1
|
Wang H, Zeng J, Dai R, Wang Z. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5878-5888. [PMID: 38498471 DOI: 10.1021/acs.est.3c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Log D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.
Collapse
Affiliation(s)
- Hejia Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Bai X, Lu Y, Wang M, Yu X, Huang Z. Enhanced properties of a positive-charged nanofiltration membrane containing quaternarized chitosan through second interfacial polymerization for the removal of salts and pharmaceuticals. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2020-2034. [PMID: 38678406 DOI: 10.2166/wst.2024.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Nanofiltration (NF) membrane technology has been widely used in the removal of salts and trace organic pollutants, such as pharmaceuticals and personal care products (PPCPs), due to its superiority. A positive-charged composite NF membrane with an active skin layer was prepared by polyethyleneimine (PEI), trimethyl benzene chloride, and quaternate chitosan (HTCC) through second interfacial polymerization on the polyethersulfone ultrafiltration membrane. The physicochemical properties of the nanocomposite membrane were investigated using surface morphology, hydrophilicity, surface charge, and molecular weight cut-off (MWCO). The influence of the concentration and reaction time of PEI and HTCC was documented. The optimized membrane had a MWCO of about 481 Da and possessed a pure water permeability of 25.37 L·m-2·h-1·MPa-1. The results also exhibited salt rejection ability as MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl > KCl, showing a positive charge on the fabricated membrane. In addition, the membrane had higher rejection to atenolol, carbamazepine, amlodipine, and ibuprofen at 89.46, 86.02, 90.12, and 77.21%, respectively. Moreover, the anti-fouling performance and stability of the NF membrane were also improved.
Collapse
Affiliation(s)
- Xinhui Bai
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Yuting Lu
- School of Sino-French Engineer, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Mudan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyang Yu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhonghua Huang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| |
Collapse
|
3
|
Afolabi MA, Xiao D, Chen Y. The Impact of Surface Chemistry and Synthesis Conditions on the Adsorption of Antibiotics onto MXene Membranes. Molecules 2023; 29:148. [PMID: 38202731 PMCID: PMC10780216 DOI: 10.3390/molecules29010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
MXene, a two-dimensional (2D) nanomaterial with diverse applications, has gained significant attention due to its 2D lamellar structure, abundance of surface groups, and conductivity. Despite various established synthesis methods since its discovery in 2011, MXenes produced through different approaches exhibit variations in structural and physicochemical characteristics, impacting their suitability for environmental application. This study delves into the effect of synthesis conditions on MXene properties and its adsorption capabilities for four commonly prescribed antibiotics. We utilized material characterization techniques to differentiate MXenes synthesized using three prevalent etchants: hydrofluoric acid (HF), mixed acids (HCl/HF), and fluoride salts (LiF/HCl). Our investigation of adsorption performance included isotherm and kinetic analysis, complemented by density functional theory calculations. The results of this research pinpointed LiF/HCl as an efficient etchant, yielding MXene with favorable morphology and surface chemistry. Electrostatic interactions and hydrogen bonding between MXene surface terminations and ionizable moieties of the antibiotic molecules emerge as pivotal factors in adsorption. Specifically, a higher presence of oxygen terminations increases the binding affinities. These findings provide valuable guidance for etchant selection in environmental applications and underscore the potential to tailor MXenes through synthesis conditions to design membranes capable of selectively removing antibiotics and other targeted substances.
Collapse
Affiliation(s)
- Moyosore A. Afolabi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA;
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| |
Collapse
|
4
|
Dolar D, Ćurić I, Ašperger D. Removal, Adsorption, and Cleaning of Pharmaceutical on Polyamide RO and NF Membranes. Polymers (Basel) 2023; 15:2745. [PMID: 37376394 DOI: 10.3390/polym15122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmaceuticals are present in various waters and can be almost completely rejected by membrane separation processes, i.e., nanofiltration (NF) and reverse osmosis (RO). Nevertheless, the adsorption of pharmaceuticals can decrease their rejection, so adsorption can be considered a very important removal mechanism. In order to increase the lifetime of the membranes, the adsorbed pharmaceuticals must be cleaned from the membrane. The used pharmaceutical (albendazole), the most common anthelmintic for threatening worms, has been shown to adsorb to the membrane (solute-membrane adsorption). In this paper, which is a novelty, commercially available cleaning reagents, NaOH/EDTA solution, and methanol (20%, 50%, and ≥99.6%) were used for pharmaceutical cleaning (desorption) of the NF/RO membranes used. The effectiveness of the cleaning was verified by Fourier-transform infrared spectra of the membranes. Of all the chemical cleaning reagents used, pure methanol was the only cleaning reagent that removed albendazole from the membranes.
