1
|
Nermo KR, Bakken KS, Lyche JL, Polder A, Jansen A, Kaldenbach S, Haddad-Weiser G, Strand TA, Eggesbø MÅ. Trend analyses of persistent organic pollutants in human milk from first-time mothers in Norway between 2002 and 2021. Int J Hyg Environ Health 2025; 263:114458. [PMID: 39303365 DOI: 10.1016/j.ijheh.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Persistent organic pollutants (POPs) are stable compounds characterized by their resistance to degradation. From the 1960-70's organochlorine pesticides (OCPs), such as DDTs and polychlorinated biphenyls (PCBs) raised concerns regarding health and environmental impacts. This has led to the banning of POPs in the USA and Europe including Norway in 1980 and worldwide under the 2004 Stockholm Convention. The exposure of nursing infants to POPs has been a significant focus, prompting extensive research into the presence of these substances in human breast milk. In this study, we explored the temporal trends of POPs concentrations in breast milk sampled between 2002 and 2021 by comparing the concentration across the mother's year of birth. METHOD Two Norwegian cohorts of lactating women were utilized (the HUMIS study and the "Iodine in Early Life"-Study). Concentrations of 15 different POPs, including PCBs, OCPs, and brominated diphenyl ethers (BDEs) were measured in 513 breast milk samples that had been collected over two decades in a subset of first-time mothers. RESULTS Time trend analysis indicated a steady decrease in concentration levels when adjusted for maternal age. The largest reduction was observed in β-HCH, age-adjusted (-17.1%, 95% CI -18.7, -15.4), followed by ∑6BDE (-9.1%, 95% CI -10.5, -7.7), ∑6PCBs (-7.1%, 95% CI -7.7, -6.5), and ∑2DDTs (-7.0%, 95% CI -8.0, -6.0). In contrast, an increasing trend was noted in the median concentrations of β-HCH, ∑2DDTs, and ∑6BDE in the mothers born in 1990-1994 to 1995-2002. CONCLUSION Our study demonstrates a decline of most POPs in breast milk, likely attributed to international regulatory efforts like the Stockholm Convention. Notably, an increase in the 95th percentile concentrations of β-HCH, ∑2DDTs, and ∑6BDEs was noted in mothers born in 1990-1994 compared to those born in 1995-2002 suggests demographic shifts that may influence exposure levels. Further research is needed to explore and understand the underlying factors for the rise in median concentrations of ∑6BDEs.
Collapse
Affiliation(s)
- Kristina R Nermo
- Department of Microbiology, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway; Center for International Health, University of Bergen, N-5020, Bergen, Norway.
| | - Kjersti S Bakken
- Center for International Health, University of Bergen, N-5020, Bergen, Norway; Women's Clinic, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway
| | - Jan L Lyche
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMBU), Ås, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMBU), Ås, Norway
| | - Aina Jansen
- Department of Research, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway
| | - Siri Kaldenbach
- University of Oslo, Faculty of Medicine, Department of Clinical Medicine, Klaus Torgårds Vei 3, 0372 Oslo, Norway; Department of Pediatrics, Lillehammer Hospital, Innlandet Hospital Trust, PO.Box 990, 2609 Lillehammer, Norway.
| | | | - Tor A Strand
- Center for International Health, University of Bergen, N-5020, Bergen, Norway; Department of Research, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway.
| | - Merete Å Eggesbø
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Nermo KR, Lyche JL, Haddad-Weiser G, Aarsland TE, Kaldenbach S, Solvik B, Polder A, Strand TA, Bakken KS. Quantification of persistent organic pollutants in breastmilk and estimated infant intake, Norway. MATERNAL & CHILD NUTRITION 2025; 21:e13759. [PMID: 39501670 DOI: 10.1111/mcn.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/02/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024]
Abstract
Persistent organic pollutants (POPs) are environmental contaminants that can accumulate in human tissues and pose potential health risks. Despite global efforts to reduce their prevalence, follow-up studies are needed to see if the measures are successful. Since most infants in Norway are breastfed for the first 6 months of life, monitoring POP contamination in breastmilk is important for children's health and development. This study aims to evaluate the current levels of various POPs in women's breastmilk in Innlandet County, Norway. A cross-sectional study was conducted measuring concentrations of 35 different POPs, including polychlorinated biphenyls (PCBs), chlordanes (ChlDs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), Mirex, and brominated flame retardants in 120 breastmilk samples. The study analysed the impact of maternal age, parity, pre-pregnancy BMI, and infant age on POPs levels and compared the estimated daily intake per body weight of infants to existing health guidelines. The detected percentages for PCBs were 100%, for DDTs 98.3%, and for ChlDs 98.3%. The highest median concentration was found for ΣPCBs (26.9 ng/g lw). Maternal age, parity, and infant age were significant determinants of POP concentrations. Most infants exceeded the health-based guidance values for ΣPCB, and 6.4% percent did so for ΣHCHs. Despite lower POPs concentrations in breastmilk than in earlier studies, many breastfed infants are still exposed to levels exceeding health-based guidance values. Although the study's design had limitations, the study provides updated population-based data on POPs in breastmilk. Continued monitoring and research are necessary to understand and mitigate potential health risks associated with POPs.
Collapse
Affiliation(s)
- Kristina R Nermo
- Department of Microbiology, Innlandet Hospital Trust, Lillehammer, Norway
- Center for International Health, University of Bergen, Bergen, Norway
| | - Jan L Lyche
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMB), Ås, Norway
| | | | - Tonje E Aarsland
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| | - Siri Kaldenbach
- Department of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway
- Department of Pediatrics, Lillehammer Hospital, Innlandet Hospital Trust, Lillehammer, Norway
| | - Beate Solvik
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMB), Ås, Norway
| | - Tor A Strand
- Center for International Health, University of Bergen, Bergen, Norway
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | - Kjersti S Bakken
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
3
|
Chokwe TB, Themba N, Mahlambi PN, Mngadi SV, Sibali LL. Poly- and per-fluoroalkyl substances (PFAS) in the African environments: progress, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65993-66008. [PMID: 39636544 DOI: 10.1007/s11356-024-35727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Per- or poly-fluoroalkyl substances (PFAS) are a group of anthropogenic compounds that are used in a variety of industrial processes and consumer products with their ubiquitous presence in the environment recently gaining relevant attention. Progress and milestones on PFAS contamination within multiple environments from African continent are highlighted in this review. Identification and quantitation of PFAS within African environments is important to the public at large because of their toxicity and possible ecotoxicological risk. Two most studied classes of PFAS are perfluoro carboxylic acid (PFCA) (i.e., perfluorooctanoic acid (PFOA)) and perfluoro sulfonic acid (PFSA) (i.e., perfluoro sulfonic acid (PFOS)) with many more classes of PFAS been created by industry. Within the African continent, studies reported PFAS in water, sediments, soils, fish, dust, breastmilk, infant formulae, dust, atmosphere, marine species and wildlife. Southern Africa contributed more studies on the presence of PFAS in the environment with Central Africa contributing the least. Despite growing awareness of PFAS contamination in Africa, the number of studies, studied compounds, and concentration levels vary significantly across regions and matrices. While some countries in Southern and Western Africa have made progress in PFAS research, the overall disparity in research output highlights the urgency for increased attention, resources, and concerted efforts to comprehensively address PFAS contamination. This review also revealed PFAS contamination within freshwater environments, with non-existent data from marine water environments. Collaboration among scientists, policymakers, industry players as well as regional and international communities are essential to mitigate the impact of PFAS in the African environment.
Collapse
Affiliation(s)
- Tlou B Chokwe
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa.
- Infrastructure Department, Scientific Services Unit, Capricorn District Municipality, 24 Thabo Mbeki Street, Polokwane, 0699, South Africa.
| | - Nomathemba Themba
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| | - Precious N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottville, Pietermaritzburg, 3201, South Africa
| | - Sihle V Mngadi
- Scientific Services Department, Umgeni Waters, 310 Burger Street, Pietermaritzburg, 3201, South Africa
| | - Linda L Sibali
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| |
Collapse
|
4
|
Li B, Shao Y, Liu C, Wang J, Zhu Y, Li X. Toxicological Effects and Mechanisms of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) on Marine Organisms. TOXICS 2024; 12:747. [PMID: 39453167 PMCID: PMC11510862 DOI: 10.3390/toxics12100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is a widely used brominated flame retardant belonging to persistent organic pollutants (POPs). After being released into the marine environment, BDE-47 can cause a range of toxic effects on marine organisms through bioaccumulation, biomagnification, and intergenerational transmission. These effects include lethality, impaired motility, photosynthetic toxicity, immune damage, liver toxicity, developmental impairments, and reproductive toxicity. This article reviews the latest research progress on the toxic effects and molecular mechanisms of BDE-47 mentioned above. The primary mechanisms underlying its toxicity include oxidative stress, DNA damage, cellular apoptosis, impaired metabolism, and activation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Boyang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China;
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.S.); liuchen--@outlook.com (C.L.); (J.W.)
| | - Yun Shao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.S.); liuchen--@outlook.com (C.L.); (J.W.)
