that warming will generally enhance the PAH accumulation in plant, but the effect will differ among different plant tissues.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yawei Zhai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wu Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Saini A, Clarke J, Harner T. Direct measurements of polyurethane foam (PUF) ‒ air partitioning coefficients for chemicals of emerging concern capable of equilibrating in PUF disk samplers. CHEMOSPHERE 2019; 234:925-930. [PMID: 31519101 DOI: 10.1016/j.chemosphere.2019.06.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs), novel flame retardants (NFRs) and organochlorine pesticides (OCPs) are volatile to semi-volatile chemicals and therefore susceptible to approach equilibrium during typical deployments of polyurethane foam (PUF) disk passive air samplers. A generator column approach was used to measure the PUF-air partitioning coefficient (KPUF-air) for these targeted chemicals. KPUF-air values are required for these chemicals to estimate sampled equivalent air volumes, which vary substantially with temperature. Log KPUF-air measurements were made at temperatures ranging from +6 to +35 °C and resulting values ranged from 5.14 to 7.77. Enthalpies of phase change for PUF to air (ΔHPUF-air, kJ/mol) ranged from 51.3 to 98.9. Two relationships of log KPUF-air versus log Koctanol-air (KOA) were derived, grouping OPEs and NFRs separately. The relationship for NFRs was in fair agreement (within about 0.6 log units) to a long-standing relationship by Shoeib and Harner (since 2002) for polychlorinated biphenyls (PCBs). However, the estimated values using Shoeib-Harner relationship substantially underestimates KPUF-air for the OPEs than directly measured values (by about an order of magnitude). These findings highlight the importance of the direct measurements of KPUF-air for emerging classes of chemicals whose concentrations are at risk of equilibrating in PUF disk samplers.
Collapse
Affiliation(s)
- Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada.
| | - Jenna Clarke
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada.
| |
Collapse
|
20
|
Affiliation(s)
- Patricia Forbes
- Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| |
Collapse
|
21
|
Salim F, Górecki T. Theory and modelling approaches to passive sampling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1618-1641. [PMID: 31528928 DOI: 10.1039/c9em00215d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Designs and applications of passive samplers for various environmental compartments have been broadened significantly since their introduction. Understanding the theory behind passive sampling is essential for proper development of sampling methods and for accurate interpretation of the results. Theoretical underpinnings of passive sampling have been explored using different approaches. The aim of this review is to describe passive sampling theory and modelling approaches presented in the literature in a manner that allows researchers to obtain comprehensive understanding of them and to recognize the assumptions behind each approach together with their applicability to a given passive sampling technique. A common approach originates from Whitman's two-film theory and produces an exponential model that describes the entire passive sampling process. This approach, however, is based on several assumptions including linear exchange kinetics between the sampled medium and the passive sampler. Two-phase air passive samplers with a well-defined barrier are commonly modeled based on the zero-sink assumption, which assumes efficient trapping of analytes in the receiving phase. This assumption may become invalid under various scenarios; consequently, other approaches to modelling have been introduced including simulation of the sampling process by approximate temporal-steady states in hypothetical segments in the adsorption phase. Another approach uses dynamic models to determine accumulation of analytes in passive samplers. Dynamic models are capable of describing mass accumulation in the passive sampler, its transient response, and its response to fluctuations in environmental concentrations. Finally, empirically calibrated models, attempting to simplify the process of passive sampling rate determination, are also presented. In general, dynamic models are used to establish a profound understanding of the sampling process and analyse the applicability of the simpler models and their assumptions, while the simplified models are desirable and practical for most users. Nonetheless, due to the advancement in the computational tools, application of the dynamic models could be made simple and user-friendly.