Collapse
Affiliation(s)
- Davor Dolar
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Iva Ćurić
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Danijela Ašperger
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Kumar S, Pratap B, Dubey D, Kumar A, Shukla S, Dutta V. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:885. [PMID: 36239860 DOI: 10.1007/s10661-022-10540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The continuous exposure to pharmaceuticals and personal care products can lead to a series of individual antagonistic and synergistic effects and long-lasting toxicity to humans and aquatic lives. This may also lead to developing antibiotic resistance, teratogenic, carcinogenic, and endocrine-disrupting effects. However, several PPCPs are also considered biologically active for non-target aquatic organisms, such as mosquito fish, goldfish, and the algae Pseudokirchneriella subcapitata. Various physicochemical methods such as ozonation, photolysis, and membrane separation are recognized for the effective removal of PPCPs. However, the high operation and maintenance costs and associated ecological impacts have limited their further use. Constructed wetlands are considered eco-friendly and sustainable for the removal of pharmaceuticals and personal care products together with antibiotic resistance genes. Several mechanisms such as sorption, biodegradation, oxidation, photodegradation, volatilization, and hydrolysis are occurring during the phytoremediation of PPCPs. During these processes, more than 50% of PPCPs can be eliminated through constructed wetlands. They also offer several additional benefits as obtained macrophytic biomass may be used as raw material in pulp and paper industries and a source for second-generation biofuel production. In this study, we have discussed the origin and impacts of PPCPs together with their treatment methods. We have also investigated the strengths, weaknesses, opportunities, and threats associated with constructed wetlands during the treatment of wastewater laden with pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605.
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Lakhimpur Kheri, UP, India, 262701.
| | - Bhanu Pratap
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Divya Dubey
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Adarsh Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 226025
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Pilibhit, UP, India, 262001
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India, 225003
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| |
Collapse
|
6
|
Fan K, Liu Y, Wang X, Cheng P, Xia S. Comparison of polyamide, polyesteramide and polyester nanofiltration membranes: properties and separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Zhang T, Fu RY, Wang KP, Gao YW, Li HR, Wang XM, Xie YF, Hou L. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mohammed AA, Mutar ZH, Al-Baldawi IA. Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon 2021; 7:e08403. [PMID: 34869927 PMCID: PMC8626703 DOI: 10.1016/j.heliyon.2021.e08403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the spread of pharmaceuticals and personal care products (PPCPs) in the aquatic environment has steadily increased. In this study, phytoremediation technology, using an ornamental plant (Alternanthera spp.), was investigated to improve the removal of acetaminophen (AC) and methylparaben (MP) from a synthetically prepared wastewater. Three exposure lines (AC-line, MP-line and control-line) were performed with a total of 26 subsurface-horizontal constructed wetlands (SSH-CWs) that operated in batch feeding mode. The influence of plants in addition to the initial spiking concentration (20, 60 and 100 mg/L) of AC and MP on the removal efficiency was evaluated throughout the 35-days experiments. The highest removal efficiencies for AC and MP were 88.6% and 66.4%, respectively, achieved in the planted CWs; whereas only 29.7% and 21.9% were achieved in the control CWs for AC and MP, respectively. The results confirmed the role of Alternanthera spp. for accelerating the removal of AC and MP from synthetically contaminated wastewater in CWs.