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.S.); liuchen--@outlook.com (C.L.); (J.W.)
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.S.); liuchen--@outlook.com (C.L.); (J.W.)
| | - Yanzhong Zhu
- National Joint Research Center for Yangtze River Conservation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.S.); liuchen--@outlook.com (C.L.); (J.W.)
| |
Collapse
|
5
|
Qian W, Yang Y, Xinyue D, Hanqi L, Lanlan C, Wenhui H, Juan-Ying L. Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174024. [PMID: 38906300 DOI: 10.1016/j.scitotenv.2024.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Eastern China is a major producer of fishery products (including inland aquaculture, coastal mariculture, and coastal fishing products). The quality of the products is affected by hydrophobic organic contaminants (HOCs) in the sediments. Based on in-vitro luminescent bacterial assay, the baseline toxicity (BEQBio) of 56 common HOCs were assessed in the present study. Specifically, the BEQBio of sediments declined from land (31-400 mg/kg) to sea (9.1-270 mg/kg). However, the toxicity contribution explained by the HOCs increased gradually from land (0.70 %) to sea (10 %) using Iceberg Modeling. In the inland pond, current use HOCs (pyrethroid pesticide (PEs), organic tin (OTCs), and antibiotic) exhibited considerable concentrations, although their toxicity contribution was very small (0.076 %), thus more regulations on the use of HOCs should be proposed and further screening is needed to confirm the major toxicants. In coastal mariculture area, the toxicity contribution of current use HOCs further declined (0.010 %), whereas environmental background HOCs, such as polycyclic aromatic hydrocarbons (PAHs), became increasingly significant, with the contribution ratio increasing from 0.37 % to 2.4 %. To minimize the negative impacts of PAHs, optimization of energy structure in transportation and coastal industry is required. In the coastal fishing area, the phased-out persistent organic pollutants (POPs) remained a major concern, in terms of both concentration and toxicity contribution. The phased-out POPs explained 7.0 % of the toxic effects of the sediments from the coastal fishing area, due to historical residue, industrial emissions, and their high toxicities. For this reason, it is critical to improve the relevant emission regulations and standards, so as to eventually reduce the unintentional discharges of POPs.
Collapse
Affiliation(s)
- Wang Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Yu Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Dong Xinyue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Liu Hanqi
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Chu Lanlan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - He Wenhui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Li Juan-Ying
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
6
|
Torres FG, De-la-Torre GE. Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2319-2336. [PMID: 37424586 PMCID: PMC10326201 DOI: 10.1007/s13197-022-05545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2022] [Accepted: 06/25/2022] [Indexed: 07/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of thousands of manmade chemicals widely used in consumer products and industrial processes. Toxicological studies have suggested that exposure to PFASs may lead to several adverse effects, including infertility and cancer development. In light of their widespread use, the contamination of food products has created health concerns in sites directly influenced by industrial and anthropogenic activity. In the present contribution, the current knowledge of PFAS contamination was systematically reviewed in order to provide with the knowledge gaps and main sources of contamination, as well as critically evaluate estimated dietary intake and relative risk values of the consulted studies. Legacy PFASs remain the most abundant despite their production restrictions. Edible species from freshwater bodies exhibit higher PFAS concentrations than marine species, probably due to low hydrodynamics and dilution in lentic ecosystems. Studies in food products from multiple sources, including aquatic, livestock, and agricultural, agree that the proximity to factories and fluorochemical industries rendered significantly higher and potentially hazardous PFAS contamination. Short-chain PFAS are suggested as chemicals of emerging concern to food security. However, the environmental and toxicological implications of short-chain congeners are not fully understood and, thus, much research is needed in this sense.
Collapse
Affiliation(s)
- Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, 15088 Lima, Perú
| | | |
Collapse
|
7
|
Lin L, Huang Y, Wang P, Chen CC, Qian W, Zhu X, Xu X. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132015. [PMID: 37437480 DOI: 10.1016/j.jhazmat.2023.132015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Plastic products such as fishing nets and foam buoys have been widely used in aquaculture. To enhance the desirable characteristics of the final equipment, plastic gear for aquaculture is mixed with a wide range of additives. Recent studies have shown that additives could be leached out to the environment with a long-term use of aquaculture plastics, forming aquaculture-derived plastic leachates. It should be emphasized that some leachates such as phthalic acid esters (PAEs) and organophosphate esters (OPEs) are endocrine disruptors, which could increase the exposure risk of aquatic products and subsequently display potential threats to human health via food chain. However, systematic studies on the release, occurrence, bioaccumulation, and toxic effects of aquaculture-derived plastic leachates are missing, overlooking their potential sources and ecotoxicological risks in aquatic environments. We have reviewed and compared the concentrations of major plastic leachates in the water environment and organisms of global aquaculture and non-farmed areas, confirming that aquaculture leachate is an important source of contaminants in the environment. Moreover, the toxic effects of aquaculture-derived plastic additives and the related mechanisms are summarized with fish as a representative, revealing their potential health risk. In addition, we proposed current challenges and future research needs, which provides scientific guidance for the use and management of plastic products in aquaculture industries.
Collapse
Affiliation(s)
- Lin Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
8
|
Simukoko CK, Mwakalapa EB, Muzandu K, Mutoloki S, Evensen Ø, Ræder EM, Müller MB, Polder A, Lyche JL. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). ENVIRONMENTAL RESEARCH 2023:116226. [PMID: 37247651 DOI: 10.1016/j.envres.2023.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway; Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Eliezer Brown Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Erik Magnus Ræder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Mette Bjørge Müller
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
9
|
Ngajilo D, Adams S, Kincl L, Guernsey J, Jeebhay MF. Occupational Health and Safety in Tanzanian Aquaculture - Emerging Issues. J Agromedicine 2023; 28:321-333. [PMID: 35337252 DOI: 10.1080/1059924x.2022.2058139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The Tanzanian aquaculture industry represents great potential for food production and jobs; however, the potential occupational hazards and health risks associated with the sector have not been assessed. The aim of this study was to conduct a scoping analysis of the status of occupational health and safety based on current Tanzanian aquaculture activities, specifically in the fish farming and seaweed farming sectors. METHODS Relevant information for the scoping analysis was obtained through aquaculture site visits and worker observation, interviews with key aquaculture stakeholders, and a review of literature relevant to the Tanzanian aquaculture sector published in scientific communications as well as grey literature. RESULTS The study shows that the Tanzanian aquaculture industry is still in nascent stages, especially in relation to occupational health and safety despite some well-established isolated operations in the country. The industry is dominated by small-scale fish and seaweed farmers, the majority of whom work in the informal and semi-formal sectors. Tanzanian aquaculture workers are exposed to a number of occupational hazards and their associated health effects have been poorly characterized. Substantial gender disparities exist within the sector, which together with climate change, impact worker health and safety. CONCLUSION Future research should focus on characterizing occupational exposures and documenting the associated health effects in Tanzanian aquaculture workers. Standardized methods should be used for this purpose to take into account gender disparities as well as the impact of climate change on occupational health and safety of these vulnerable workers.
Collapse
Affiliation(s)
- Dorothy Ngajilo
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shahieda Adams
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laurel Kincl
- College of Public Health and Human Sciences, 114B Milam Hall, Oregon State University, Corvallis, Oregon USA
| | - Judith Guernsey
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University 5790 University Avenue, Nova Scotia, Canada
| | - Mohamed F Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Li T, Wang R, Wang P. The Development of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010184. [PMID: 36615379 PMCID: PMC9822501 DOI: 10.3390/molecules28010184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Biogenic amines (BAs) are a group of substances that are formed from amino acids by decarboxylation or amination and transamination of aldehydes and ketones. They may have either an aliphatic, aromatic, or heterocyclic structure. Their quantity determines their effects and optimum amounts are essential for physiological functions, but excess BAs causes various toxic effects throughout the human body. In our study, to rapidly determine 14 BAs (histamine, tyramine, dopamine, tryptamine, serotonin, putrescine, spermine, spermidine, octopamine, benzylamine, 1-Phenylethanamine, cadaverine, 2-Phenethylamine, and agmatine) in real fish samples, an ultra-performance liquid chromatography-tandem mass spectrometry method was established. The fish sample was extracted by acetonitrile with 0.1% formic acid and stable biogenic amine derivatives could be obtained by benzoyl chloride derivatization with a shorter reaction time. The method showed good linearity with a linear range of 3-4 orders of magnitude and regression coefficients ranging from 0.9961 to 0.9999. The calculated LODs ranged from 0.1 to 20 nM and the LOQs ranged from 0.3 to 60 nM. Satisfactory recovery was obtained from 84.6% to 119.3%. The proposed method was employed to determine the concentration levels of biogenic amine derivatives in different fish. The results indicated that this method was suitable for the analysis of biogenic amines.