Collapse
Affiliation(s)
- Faten Salim
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | | |
Collapse
|
22
|
Tromp PC, Beeltje H, Okeme JO, Vermeulen R, Pronk A, Diamond ML. Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design. CHEMOSPHERE 2019; 227:435-443. [PMID: 31003128 DOI: 10.1016/j.chemosphere.2019.04.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 05/23/2023]
Abstract
Passive air sampling is increasingly used for air quality monitoring and for personal sampling. In a novel experimental exposure chamber study, 3 types of polydimethylsiloxane (PDMS, including sheet and wristband) and 1 type of polyurethane foam (PUF) passive air samplers were tested for gas-phase uptake of 200 semi volatile organic compounds (SVOCs) during six months. For 155 SVOCs including PAH, PCB, phthalates, organophosphate esters, musk compounds, organochlorine- and other pesticides, a normalized generic uptake rate (Rs) of 7.6 ± 1.3 m3 d-1 dm-2 and a generic mass transfer coefficient (MTC) of 0.87 ± 0.15 cm s-1 at a wind speed of 1.3 m s-1 were determined. Variability of sampling rates within and between passive sampling media and analyte groups was not statistically significant, supporting the hypothesis of air-side controlled uptake regardless of sampling material. A statistical relationship was developed between the sampling rate and windspeed which can be used to obtain a sampling rate applicable to specific deployment conditions. For 98 SVOCs, partition coefficients (Ksampler-air) for PUF and PDMS were obtained, which determine the duration of linear uptake and capacity of the sampler for gas-phase uptake. Ksampler-air for PDMS were approximately 10 times higher than for PUF, suggesting that PDMS can be deployed for longer time per volume of sampler, while uptake remains in the linear phase. Statistical relationships were developed to estimate Kpuf-air and Kpdms-air from Koa. These results improve the understanding of the performance of PDMS and PUF passive samplers and contribute to the development of PDMS for the use as a promising personal sampler.
Collapse
Affiliation(s)
- Peter C Tromp
- Netherlands Organization for Applied Research, TNO, Utrecht, the Netherlands.
| | - Henry Beeltje
- Netherlands Organization for Applied Research, TNO, Utrecht, the Netherlands
| | - Joseph O Okeme
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail Toronto, Ontario, M1C 1A4, Canada; Occupational Cancer Research Centre, Cancer Care Ontario, 525 University Avenue, Toronto, Ontario, M5G 1X3, Canada
| | - Roel Vermeulen
- IRAS - Institute for Risk Assessment Sciences, Julius Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anjoeka Pronk
- Netherlands Organization for Applied Research, TNO, Utrecht, the Netherlands
| | - Miriam L Diamond
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail Toronto, Ontario, M1C 1A4, Canada; Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| |
Collapse
|
23
|
Wang S, Steiniche T, Romanak KA, Johnson E, Quirós R, Mutegeki R, Wasserman MD, Venier M. Atmospheric Occurrence of Legacy Pesticides, Current Use Pesticides, and Flame Retardants in and around Protected Areas in Costa Rica and Uganda. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6171-6181. [PMID: 31081620 DOI: 10.1021/acs.est.9b00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protected areas have developed alongside intensive changes in land use and human settlements in the neighboring landscape. Here, we investigated the occurrence of 21 organochlorine pesticides (OCPs), 14 current use pesticides (CUPs), 47 halogenated flame retardants (HFRs), and 19 organophosphate esters (OPEs) in air around Las Cruces (LC) and La Selva (LS) Biological Stations, Costa Rica, and Kibale National Park (KNP), Uganda using passive air samplers (PAS) with polyurethane foam (PUF) discs (PAS-PUF). Significantly higher concentrations of CUPs were observed around LS, while LC had a higher concentration of OCPs. Land use analysis indicated that LS had a higher fraction of agriculture than LC (33% vs 14%), suggesting the higher CUPs concentration at LS was related to pesticide intensive crops, while higher OCPs concentration at LC may be attributed to the area's long agricultural history characterized by small-scale subsistence farming or long-range transport. In Uganda, CUPs and OCPs were generally lower than in Costa Rica, but high concentrations of HFRs were observed inside KNP, possibly due to human activity at research camps near the protected forest. This is the first study that documented the occurrence of anthropogenic chemicals in the air at protected areas with tropical forests.