Collapse
Affiliation(s)
- Ahmed A. Mohammed
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zahraa Hasan Mutar
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Architecture Engineering, College of Engineering, Wasit University, Wasit, Iraq
| | - Israa Abdulwahab Al-Baldawi
- Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
- Corresponding author.
| |
Collapse
|
10
|
Mesoporous polystyrene-based microspheres with polar functional surface groups synthesized from double emulsion for selective isolation of acetoside. J Chromatogr A 2021; 1662:462720. [PMID: 34902717 DOI: 10.1016/j.chroma.2021.462720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
In this study, a series of the functionalized mesoporous polystyrene-based microspheres (FMPMs) with different functional comonomers (acrylamide, AM; ethyleneglycol dimethacrylate, EGDMA; hydroxyethyl methacrylate, HEMA) and ratios of styrene (St) to divinylbenzene (DVB) were designed and synthesized by a double emulsion interface polymerization method. Among them, St and DVB existed in the oil phase, forming the skeleton structure of FMPMs. AM, EGDMA or HEMA in the water phase formed functional layers on the inner and outer surfaces of FMPMs. The experimental results indicated that the optimal functional comonomers and the ratio of St to DVB were AM (provided the hydrophilic -CONH2 groups) and 1:1, respectively. Thus, A-FMPMs-2 exhibited the highest adsorption capacity of 108.95 ± 8.13 mg/g and the selectivity of 5.14 ± 0.17. These results were attributed to the hydrophilic -CONH2 groups on A-FMPMs-2, and these groups were beneficial to ACT molecules diffusion driven by concentration gradient, improving the adsorption performance. Furthermore, hydrophilic -CONH2 groups on the inner and outer surfaces of A-FMPMs-2 acted as hydrophilic sites that had a high-affinity interaction with ACT molecules, thus increasing the adsorption selectivity. In addition, A-FMPMs-2 had the highest specific surface area and largest pore volume, resulting in the highest adsorption capacity and adsorption selectivity. Therefore, the development of adsorbents with adjustable pore structure and a large number of hydrophilic sites will provide a new strategy for selective separation of bioactive components from natural products.
Collapse
|
11
|
Zhang H, Wang X, Li Y, Zuo K, Lyu C. A novel MnOOH coated nylon membrane for efficient removal of 2,4-dichlorophenol through peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125526. [PMID: 34030406 DOI: 10.1016/j.jhazmat.2021.125526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a highly toxic water contaminant. In this study, we demonstrate a novel catalytic filtration membrane by coating MnOOH nanoparticles on nylon membrane (MnOOH@nylon) for improved removal of 2,4-DCP through a synergetic "trap-and-zap" process. In this hybrid membrane, the underlying nylon membrane provides high adsorption affinity for 2,4-DCP. While the immobilized MnOOH nanoparticles on the membrane surface provide catalytic property for peroxymonosulfate activation to produce reactive oxygen species (ROS), which migrate with the fluid to the underlying nylon membrane pore channels and react with the adsorbed 2,4-DCP with a much higher rate (0.9575 mg L-1 min-1) than that in the suspended MnOOH particle system (0.1493 mg L-1 min-1). The forced flow in the small voids of the MnOOH nanoparticle coating layer (< 200 nm) and channels of nylon membrane (~220 nm) is critical to improve the 2,4-DCP adsorption, ROS production, and 2,4-DCP degradation. The hybrid MnOOH@nylon membrane also improves the stability of the MnOOH nanoparticles and the resistibility to competitive anions, due to much higher concentration ratio of the adsorbed 2,4-DCP and produced ROS versus background competitive ions in the membrane phase. This study provides a generally applicable approach to achieve high removal of target contaminants in catalytic membrane processes.
Collapse
Affiliation(s)
- Hourui Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Xiansheng Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Yicheng Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Kuichang Zuo
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston 77005, USA.
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China.