Collapse
|
11
|
Zhu L, Wang C, Huang L, Ding Y, Cheng Y, Rad S, Xu P, Kang B. Halogenated organic pollutants (HOPs) in marine fish from the Beibu Gulf, South China Sea: Levels, distribution, and health risk assessment. MARINE POLLUTION BULLETIN 2022; 185:114374. [PMID: 36410197 DOI: 10.1016/j.marpolbul.2022.114374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Six marine fish species, collected from the Beibu Gulf were statistically analyzed for polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes (DDTs). The concentrations of ∑14PBDEs, ∑26PCBs, and ∑6DDTs ranged from 11.8-1431, 8.74-495, and 9.47-1263 ng g-1 lipid weight (lw), respectively. In general, PBDEs were the predominant halogenated organic pollutants (HOPs) in the Beibu Gulf. The homologues profiles of Mugil cephalus and Trichiurus nanhaiensis differed from other four species. For example, the contributions of deca-BDEs in M. cephalus (14 %) and T. nanhaiensis (1 %) were lower than other four species (56 %). The ratio of (DDE + DDD)/ΣDDTs in all samples was >0.5, indicating that DDTs were mainly derived from historical residues. Intakes of HOPs through the consumption of the marine fish from the study areas might not subject residents of the coastal areas in the Beibu Gulf to health risks.
Collapse
Affiliation(s)
- Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Yang Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Yanan Cheng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
12
|
Nutritional Quality and Assessment of Contaminants in Farmed Atlantic Salmon (Salmo salar L.) of Different Origins. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9318889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atlantic salmon represents an important source of valuable proteins and lipids rich in n-3 fatty acids and micronutrients. However, there are reports that these marine fish still contain contaminants at levels that raise health concerns. Although the Stockholm Convention already bans some compounds, they can still be detected because of their persistence. The present study reports nutritional parameters and the occurrence of persistent and bioaccumulative chemicals in the tissues of fifty-five salmon from several major farming areas. The protein content of all samples was almost identical, averaging to 19.2% w/w, while lipids averaged 14.9% w/w. Fish from Chilean farms contained 6.0% less fat and a lower level of vitamin E than from other sources, that is, 2.2 mg per 100 g (w/w). Fish from Scottish farms contained higher levels of eicosapentaenoic and docosahexaenoic acid. Halogenated contaminants from polychlorinated biphenyls, organochlorinated pesticides, brominated flame retardants, and perfluoroalkylated and polyfluoroalkylated substances were measured, and generally, they were found to be at very low concentrations that did not exceed the legislation limits applicable in the European Union. These results showed that the compositional differences between Atlantic salmon from several important farming areas were only minor, but some significant differences were demonstrated in total fat content and fatty acid profiles.
Collapse
|
13
|
Popli S, Badgujar PC, Agarwal T, Bhushan B, Mishra V. Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155084. [PMID: 35395291 DOI: 10.1016/j.scitotenv.2022.155084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Persistent Organic Pollutants (POPs) have become immensely prevalent in the environment as a result of their unique chemical properties (persistent, semi-volatile and bioaccumulative nature). Their occurrence in the soil, water and subsequently in food has become a matter of concern. With food being one of the major sources of exposure, the detrimental impact of these chemicals on the gut microbiome is inevitable. The gut microbiome is considered as an important integrant for human health. It participates in various physiological, biochemical and immunological activities; thus, affects the metabolism and physiology of the host. A myriad of studies have corroborated an association between POP-induced gut microbial dysbiosis and prevalence of disorders. For instance, ingestion of polychlorinated biphenyls, polybrominated diphenyl ethers or organochlorine pesticides influenced bile acid metabolism via alteration of bile salt hydrolase activity of Lactobacillus, Clostridium or Bacteroides genus. At the same time, some chemicals such as DDE have the potential to elevate Proteobacteria and Firmicutes/Bacteriodetes ratio influencing their metabolic activity leading to enhanced short-chain fatty acid synthesis, ensuing obesity or a pre-diabetic state. This review highlights the impact of POPs exposure on the gut microbiota composition and metabolic activity, along with an account of its corresponding consequences on the host physiology. The critical role of gut microbiota in impeding the POPs excretion out of the body resulting in their prolonged exposure and consequently, enhanced degree of toxicity is also emphasized.
Collapse
Affiliation(s)
- Shivani Popli
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| |
Collapse
|
14
|
Zhao Z, Yao X, Ding Q, Gong X, Wang J, Tahir S, Kimirei IA, Zhang L. A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa. WATER RESEARCH 2022; 217:118400. [PMID: 35413562 DOI: 10.1016/j.watres.2022.118400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A lack of understanding the fate of highly toxic organic micropollutants (OMPs) in the equatorial lakes of Tanzania hinders public awareness for protecting these unique aquatic ecosystems, which are precious water resources and stunning wildlife habitats. To address this knowledge gap, the occurrence of 70 anthropogenically-sourced OMPs, including phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), was investigated in the water and sediment of 18 lakes in Tanzania. Similar residue concentrations were found in both compartments, showing higher pollution of PAEs ranging from 835.0 to 13,153.1 ng/L in water and 244.6-8691.8 ng/g dw in sediment, followed by PAHs, while OCPs and PCBs were comparatively lower. According to the multi-criteria scoring method for prioritization, the final OMP priority list for the lake environment in Tanzania comprised 25 chemicals, specifically 5 PAEs (DEHP, DIBP, DBP, DCHP and DMPP), 6 PCBs (PCB153, PCB105, PCB28, PCB156, PCB157 and PCB167), 6 PAHs (BaP, BaA, BbF, Pyr, DahA and InP) and 8 OCPs (cis-chlordane, trans-chlordane, p,p'-DDD, p,p'-DDE, p,p'-DDT, endrin, methoxychlor and heptachlor epoxide), suggesting the key substances for conventional monitoring and pollution control in these equatorial lakes, with an emphasis on PAEs, especially DEHP, due to the top priority and endocrine disruptor properties.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qiqi Ding
- Zhejiang Environment Technology Company, Hangzhou 311100, China
| | - Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Saadu Tahir
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ishmael Aaron Kimirei
- Tanzania Fisheries Research Institute-Headquarter, P.O. Box 9750, Dar Es Salaam, Tanzania
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Xu L, Ren M, Cui Y, Miao X, Yang Z, Li H. Concentrations and Human Health Risk of Organochlorines in Farmed Freshwater Products: Fish Ponds around Changsha, China. J Food Prot 2022; 85:465-477. [PMID: 34469541 DOI: 10.4315/jfp-21-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The present study was conducted to reveal the concentrations and patterns of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seven species of freshwater food products (Procambarus clarkii, Ctenopharyngodon idellus, Parabramis pekinensis, Hypophthalmichthys molitrix, Cyprinus carpio, Aristichthys nobilis, and Carassius auratus) collected from aquaculture farms around Changsha, People's Republic of China. The OCPs and PCBs in the muscle tissue of these species were analyzed to assess the health risk associated with dietary intake. The mean concentrations of OCPs and PCBs were 6.38 to 15.90 and 3.18 to 5.12 ng g-1 wet weight, respectively. Heptachlor and δ-HCH were the main OCP contaminants in the tested samples, accounting for >74% of the total OCPs. PCB52 was the main PCB, accounting for >88% of the total PCBs. The bioaccumulation of OCPs and PCBs in these aquatic products depends upon the species. C. idellus had the highest concentrations of OCPs, and H. molitrix had the highest concentrations of PCBs. The mean lipid concentration in these freshwater species was 6.08 to 19.8% (dry weight) and was significantly correlated with the concentrations of OCPs and PCBs. The health risk from consumption of these freshwater species was assessed based on the hazard ratios and hazard quotient, and consumption of these products was determined to pose a carcinogenic risk. HIGHLIGHTS
Collapse
Affiliation(s)
- Lijun Xu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China.,Changsha Agricultural Product Quality Monitoring Center, Changsha 410081, People's Republic of China
| | - Meiqing Ren
- Hunan Hydrology and Water Resources Survey Center, Changsha 410081, People's Republic of China
| | - Yue Cui
- Hunan Hydrology and Water Resources Survey Center, Changsha 410081, People's Republic of China
| | - Xiaohuan Miao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| |
Collapse
|
16
|
Haarr A, Mwakalapa EB, Lyche JL, Mmochi AJ, Polder A, Ruus A, Borgå K. Spatial Variation in Contaminant Occurrence in Marine Fishes and Prawns from Coastal Tanzania. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:321-333. [PMID: 34888929 DOI: 10.1002/etc.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