Collapse
Affiliation(s)
- Shaorui Wang
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana , United States
| | - Tessa Steiniche
- Department of Anthropology , Indiana University , Bloomington , Indiana , United States
| | - Kevin A Romanak
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana , United States
| | - Eric Johnson
- Department of Anthropology , Indiana University , Bloomington , Indiana , United States
| | - Rodolfo Quirós
- Las Cruces Biological Field Station, Organization for Tropical Studies, San Vito , Costa Rica
| | - Richard Mutegeki
- Makerere University Biological Field Station (MUBFS), Kibale National Park , Uganda
| | - Michael D Wasserman
- Department of Anthropology , Indiana University , Bloomington , Indiana , United States
| | - Marta Venier
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana , United States
| |
Collapse
|
24
|
Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, Sáňka O, Klánová J, Palkovičová Murínová Ľ, Richterová D, Rašplová V, Trnovec T. Linking past uses of legacy SVOCs with today's indoor levels and human exposure. ENVIRONMENT INTERNATIONAL 2019; 127:653-663. [PMID: 30991221 DOI: 10.1016/j.envint.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) emitted from consumer products, building materials, and indoor and outdoor activities can be highly persistent in indoor environments. Human exposure to and environmental contamination with polychlorinated biphenyls (PCBs) was previously reported in a region near a former PCB production facility in Slovakia. However, we found that the indoor residential PCB levels did not correlate with the distance from the facility. Rather, indoor levels in this region and those reported in the literature were related to the historic PCB use on a national scale and the inferred presence of primary sources of PCBs in the homes. Other SVOCs had levels linked with either the activities in the home, e.g., polycyclic aromatic hydrocarbons (PAHs) with wood heating; or outdoor activities, e.g., organochlorine pesticides (OCPs) with agricultural land use and building age. We propose a classification framework to prioritize SVOCs for monitoring in indoor environments and to evaluate risks from indoor SVOC exposures. Application of this framework to 88 measured SVOCs identified several PCB congeners (CB-11, -28, -52), hexachlorobenzene (HCB), benzo(a)pyrene, and γ-HCH as priority compounds based on high exposure and toxicity assessed by means of toxicity reference values (TRVs). Application of the framework to many emerging compounds such as novel flame retardants was not possible because of either no or outdated TRVs. Concurrent identification of seven SVOC groups in indoor environments provided information on their comparative levels and distributions, their sources, and informed our assessment of associated risks.
Collapse
Affiliation(s)
- Hale Demirtepe
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| | - Miriam L Diamond
- Department of Earth Sciences, and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lola Bajard
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Šimon Vojta
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ondřej Sáňka
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Vladimíra Rašplová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| |
Collapse
|
25
|
Climent MJ, Coscollà C, López A, Barra R, Urrutia R. Legacy and current-use pesticides (CUPs) in the atmosphere of a rural area in central Chile, using passive air samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:646-654. [PMID: 30703722 DOI: 10.1016/j.scitotenv.2019.01.302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Polyurethane foam (PUF) disks in passive air samplers (PAS) and passive dry deposition (Pas-DD) collectors were used to assess the presence of persistent organic pollutants (POPs) and current-use pesticides (CUPs) in a rural area of central Chile (Peumo, VI Region). The samplers were exposed from September 2015 (spring) to March 2016 (summer), with the PUFs collected at intervals of 30, 60, and 90 days. Both samplers (PUF-PAS and Pas-DD) captured more than one pesticide per sampling period. Chlorpyrifos-ethyl and pyrimethanil presented the highest air concentration with PUF-PAS (3470.2 ng m-3 for chlorpyrifos-ethyl and 52.8 ng m-3 for pyrimethanil). The deposited amount of chlorpyrifos-ethyl, pyrimethanil, penconazole, diazinon and malathion in some Pas-DD, was superior to amount of pesticides captured by PUF-PAS. Differences between the amount deposited and captured by each sampler should be studied in greater detail, because wind speed, atmospheric particulate matter size and sampler design are some fundamental variables in this process. These results provide preliminary information on the presence of current-use pesticides in the atmosphere of Peumo, VI Region, serving as a foundation for future environmental monitoring programs.