| |
Collapse
|
12
|
Imbrogno A, Schäfer AI. Micropollutants breakthrough curve phenomena in nanofiltration: Impact of operational parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Fang C, Wang X, Xiao R, Ding S, Chen B, Chu W. Rejection of chlorinated, brominated, and iodinated trihalomethanes by multi-stage reverse osmosis: Efficiency and mechanisms. CHEMOSPHERE 2021; 268:129307. [PMID: 33359988 DOI: 10.1016/j.chemosphere.2020.129307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Reverse osmosis (RO), a promising technology for removing inorganic salts and a wide range of trace organic pollutants, is widely used in water treatment industry. In this study, the rejection of chlorinated, brominated, and iodinated trihalomethanes (THMs) by a multi-stage RO system was investigated. The results showed that the multi-stage RO system is effective in rejecting THMs, and THMs with large size, high hydrophobicity and low polarity were highly rejected. In the first stage, high percentage of THMs was adsorbed on RO membrane, and the THM rejection was dominated by both hydrophobic adsorption and size exclusion. The contribution of hydrophobic adsorption to THM rejection decreased significantly along RO stages due to decreased feed concentration, but the enhancement of size exclusion still ensured high rejection efficiencies for most THMs, indicating a compensation effect between two rejection mechanisms. Finally, to further understand the rejection in the multi-RO system from a perspective of THM property, multiple linear regression models were built. The impact of n-octanol-water partition coefficient (Log Kow) was slightly higher than that of stokes radius in the first stage, which was consistent with the rejection mechanism. But dipole moment played an increasingly important role in the second and third stage, weakening the impact of Log Kow on THM rejection.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Niavarani Z, Breite D, Prager A, Abel B, Schulze A. Estradiol Removal by Adsorptive Coating of a Microfiltration Membrane. MEMBRANES 2021; 11:membranes11020099. [PMID: 33573320 PMCID: PMC7911598 DOI: 10.3390/membranes11020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
This work demonstrates the enhancement of the adsorption properties of polyethersulfone (PES) microfiltration membranes for 17β-estradiol (E2) from water. This compound represents a highly potent endocrine-disrupting chemical (EDC). The PES membranes were modified with a hydrophilic coating functionalized by amide groups. The modification was performed by the interfacial reaction between hexamethylenediamine (HMD) or piperazine (PIP) as the amine monomer and trimesoyl chloride (TMC) or adipoyl chloride (ADC) as the acid monomer on the surface of the membrane using electron beam irradiation. The modified membranes and the untreated PES membrane were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water permeance measurements, water contact angle measurements, and adsorption experiments. Furthermore, the effects of simultaneous changes in four modification parameters: amine monomer types (HMD or PIP), acid monomer types (TMC or ADC), irradiation dosage (150 or 200 kGy), and the addition of toluene as a swelling agent, on the E2 adsorption capacity were investigated. The results showed that the adsorption capacities of modified PES membranes toward E2 are >60%, while the unmodified PES membrane had an adsorption capacity up to 30% for E2 under similar experimental conditions, i.e., an enhancement of a factor of 2. Next to the superior adsorption properties, the modified PES membranes maintain high water permeability and no pore blockage was observed. The highlighted results pave the way to develop efficient low-cost, stable, and high-performance adsorber membranes.
Collapse
Affiliation(s)
- Zahra Niavarani
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany; (Z.N.); (D.B.); (A.P.); (B.A.)
| | - Daniel Breite
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany; (Z.N.); (D.B.); (A.P.); (B.A.)
| | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany; (Z.N.); (D.B.); (A.P.); (B.A.)
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany; (Z.N.); (D.B.); (A.P.); (B.A.)
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Universität Leipzig, Linne-Strasse 2, 04103 Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany; (Z.N.); (D.B.); (A.P.); (B.A.)