There are limited data on organic contaminants in marine biota from coastal Tanzania, especially on the occurrence of industrial-use contaminants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The present study, performed in 2018-2019 in coastal Tanzania and Zanzibar Island, aimed at assessing spatial variation in the occurrence of PCBs; brominated flame retardants (BFRs), including PBDEs; and organochlorine pesticides, including dichlorodiphenyltrichloroethane (DDT), among three locations that differ in degree of anthropogenic activity. Analyzed samples included edible tissues of marine fishes and prawns representing different trophic levels and habitats. The results indicate a mainland-island difference, with fishes and prawns collected on Zanzibar having significantly lower PCB and DDT concentrations but higher concentrations of hexachlorobenzene compared to the two mainland locations. The highest contaminant concentrations were found in fishes and prawns collected around central Dar es Salaam harbor, with median ΣPCBs ranging from 22.3 to 577 ng/g lipid weight and ΣDDTs from 22.7 to 501 ng/g lipid weight, suggesting local sources. Concentrations of PBDEs were similar among locations, suggesting more diffuse sources. None of the "newer-type" BFRs, including compounds introduced as replacements for PBDEs, were detected in the present study. Stable isotope values of carbon (δ13 C) and nitrogen (δ15 N) varied among locations, and the relationship between contaminants and δ15 N varied among locations and habitat (pelagic/demersal). Concentrations measured in the present study are below European guidelines for human consumption of fishes and prawns. However, industrial-use contaminants should be monitored in developing countries because they are contaminants of emerging concern as a result of increasing industrialization and global trade of used products and wastes. Environ Toxicol Chem 2022;41:321-333. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ane Haarr
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eliezer B Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Aviti J Mmochi
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
| | - Anuschka Polder
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anders Ruus
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Mello FV, Cunha SC, Fogaça FHS, Alonso MB, Torres JPM, Fernandes JO. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149744. [PMID: 34482147 DOI: 10.1016/j.scitotenv.2021.149744] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Fabíola H S Fogaça
- Laboratory of Bioacessibility, Embrapa Food Agroindustry, Av. das Américas 29501, 23020-470 Rio de Janeiro, Brazil
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Siddiqui S, Fitzwater M, Scarpa J, Conkle JL. Comparison of bioconcentration and kinetics of GenX in tilapia Oreochromis mossambicus in fresh and brackish water. CHEMOSPHERE 2022; 287:132289. [PMID: 34562710 DOI: 10.1016/j.chemosphere.2021.132289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
Contaminants of emerging concern (CEC) are a broad suite of chemicals commonly found in the environment, aquatic organisms and even drinking water. They include pharmaceuticals, personal care products, industrial chemicals and compounds added to consumer products. The CEC ammonium 2,3,3,3-tetrafluoro-2-heptafluoropropoxy propanoic acid, which is more commonly known as generic name GenX, is a replacement of common processing aid longer chain perfluorinated compounds (PFAS) due to a manufacturing shift in 2002 following the EPA stewardship program of 2015/16 in USA (USEPA, 2006). However, recently reported in North Carolina drinking water, GenX raising concerns about its accumulation in aquatic organisms, both wild and cultured, which could be a pathway for human exposure. To examine GenX accumulation and potential for human exposure, tilapia (Oreochromis mossambicus) fingerlings were dosed with GenX for up to 96 h in fresh (0 ppt) or brackish (16 ppt) water to determine uptake and bioconcentration. Depuration values were also determined after a 96 h exposure followed by 96 h without exposure. Bioconcentration was in decreasing order of plasma > liver > carcass > muscle, with higher distribution to liver followed by carcass and muscle. Muscle was found to have the highest half-life (1278 h) followed by carcass (532 h), plasma (106 h), and liver (152 h). The rate of uptake and depuration was positively affected by the salinity. As bioconcentration in all tissues increased with increasing salinity, this may raise concern for marine organisms and human exposure.
Collapse
Affiliation(s)
- Samreen Siddiqui
- Oregon State University, Department of Fisheries and Wildlife Corvallis, OR, 97331, USA.
| | - Mason Fitzwater
- Texas A & M University - Corpus Christi, Department of Physical & Environmental Sciences, Corpus Christi, TX, 78412, USA
| | - John Scarpa
- Texas A & M University - Corpus Christi, Department of Physical & Environmental Sciences, Corpus Christi, TX, 78412, USA
| | - Jeremy L Conkle
- Texas A & M University - Corpus Christi, Department of Physical & Environmental Sciences, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
19
|
Simukoko CK, Mwakalapa EB, Bwalya P, Muzandu K, Berg V, Mutoloki S, Polder A, Lyche JL. Assessment of heavy metals in wild and farmed tilapia ( Oreochromis niloticus) on Lake Kariba, Zambia: implications for human and fish health. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:74-91. [PMID: 34702139 DOI: 10.1080/19440049.2021.1975830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to assess the levels of heavy metals in both wild and farmed tilapia on Lake Kariba in Zambia and to evaluate the impact of intensive fish farming on wild tilapia. Three sites for wild fish (2 distant and 1 proximal to fish farms) and two fish farms were selected. One hundred fish (52 from distant sites; 20 near fish farms; 28 farmed fish) were sampled and muscle tissues excised for analysis of heavy metals (Mg, Fe, Zn, Al, Cu, Se, Co, Mo, As, Cr, V, Ni, Hg, Pb, Li, Cd, and Ag) by acid (HNO3) digestion and ICP-MS. All metals were found to be below the maximum limits (MLs) set by WHO/EU. Essential metals were higher in farmed tilapia, whereas non-essential metals were higher in wild tilapia. Significantly higher levels of essential metals were found in wild fish near the fish farms than those distant from the farms. Estimated weekly intake (EWI) for all metals were less than the provisional tolerable weekly intakes (PTWI). Target hazard quotients (THQ) and Hazard Indices (HI) were <1, indicating no health risks from a lifetime of fish consumption. Selenium Health Benefit Value (HBVSe) was positive for all locations, indicating protective effects of selenium against mercury in fish. Total cancer risk (CR) due to As, Cr, Cd, Ni and Pb was less than 1 × 10-4, indicating less than 1 in 10,000 carcinogenic risk from a lifetime consumption of tilapia from Lake Kariba. Hg levels (0.021 mg/kg) in wild tilapia at site 1 were higher than the Environmental quality standard (EQS = 0.020 mg/kg) set by EU, indicating possible risk of adverse effects to fish. Except for Hg, levels of metals in fish were safe for human consumption and had no adverse effects on fish.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway.,Department, Biomedical Sciences, University, University of Zambia, Lusaka, Zambia
| | | | - Patricia Bwalya
- Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - Kaampwe Muzandu
- Department, Biomedical Sciences, University, University of Zambia, Lusaka, Zambia
| | - Vidar Berg
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Shen MW, Chen HC, Chen ST. A Pest or Otherwise? Encounter of Oryctes rhinoceros (Coleoptera: Scarabaeidae) with Persistent Organic Pollutants. INSECTS 2021; 12:insects12090818. [PMID: 34564258 PMCID: PMC8467767 DOI: 10.3390/insects12090818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary A native, widely spread beetle, Oryctes rhinoceros, in Southeast Asia may clean up some of the persistent organic pollutants (POPs) for us if guarded in a controlled manner. Some xenobiotics persisting in our environment may cause harmful effects to the living creatures within their food web via a so-called “bioaccumulation effect”. The encounter of wild creatures with the POPs appears inevitable. Luckily, this study revealed that the proper breeding of the commonly seen beetle could degrade more than 95% of some studied POPs simply by ingestion. The beetle larvae tolerated different POPs at various extents, yet through an acclimation operation, the beetle’s mortality rate could be greatly reduced. Even though O. rhinoceros is considered a pest for some valuable corps, its removal of POPs in a natural, efficient and passive (i.e., fewer energy inputs) manner makes this alternative promising and deserving of further explorations. Abstract The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using Oryctes rhinoceros larvae, a known pest of coconut trees in southeast Asia, and also the indicators of POP toxicity and the fate and degradability of the ingested POPs were assessed. The larvae were tested at various levels of the POPs and went through an acclimation process. Without acclimation, the tolerance limits of the larvae toward PCP, PAHs and DLN were 200, 100 and 0.1 mg/kg-soil, respectively, yet with acclimation, the tolerance levels increased to 800, 400 and 0.5 mg/kg-soil, respectively. Biodegradation rates of all the tested POPs were >90% by week 2, with <5% and nearly 0% remaining in the feces and body of the larvae, respectively. The results suggest that the use of the beetle larvae in soil POP decontamination is doable.