Collapse
Affiliation(s)
- María José Climent
- School of Environmental Sciences & EULA-Chile Center, Universidad de Concepción, Barrio Universitario s/n, 4070386 Concepción, Chile; Center of Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción, Victoria 1295, 4070386 Concepción, Chile.
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Ricardo Barra
- School of Environmental Sciences & EULA-Chile Center, Universidad de Concepción, Barrio Universitario s/n, 4070386 Concepción, Chile; Center of Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción, Victoria 1295, 4070386 Concepción, Chile
| | - Roberto Urrutia
- School of Environmental Sciences & EULA-Chile Center, Universidad de Concepción, Barrio Universitario s/n, 4070386 Concepción, Chile; Center of Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción, Victoria 1295, 4070386 Concepción, Chile
| |
Collapse
|
26
|
Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Aristizábal Zuluaga BH. Air monitoring of new and legacy POPs in the Group of Latin America and Caribbean (GRULAC) region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1252-1262. [PMID: 30268978 DOI: 10.1016/j.envpol.2018.09.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/07/2018] [Accepted: 09/07/2018] [Indexed: 05/21/2023]
Abstract
A special initiative in the Global Atmospheric Passive Sampling (GAPS) Network was implemented to provide information on new and emerging persistent organic pollutants (POPs) in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale atmospheric concentrations of the new and emerging POPs hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and dicofol indicators (breakdown products) are reported for the first time. HCBD was detected in similar concentrations at all location types (<20-120 pg/m3). PCA had elevated concentrations at the urban site Concepción (Chile) of 49-222 pg/m3, with concentrations ranging <1-8.5 pg/m3 at the other sites in this study. Dicofol indicators were detected at the agricultural site of Sonora (Mexico) at concentrations ranging 30-117 pg/m3. Legacy POPs, including a range of organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs), were also monitored to compare regional atmospheric concentrations over a decade of monitoring under the GAPS Network. γ-hexachlorocyclohexane (HCH) and the endosulfans significantly decreased (p < 0.05) from 2005 to 2015, suggesting regional levels are decreasing. However, there were no significant changes for the other legacy POPs monitored, likely a reflection of the persistency and slow decline of environmental levels of these POPs. For the more volatile OCs, atmospheric concentrations derived from polyurethane foam (PUF) (acting as an equilibrium sampler) and sorbent impregnated PUF (SIP) (acting as a linear phase sampler), were compared. The complimentary methods show a good agreement of within a factor of 2-3, and areas for future studies to improve this agreement are further discussed.
Collapse
Affiliation(s)
- Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada.
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Anita Eng
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Gilberto Fillmann
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Rio Grande, RS, 96203-900, Brazil; Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, Pavillion A29, 62500 Brno, Czech Republic
| | - Luisa Eugenia Castillo
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | | | | | | | | | - Karla Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile
| | | |
Collapse
|
27
|
Bidleman TF, Tysklind M. Breakthrough during air sampling with polyurethane foam: What do PUF 2/PUF 1 ratios mean? CHEMOSPHERE 2018; 192:267-271. [PMID: 29107878 DOI: 10.1016/j.chemosphere.2017.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Frontal chromatography theory is applied to describe movement of gaseous semivolatile organic compounds (SVOCs) through a column of polyurethane foam (PUF). Collected mass fractions (FC) are predicted for sample volume/breakthrough volume ratios (τ = VS/VB) up to 6.0 and PUF bed theoretical plate numbers (N) from 2 to 16. The predictions assume constant air concentrations and temperatures. Extension of the calculations is done to relate the collection efficiency of a 2-PUF train (FC1+2) to the PUF 2/PUF 1 ratio. FC1+2 exceeds 0.9 for PUF 2/PUF 1 ≤ 0.5 and lengths of PUF commonly used in air samplers. As the PUF 2/PUF 1 ratio approaches unity, confidence in these predictions is limited by the analytical ability to distinguish residues on the two PUFs. Field data should not be arbitrarily discarded because some analytes broke through to the backup PUF trap. The fractional collection efficiencies can be used to estimate air concentrations from quantities retained on the PUF trap when sampling is not quantitative.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|