Collapse
Affiliation(s)
- Meng-Wei Shen
- Ph.D. Program in Engineering Science and Technology, College of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Hung-Chuan Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-601-1000 (ext. 32327); Fax: +886-7-601-1061
| |
Collapse
|
21
|
Midthaug HK, Hitchcock DJ, Bustnes JO, Polder A, Descamps S, Tarroux A, Soininen EM, Borgå K. Within and between breeding-season changes in contaminant occurrence and body condition in the Antarctic breeding south polar skua. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117434. [PMID: 34062433 DOI: 10.1016/j.envpol.2021.117434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The Antarctic ecosystem represents a remote region far from point sources of pollution. Still, Antarctic marine predators, such as seabirds, are exposed to organohalogen contaminants (OHCs) which may induce adverse health effects. With increasing restrictions and regulations on OHCs, the levels and exposure are expected to decrease over time. We studied south polar skua (Catharacta maccormiciki), a top predator seabird, to compare OHC concentrations measured in whole blood from 2001/2002 and 2013/2014 in Dronning Maud Land. As a previous study found increasing organochlorine concentrations with sampling day during the 2001/2002 breeding season, suggesting dietary changes, we investigated if this increase was repeated in the 2013/2014 breeding season. In addition to organochlorines, we analyzed hydroxy-metabolites, brominated contaminants and per- and polyfluoroalkyl substances (PFAS) in 2013/2014, as well as dietary descriptors of stable isotopes of carbon and nitrogen, to assess potential changes in diet during breeding. Lipid normalized concentrations of individual OHCs were 63%, 87% and 105% higher for hexachlorobenzene (HCB), 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene (p,p'-DDE), and ∑Polychlorinated biphenyls (PCBs), respectively, in 2013/2014 compared to 2001/2002. South polar skuas males in 2013/2014 were in poorer body condition than in 2001/2002, and with higher pollutant levels. Poorer body condition may cause the remobilization of contaminants from stored body reserves, and continued exposure to legacy contaminants at overwintering areas may explain the unexpected higher OHC concentrations in 2013/2014 than 2001/2002. Concentrations of protein-associated PFAS increased with sampling day during the 2013/2014 breeding season, whereas the lipid-soluble chlorinated pesticides, PCBs and polybrominated diphenyl ether (PBDEs) showed no change. OHC occurrence was not correlated with stable isotopes. The PFAS biomagnification through the local food web at the colony should be investigated further.
Collapse
Affiliation(s)
- Hilde Karin Midthaug
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway
| | - Daniel J Hitchcock
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), Fram Centre, N-9296, Tromsø, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Sébastien Descamps
- Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research (NINA), Fram Centre, N-9296, Tromsø, Norway; Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway
| | - Eeva M Soininen
- Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway; The Arctic University of Norway (UiT), Pb. 6050 Langnes, N-9037, Tromsø, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
22
|
Haarr A, Mwakalapa EB, Mmochi AJ, Lyche JL, Ruus A, Othman H, Larsen MM, Borgå K. Seasonal rainfall affects occurrence of organohalogen contaminants in tropical marine fishes and prawns from Zanzibar, Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145652. [PMID: 33609827 DOI: 10.1016/j.scitotenv.2021.145652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Seasonal differences in precipitation may affect contaminant dynamics in tropical coastal regions due to terrestrial runoff of contaminants to the marine environment after the rainy seasons. To assess the effect of seasonal rainfall on occurrence of organohalogen contaminants in a coastal ecosystem, marine fishes and prawns were collected off the coast of Zanzibar, Tanzania in January and August 2018, representing pre- and post-rainy season, respectively. Samples were analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and emerging BFRs, as well as the dietary descriptors stable isotopes of carbon (δ13C) and nitrogen (δ15N). Across all species and seasons, mean contaminant concentrations ranged from below limit of detection (LOD) to 129 ng/g lipid weight (lw) ΣPCBs; 5.6-336 ng/g lw ΣOCPs; and < LOD -22.1 ng/g lw ΣPBDEs. Most of the emerging BFRs were below LOD. Contaminant concentrations generally increased with higher pelagic carbon signal (δ13C) and higher relative trophic position (δ15N). The ratio of DDE/ΣDDTs in fishes and prawns was lower in August than in January, suggesting runoff of non-degraded DDT into the marine system during or after the seasonal rainfall. Contaminant patterns of OCPs and PCBs, and concentrations of BFRs, differed between seasons in all species. A higher relative concentration-increase in lower halogenated, more mobile PCB and PBDE congeners, compared to higher halogenated congeners with lower mobility, between January and August aligns with a signal and effect of terrestrial runoff following the rainy season.
Collapse
Affiliation(s)
- Ane Haarr
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Eliezer B Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | - Aviti J Mmochi
- Institute of Marine Science, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania.
| | - Jan L Lyche
- Norwegian University of Life Sciences, Ullevålsveien 72, 0474 Oslo, Norway.
| | - Anders Ruus
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway; Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Halima Othman
- State University of Zanzibar, P.O.BOX 146, Tunguu, Zanzibar, Tanzania.
| | - Martin M Larsen
- University of Aarhus, Institute of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway; Center for Biogeochemistry in the Anthropocene, University of Oslo, PB 1066, 0316 Oslo, Norway.
| |
Collapse
|
23
|
Savoca D, Pace A. Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms. Int J Mol Sci 2021; 22:6276. [PMID: 34207956 PMCID: PMC8230574 DOI: 10.3390/ijms22126276] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023] Open
Abstract
This review is a survey of recent advances in studies concerning the impact of poly- and perfluorinated organic compounds in aquatic organisms. After a brief introduction on poly- and perfluorinated compounds (PFCs) features, an overview of recent monitoring studies is reported illustrating ranges of recorded concentrations in water, sediments, and species. Besides presenting general concepts defining bioaccumulative potential and its indicators, the biodistribution of PFCs is described taking in consideration different tissues/organs of the investigated species as well as differences between studies in the wild or under controlled laboratory conditions. The potential use of species as bioindicators for biomonitoring studies are discussed and data are summarized in a table reporting the number of monitored PFCs and their total concentration as a function of investigated species. Moreover, biomolecular effects on taxonomically different species are illustrated. In the final paragraph, main findings have been summarized and possible solutions to environmental threats posed by PFCs in the aquatic environment are discussed.
Collapse
Affiliation(s)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, 90100 Palermo, Italy;
| |
Collapse
|
24
|
Shikha D, Singh PK. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4104-4124. [PMID: 33210252 DOI: 10.1007/s11356-020-11600-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
The heavy metal contamination of soil and groundwater is a serious threat to environment worldwide. The survival of human being primarily relies upon soil and groundwater sources. Therefore, the remediation of heavy metal-contaminated soil and groundwater is a matter of utmost concern. Heavy metals are non-degradable and persist in the environment and subsequently contaminate the food chain. Heavy metal pollution puts a serious impact on human health and it adversely affects our physical body. Although, numerous in situ conventional technologies have been utilized for the treatment purpose, but most of the techniques have some limitations such as high cost, deterioration of soil properties, disturbances to soil native flora and fauna and intensive labour. Despite that, in situ phytoremediation is a cost-effective, eco-friendly, solar-driven and novel approach with significant public acceptance. The past research reflects rare discussion addressing both (heavy metal in situ phytoremediation of soil and groundwater) in one platform. The present review article covers both the concepts of in situ phytoremediation of soil and groundwater with major emphasis on health risks of heavy metals, enhanced integrated approaches of in situ phytoremediation, mechanisms of in situ phytoremediation along with effective hyperaccumulator plants for heavy metals remediation, challenges and future prospects.
Collapse
Affiliation(s)
- Deep Shikha
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Prasoon Kumar Singh
- Department of Environmental Science & Engineering, Indian Institute of Technology (IIT; Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
25
|
Groffen T, Rijnders J, van Doorn L, Jorissen C, De Borger SM, Luttikhuis DO, de Deyn L, Covaci A, Bervoets L. Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans. ENVIRONMENTAL RESEARCH 2021; 192:110299. [PMID: 33058811 DOI: 10.1016/j.envres.2020.110299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), are chemicals with a bioaccumulative potential that are detected in wildlife around the world. Although multiple studies reported the pollution of the aquatic environment with these chemicals, only limited data is present on the environmental pollution of Tanzania's aquatic environment and the possible risks for human health through consumption of contaminated fish or invertebrates. In the present study, we examined the distribution of metals and POPs in fish, invertebrates, sediment and water, collected at two different years at multiple important water reservoirs for domestic and industrial purposes, in the aquatic environment near Morogoro, Tanzania. Furthermore, we assessed the possible risks for human health through consumption of contaminated fish and shrimp. Metal concentrations in the water, sediment, invertebrates and fish appeared to increase in sites downstream from Morogoro city, likely caused by the presence of the city as pollution source. Significant differences in accumulated concentrations of metals and POPs were observed between species, which was hypothesized to be caused by dietary differences. Concentrations of multiple metals exceeded water and sediment quality guidelines values. Only Cu (2.8-17 μg/L) and Zn (<LOQ - 151 μg/L) in water exceeded chronic and acute effect values. Furthermore, PFOS, PBDE and HCB concentrations exceeded biota quality standard values, suggesting an ecological risk caused by these metals and POPs in the aquatic environment around Morogoro. Our results suggest that potential health effects through consumption of contaminated shrimp, and to minor extent fish, are expected. The daily consumption of these proteins (0.016-0.027 kg/capita/day) in Tanzania is similar or higher than the tolerable maximum consumption of shrimp for Cu (<0.02 kg/capita/day), Co (<0.02 kg/capita/day) and PFOS (<0.01 kg/capita/day). The outcome of this study could be used in future studies on metals and POPs in African aquatic ecosystems.
Collapse
Affiliation(s)
- Thimo Groffen
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Jet Rijnders
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Loïc van Doorn
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Cas Jorissen
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Seppe Mortier De Borger
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Dorien Oude Luttikhuis
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Lara de Deyn
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Adrian Covaci
- Toxicolological Center (TC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
26
|
Arinaitwe K, Koch A, Taabu-Munyaho A, Marien K, Reemtsma T, Berger U. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa. CHEMOSPHERE 2020; 260:127536. [PMID: 32683018 DOI: 10.1016/j.chemosphere.2020.127536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
There is an acute deficit of data on per- and polyfluoroalkyl substances (PFASs) and mercury (Hg) in the open waters of Lake Victoria, East Africa, relative to nearshore areas. We analyzed stable isotopes (δ15N and δ13C), PFASs and Hg in Nile Perch and Nile Tilapia muscle and liver samples from nearshore and open lake locations from the Ugandan part of the lake. The δ15N values of Nile Perch muscle indicated a higher trophic level for samples from the open lake than from nearshore locations. Averages of ∑PFAS concentrations in Nile Perch muscle and liver (0.44 and 1.75 ng/g ww, respectively) were significantly higher than in Nile Tilapia (0.24 and 0.50 ng/g ww, respectively). ∑PFAS concentrations in muscle of open lake Nile Perch were significantly higher than for nearshore samples. A similar observation was made for total mercury concentrations in muscle (THg_Muscle) of Nile Perch. THg was dominated by methyl mercury (MeHg+, 22-124 ng/g ww) and mercuric mercury (Hg2+, <MDL-29 ng/g ww) in Nile Perch muscle. Strong correlation between MeHg+ and some PFASs (e.g. PFOS: r = 0.704, P = 0.016) suggested similar exposure routes or factors. Estimated human daily intake values of PFOS from fish consumption were below international limits whereas for MeHg+, the US EPA reference dose was exceeded.
Collapse
Affiliation(s)
- Kenneth Arinaitwe
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany; Makerere University, Department of Chemistry, P.O. Box 7062, Kampala, Uganda.
| | - Arne Koch
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Anthony Taabu-Munyaho
- Uganda National Fisheries Resources Research Institute (NaFIRRI), P.O. Box 343, Jinja, Uganda.
| | - Karsten Marien
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103, Leipzig, Germany.
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
27
|
Ssebugere P, Sillanpää M, Matovu H, Wang Z, Schramm KW, Omwoma S, Wanasolo W, Ngeno EC, Odongo S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139913. [PMID: 32540660 DOI: 10.1016/j.scitotenv.2020.139913] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are known organic pollutants with adverse health effects on humans and the ecosystem. This paper synthesises literature about the status of the pollutants and their precursors, identifies knowledge gaps and discusses future perspectives on the study of PFASs in Africa. Limited data on PFASs prevalence in Africa is available because there is limited capacity to monitor PFASs in African laboratories. The levels of PFASs in Africa are higher in samples from urban and industrialized areas compared to rural areas. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the dominant PFASs in human samples from Africa. Levels of PFOS and PFOA in these samples are lower than or comparable to those from industrialized countries. PFOA and PFOS levels in drinking water in Africa are, in some cases, higher than the EPA drinking water guidelines suggesting potential risk to humans. The levels of PFASs in birds' eggs from South Africa are higher, while those in other environmental media from Africa are lower or comparable to those from industrialized countries. Diet influences the pollutant levels in fish, while size and sex affect their accumulation in crocodiles. No bioaccumulation of PFASs in aquatic systems in Africa could be confirmed due to small sample sizes. Reported sources of PFASs in Africa include municipal landfills, inefficient wastewater treatment plants, consumer products containing PFASs, industrial wastewater and urban runoff. Relevant stakeholders need to take serious action to identify and deal with the salient sources of PFASs on the African continent.
Collapse
Affiliation(s)
- Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Henry Matovu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Karl-Werner Schramm
- Helmholtz Zentrum Müenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
| | - William Wanasolo
- Department of Chemistry, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
28
|
Santos LL, Miranda D, Hatje V, Albergaria-Barbosa ACR, Leonel J. PCBs occurrence in marine bivalves and fish from Todos os Santos Bay, Bahia, Brazil. MARINE POLLUTION BULLETIN 2020; 154:111070. [PMID: 32319897 DOI: 10.1016/j.marpolbul.2020.111070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate contamination by polychlorinated biphenyls (PCBs) in a tropical bay exposed to different anthropogenic pressures, samples of bivalves: mangrove oyster (Crassotrea rhizophorae), mangrove mussel (Mytella guyanensis)and clams (Anomalocardia brasiliana), were collected in different parts of Todos os Santos Bay, Bahia, Brazil. In addition, samples of bivalves and fish, purchased from a seafood market in the city of Salvador were analyzed to evaluate human exposure to PCBs through ingestion. Identification and quantification of PCBs were done by GC/MS after microwave extraction and purification with sulfuric acid. In bivalves, concentrations ranged from <0.08 to 50.1 ng g -1 (dry weight), with the highest values being detected in mangrove oyster, followed by clams and mangrove mussel of the Subaé estuary and Madre de Deus/Mataripe; regions known to be impacted by anthropic activities. From the total of the 12 fish species analyzed, only 5 presented levels of PCBs above the detection limit, ranging from 0.23 to 4.55 ng g -1 and 0.51 to 26.05 ng g -1 by dry weight and lipid weight, respectively. In general, concentrations of PCBs on the bay are lower than in most regions around the world, especially those located in the Northern Hemisphere. Indexes indicated that local biota and seafood from the fish market are not adversely impacted by PCBs and do not represent a risk to human health.
Collapse
Affiliation(s)
- L L Santos
- Laboratório de Geoquímica Marinha, GEOQMAR, Instituto de Geociências, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil.
| | - D Miranda
- Centro Interdisciplinar de Energia e Ambiente, CIENAM & Inst. de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - V Hatje
- Centro Interdisciplinar de Energia e Ambiente, CIENAM & Inst. de Química, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - A C R Albergaria-Barbosa
- Laboratório de Geoquímica Marinha, GEOQMAR, Instituto de Geociências, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - J Leonel
- Laboratório de Poluição e Geoquímica Marinha, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
29
|
Zhang K, Qian Z, Ruan Y, Hao Y, Dong W, Li K, Mei Z, Wang K, Wu C, Wu J, Zheng J, Lam PKS, Wang D. First evaluation of legacy persistent organic pollutant contamination status of stranded Yangtze finless porpoises along the Yangtze River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136446. [PMID: 31923702 DOI: 10.1016/j.scitotenv.2019.136446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis), inhabiting the Yangtze River, are an endangered species in China. They are threatened by various kinds of pollutants, among which persistent organic pollutants (POPs) are of special concern due to their toxicities, high persistency and bioaccumulation potential. To better understand the POP contamination status of Yangtze finless porpoises, an investigation of stranded porpoises along the Yangtze River and adjacent two major lakes in the Yangtze River basin was conducted; the concentrations of four groups of legacy POPs, i.e., hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyl (PCBs), were determined in the blubber samples. The mean concentrations of ΣHCHs (the sum of all congeners/isomers), ΣDDTs, ΣPBDEs and ΣPCBs, were 1670 ± 4210, 28,800 ± 52,300, 141 ± 174, and 1020 ± 1070 ng/g lipid weight, respectively; the high DDTs/PCBs ratio reflected a strong influence of agricultural pollution in the Yangtze River basin, and the high α/γ ratio of HCH isomers indicated the usage of lindane in the corresponding areas; the predominance of low-brominated congeners of PBDEs may be related to congruent patterns in the related environmental matrices. A hazard quotient risk assessment revealed that DDTs could pose a relatively high risk to Yangtze finless porpoises compared with the risks posed by the other POPs.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhengyi Qian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weiwei Dong
- Bengbu Medical College, Bengbu 233030, China
| | - Ke Li
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Zhigang Mei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianhong Wu
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China.
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
30
|
Zafeiraki E, Gebbink WA, Hoogenboom RLAP, Kotterman M, Kwadijk C, Dassenakis E, van Leeuwen SPJ. Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in the Netherlands. CHEMOSPHERE 2019; 232:415-423. [PMID: 31158636 DOI: 10.1016/j.chemosphere.2019.05.200] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 05/25/2023]
Abstract
A range of perfluoroalkyl substances (PFASs) was analysed in marine fish, farmed fish, crustaceans, bivalves and European eel caught in (mostly) Dutch waters, or purchased at Dutch markets (approximately 250 samples, collected between 2012 and 2018). ΣPFAS levels were highest in eels collected from rivers and lakes (average 43.6 ng/g and max 172 ng/g), followed by shrimps collected near the Dutch coast (average 6.7 and max. 33 ng/g ww), and seabass (average 4.5 and max. 9.4 ng/g ww). Most of the farmed fish (e.g. trout, catfish, turbot, salmon, tilapia, pangasius) were among the lowest contaminated samples in this study (averages ranged from 0.06 to 1.5 ng/g ww). Geographically, levels in marine fish from the northern North Sea (e.g. haddock, whiting, herring) were lower than in the central and southern North Sea (e.g. cod and flatfish). Concerning eel, no substantial geographical differences were found (apart from two distinct locations). The contamination pattern was similar in all species, where PFOS mostly dominated the profile, and other long-chain PFASs being frequently detected. Short-chain PFASs were rarely found. PFOS concentrations in eel varied from 3.3 ng/g (close to the North Sea) to 67 ng/g ww in eel caught from Ghent-Terneuzen canal. The majority of detected PFOS levels in eels (93%) and 1 shrimp sample from Eems-Dollard exceeded the EU Environmental Quality Standard (EQS) for surface water of 9.1 μg/kg ww. Other samples (e.g. shrimps, bivalves, flounder), subject to the EQS, did not exceed this level.
Collapse
Affiliation(s)
- Effrosyni Zafeiraki
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Athens, Greece
| | - Wouter A Gebbink
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Ron L A P Hoogenboom
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Michiel Kotterman
- Wageningen Marine Research, Wageningen University and Research, Haringkade 1, IJmuiden, the Netherlands
| | - Christiaan Kwadijk
- Wageningen Marine Research, Wageningen University and Research, Haringkade 1, IJmuiden, the Netherlands
| | - Emmanouil Dassenakis
- Laboratory of Environmental Chemistry, Department of Chemistry, Section III, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Athens, Greece
| | - Stefan P J van Leeuwen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| |
Collapse
|
31
|
Valenzuela-Sánchez IS, Zapata-Pérez O, Garza-Gisholt E, Gold-Bouchot G, Barrientos-Medina RC, Hernández-Núñez E. Polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) in liver of checkered puffer (Sphoeroides testudineus) from Ria Lagartos, Yucatan, Mexico. MARINE POLLUTION BULLETIN 2019; 146:488-492. [PMID: 31426184 DOI: 10.1016/j.marpolbul.2019.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Irma Suelí Valenzuela-Sánchez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Omar Zapata-Pérez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Eduardo Garza-Gisholt
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Gerardo Gold-Bouchot
- Oceanography Department and Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA
| | - Roberto Carlos Barrientos-Medina
- Departamento de Ecología, Facultad de Medicina, Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida Xmatkuil, CP 97100 Mérida, Yucatán, Mexico
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico.
| |
Collapse
|
32
|
Chen L, Lam JCW, Hu C, Tsui MMP, Lam PKS, Zhou B. Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8389-8397. [PMID: 31269390 DOI: 10.1021/acs.est.9b01711] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is increasingly polluting aquatic environments due to worldwide manufacturing and application. However, toxicological knowledge regarding PFBS exposure remains scarce. Here, we showed that PFBS life-cycle exposure at environmentally realistic concentrations (0, 1.0, 2.9, and 9.5 μg/L) skewed the sex ratio in fish toward male dominance, while reproductive functions of female fish were greatly impaired, as characterized by extremely small ovaries, blocked oocyte development, and decreased egg production. Endocrine disruption through the hypothalamus-pituitary-gonad axis was induced by PFBS exposure, showing antiestrogenic activity in females but estrogenic activity in males. PFBS was found to gradually accumulate in F0 adults during continuous exposure but can be rapidly eliminated when depurated in clean water. Parental exposure also transferred PFBS pollutant to F1 offspring eggs. Although no trace of PFBS was detected in F1 adults and F2 eggs, adverse effects from parental exposure persisted in F1 and F2 offspring. These transgenerational effects implicate PFBS as an ongoing threat to the fitness and sustainability of fish populations. The dramatic impairment of fish reproduction highlights the urgency of re-evaluations of the ecological and evolutionary consequences of PFBS exposure.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan 430072 , China
| | - James C W Lam
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430072 , China
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Kowloon , Hong Kong SAR , China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan 430072 , China
| |
Collapse
|
33
|
Mwakalapa EB, Simukoko CK, Mmochi AJ, Mdegela RH, Berg V, Bjorge Müller MH, Lyche JL, Polder A. Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. CHEMOSPHERE 2019; 224:176-186. [PMID: 30822724 DOI: 10.1016/j.chemosphere.2019.02.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 05/27/2023]
Abstract
In 2016, farmed milkfish (Chanos chanos) from Tanzania mainland (Mtwara), and Zanzibar islands (Pemba and Unguja) and wild milkfish and mullet (Mugil cephalus) from the Indian Ocean were collected for analyses of heavy metals (Pb, Cd, Hg, As, Al, Fe, Zn, Cu, Ni, Co and Cr) in muscles and livers. High concentrations of Pb were detected in muscles and livers from wild and farmed milkfish and wild mullet from all sites. The highest concentration of Pb was detected in wild milkfish liver from Mtwara (47.4 mg/kg ww). The Pb concentrations in fish muscle exceeded maximum levels (ML) set by FAO/WHO (0.3 mg/kg ww) in 100% of the analysed fish. Concentrations of Pb were higher in wild fish than in farmed fish. Cd concentrations were generally low. The comparison of the Hg concentration with EQSBiota indicated that Hg might pose potential health risk to 22% of the analysed fish. Median concentrations of Fe in livers from farmed milkfish from Jozani and Shakani, Zanzibar, were 40-80 times higher than the other sites. Assessment of human health risk and exposure to heavy metals indicated no potential risk from consuming the fish from the present study locations. However, the Pb concentrations exceeding ML in the fish suggests that Pb may affect the health of fish. Future investigations should include regular monitoring of heavy metals in farmed and wild fish in Tanzania for further development of sustainable aquaculture and the welfare of the wild fish stock in the coastal waters.
Collapse
Affiliation(s)
- Eliezer Brown Mwakalapa
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P. O. Box 8146 Dep, N-0033, Oslo, Norway; Institute of Marine Sciences, University of Dar Es Salaam, P. O. Box 668, Mizingani Road, Zanzibar, Tanzania; Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | | | - Aviti John Mmochi
- Institute of Marine Sciences, University of Dar Es Salaam, P. O. Box 668, Mizingani Road, Zanzibar, Tanzania
| | - Robinson Hammerthon Mdegela
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P. O. Box, 3021, Morogoro, Tanzania
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P. O. Box 8146 Dep, N-0033, Oslo, Norway
| | - Mette Helen Bjorge Müller
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P. O. Box 8146 Dep, N-0033, Oslo, Norway
| | - Jan Ludvig Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P. O. Box 8146 Dep, N-0033, Oslo, Norway
| | - Anuschka Polder
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P. O. Box 8146 Dep, N-0033, Oslo, Norway.
| |
Collapse
|
34
|
He Y, Wang X, Wei H, Zhang J, Chen B, Chen F. Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:78. [PMID: 30992715 PMCID: PMC6449970 DOI: 10.1186/s13068-019-1418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Marine microalga Nannochloropsis is a promising source for the production of renewable and sustainable biodiesel in replacement of depleting petroleum. Other than biodiesel, Nannochloropsis is a green and potential resource for the commercial production of nutraceutical eicosapentaenoic acid (EPA, C20:5). In recent studies, low-value biodiesel can be achieved by transesterification of Nannochloropsis biomass. However, it is undoubtedly wasteful to produce microalgal biodiesel containing EPA from nutritional and economical aspects. A new strategy was addressed and exploited to produce low-value bulky biodiesel along with EPA enrichment via enzymatic ethanolysis of Nannochloropsis biomass with a specific lipase. RESULTS Cellulase pretreatment on Nannochloropsis sp. biomass significantly improved the biodiesel conversion by direct ethanolysis with five enzymes from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TL), Rhizomucor miehei (RM), and Aspergillus oryzae (PLA). Among these five biocatalysts, CALA was the best suitable enzyme to yield high biodiesel conversion and effectively enrich EPA. After optimization, the maximum biodiesel conversion (46.53-48.57%) was attained by CALA at 8:1 ethanol/biomass ratio (v/w) in 10-15% water content with 10% lipase weight at 35 °C for 72 h. Meanwhile, EPA (60.81%) was highly enriched in microalgae NPLs (neutral lipids and polar lipids), increasing original EPA levels by 1.51-fold. Moreover, this process was re-evaluated with two Nannochloropsis species (IMET1 and Salina 537). Under the optimized conditions, the biodiesel conversions of IMET1 and Salina 537 by CALA were 63.41% and 54.33%, respectively. EPA contents of microalgal NPLs were 50.06% for IMET1 and 53.73% for Salina 537. CONCLUSION CALA was the potential biocatalyst to discriminate against EPA in the ethanolysis of Nannochloropsis biomass. The biodiesel conversion and EPA enrich efficiency of CALA were greatly dependent on lipidic class and fatty acid compositions of Nannochloropsis biomass. CALA-catalyzed ethanolysis with Nannochloropsis biomass was a promising approach for co-production of low-value biodiesel and high-value microalgae products rich in EPA.
Collapse
Affiliation(s)
- Yongjin He
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People’s Republic of China, Beijing, 100081 China
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Xiaofei Wang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Hehong Wei
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Jianzhi Zhang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Feng Chen
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000 China
| |
Collapse
|
35
|
Chen L, Tsui MMP, Shi Q, Hu C, Wang Q, Zhou B, Lam PKS, Lam JCW. Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:1-10. [PMID: 29857243 DOI: 10.1016/j.aquatox.2018.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
As an alternative to perfluorooctane sulfonate (PFOS), increasing usage of perfluorobutane sulfonate (PFBS) has led to ubiquitous presence in the environment. PFBS is also shown to potently disrupt the thyroid endocrine system. Considering the regulation of thyroid hormones in visual development, PFBS is likely to adversely affect the development and function of visual systems, which is a sensitive target of environmental pollutants. Therefore, the present study exposed marine medaka embryos to environmentally realistic concentrations of PFBS (0, 1.0, 2.9 and 9.5 μg/L) for an entire life-cycle. After exposure until sexual maturity, eyes of adult medaka were dissected to directly investigate the ocular accumulation and toxicity of PFBS. For the first time, substantial accumulation of an environmental pollutant (i.e., PFBS) was observed in the eye tissue. PFBS exposure was also found to impair the visual development and function in a sex-dependent manner. In female medaka, weight of eyes was significantly decreased, while content of water was increased, probably resulting in higher intraocular pressure. Multiple neural signaling processes were also disturbed by PFBS life-cycle exposure, including cholinergic, glutamatergic, GABAergic and monoaminergic systems. Increased levels of norepinephrine and epinephrine neurotransmitters may adaptively decrease the intraocular hypertension in female eyes. In addition, proteomic profiling identified the visual proteins of differential expressions (e.g., beta and gamma crystallins, arrestin and lumican), which were significantly associated with visual perception and motor activity of eyes. Overall, this study found that PFBS was able to accumulate in the eyes and induce ocular toxicities. The susceptibility and sex-specific responses of visual systems to environmental pollutants warrants more works for a comprehensive risk assessment.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Qi Wang
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China.
| |
Collapse
|
36
|
Romanić SH, Vuković G, Klinčić D, Sarić MM, Župan I, Antanasijević D, Popović A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Cyprinidae fish: Towards hints of their arrangements using advanced classification methods. ENVIRONMENTAL RESEARCH 2018; 165:349-357. [PMID: 29783084 DOI: 10.1016/j.envres.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To tackle the ever-present global concern regarding human exposure to persistent organic pollutants (POPs) via food products, this study strived to indicate associations between organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in lake-fish tissue depending on the species and sampling season. Apart from the monitoring initiatives recommended in the Global Monitoring Plan for POPs, the study discussed 7 OCPs and 18 PCB congeners determined in three Cyprinidae species (rudd, carp, and Prussian carp) from Vransko Lake (Croatia), which are widely domesticated and reared as food fish across Europe and Asia. We exploit advanced classification algorithms, the Kohonen self-organizing maps (SOM) and Decision Trees (DT), to search for POP patterns typical for the investigated species. As indicated by SOM, some of the dioxin-like and non-dioxin-like PCBs (PCB-28, PCB-74, PCB-52, PCB-101, PCB-105, PCB-114, PCB-118, PCB-156 and PCB-157), α-HCH and β-HCH caused dissimilarities among fish species, but regardless of their weight and length. To support these suggestions, DT analysis sequenced the fish species and seasons based on the concentration of heavier congeners. The presented assumptions indicated that the supplemental application of SOM and DT offers advantageous features over the usually rough interpretation of POPs pattern and over the single use of the methods.
Collapse
Affiliation(s)
- Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, PO Box 291, 10001 Zagreb, Croatia.
| | - Gordana Vuković
- Institute of Physics Belgrade, a National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, PO Box 291, 10001 Zagreb, Croatia.
| | - Marijana Matek Sarić
- Department of Health Studies, University of Zadar, Splitska 1, 23000 Zadar, Croatia.
| | - Ivan Župan
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia.
| | - Davor Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Aleksandar Popović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
37
|
Ge W, Mou Y, Chai C, Zhang Y, Wang J, Ju T, Jiang T, Xia B. Polybrominated diphenyl ethers in the dissolved and suspended phases of seawater from Sanggou Bay, east China. CHEMOSPHERE 2018; 203:253-262. [PMID: 29625314 DOI: 10.1016/j.chemosphere.2018.03.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The levels and profiles of polybrominated diphenyl ethers (PBDEs) in dissolved phase (DP) and suspended particulate matter (SPM) in seawater of Sanggou Bay (SGB) in four seasons were determined. The distribution and potential sources of these compounds were analyzed, and the ecological risk was assessed. The total concentrations of 14 PBDEs (∑14PBDE) in DP and SPM in the surface water ranged from 0.10 ng L-1 to 2.20 ng L-1 and from 0.51 ng L-1 to 6.15 ng L-1, respectively. The highest value was obtained in August. The concentrations of ∑14PBDE in the surface water were higher than those in the bottom water, and PBDEs were mainly partitioned into the SPM fraction. BDE209 was the most dominant PBDE congener, having average relative contributions of 86.5%-94.8% in DP and 40.5%-56.5% in SPM, followed by BDE47. The profiles of PBDEs in seawater of SGB were different from those of commercial PBDE products. The concentrations of ∑14PBDE were higher in the inner bay than in the outer bay, suggesting that the terrestrial input and human activities affected the PBDE distribution in SGB. Results of nonparametric multidimensional scaling suggested that BDE209 and BDE47 were important congeners discriminating PBDE contamination in SGB. The potential sources of PBDEs in SGB included commercial PentaBDE and DecaBDE products from the land, the atmospheric transport of commercial OctaBDE, and the degradation of high brominated congeners. The ecological risks from PentaBDE and OctaBDE were low, and those from DecaBDE were moderate in seawater of SGB.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanan Mou
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yan Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinye Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Ju
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Fisheries Science Academy, Qingdao, 266071, China
| | - Bin Xia
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Fisheries Science Academy, Qingdao, 266071, China
| |
Collapse
|