- Correspondence: ; Tel.: +49-341-235-2400
| |
Collapse
|
15
|
Fang C, Ou T, Wang X, Rui M, Chu W. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes. CHEMOSPHERE 2020; 260:127625. [PMID: 32758776 DOI: 10.1016/j.chemosphere.2020.127625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are widely used in drinking water treatment and wastewater recycling. However, limited information was available regarding their performance in removing trihalomethanes (THMs). The present study investigated the effect of feed solution characteristics and membrane fouling on THM removal by UF/NF/RO membranes. The results indicated that THMs were poorly removed by UF membrane, and the removal was dominated by hydrophobic adsorption. In contrast, high removal of THMs was observed for NF/RO membranes, which was contributed by both size exclusion and hydrophobic adsorption. By comparing the adsorption of THMs on NF/RO membranes at different feed concentration, it was found that the role of hydrophobic adsorption was more important at lower feed concentration. The removal of THMs by UF/NF/RO membranes increased with increasing feed concentration, which can be ascribed to the enhanced diffusion at higher concentration gradient. With increasing ionic strength, THM removal was decreased significantly for UF membrane, but the removal by NF/RO membranes remained largely unchanged. By comparing THM removal by clean and fouled membranes, the effect of membrane fouling was examined. The removal of most THMs (except trichloromethane) decreased after fouling for UF membrane, whereas decreased removal was only observed for iodinated THMs for fouled NF/RO membranes.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Tian Ou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Min Rui
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, 901 North Zhongshan 2nd Road, 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
16
|
Khairkar SR, Pansare AV, Shedge AA, Chhatre SY, Suresh AK, Chakrabarti S, Patil VR, Nagarkar AA. Hydrophobic interpenetrating polyamide-PDMS membranes for desalination, pesticides removal and enhanced chlorine tolerance. CHEMOSPHERE 2020; 258:127179. [PMID: 32554002 DOI: 10.1016/j.chemosphere.2020.127179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Hydrophobic membranes for desalination and toxic organic pollutant removal have been fabricated using polyamide - PDMS (polydimethylsiloxane) chemistries in a one-step protocol. The curing of polyamide and PDMS are orthogonal and co-curing both networks imparts hydrophobicity to the thin film composite membranes. The membranes exhibit increased adsorption of pesticides from the feed water along with maintaining excellent salt rejection capability (97% NaCl rejection), thus giving the membranes a multifunctional character. Three toxic pesticides have been used in this study to demonstrate the viability of combining osmosis desalination technology with organic matter adsorption. The membranes also show excellent resistance to fouling by toxic pesticides (85% salt rejection vs 67% for commercial membranes in the presence of pesticides) and significantly improved chlorine tolerance (93.8% salt rejection vs 86.5% for commercial membranes after 20 h of exposure to sodium hypochlorite solution).
Collapse
Affiliation(s)
- Shyam R Khairkar
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba Ibaraki, 305-0047, Japan
| | - Amol V Pansare
- Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600, Dübendorf, Switzerland
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Shraddha Y Chhatre
- National Chemical Laboratory (NCL) Dr. Homi Bhabha Road, Pune, 411008, India
| | - A K Suresh
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Bombay, 400076, Maharashtra, India
| | - Subhananda Chakrabarti
- Department of Electrical Engineering, Indian Institute of Technology Bombay (IITB), 400076, India
| | | | - Amit A Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Aguilar S, Bustillos S, Xue S, Ji CH, Mak WH, Rao E, McVerry BT, La Plante EC, Simonetti D, Sant G, Kaner RB. Enhancing Polyvalent Cation Rejection Using Perfluorophenylazide-Grafted-Copolymer Membrane Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42030-42040. [PMID: 32876431 DOI: 10.1021/acsami.0c07111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface modification offers a straightforward means to alter and enhance the properties and performance of materials, such as nanofiltration membranes for water softening. Herein, we demonstrate how a membrane's surface charge can be altered by grafting different electrostatically varying copolymers onto commercial membrane surfaces using perfluorophenylazide (PFPA) photochemistry for enhanced ion separation performance. The native membrane's performance-i.e., in terms of divalent cation separation-with copolymer coatings containing a positively charged quaternary ammonium (-N(Me)3+), a negatively charged sulfonate (-SO3-), and an essentially neutral zwitterion (sulfobetaine, -N(Me)2R2+, and -SO3-), respectively, indicates that: (a) the sulfonated polymer induces robust Coulombic exclusion of divalent anions as compared to the negatively charged native membrane surface on account of its higher negative charge; (b) the positively charged ammonium coating induces exclusion of cations more effectively than the native membrane; and significantly, (c) the zwitterion polymer coating, which reduces the surface roughness and improves wettability, in spite of its near-neutral charge enhances exclusion of both divalent cations and anions on account of aperture sieving by the compact zwitterion polymer that arises from its ability to limit the size of ions that transport through the polymer along with dielectric exclusion. The outcomes thereby inform new pathways to achieve size- and charge-based exclusion of ionic, molecular, and other species contained in liquid streams.
Collapse
Affiliation(s)
- Stephanie Aguilar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven Bustillos
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shuangmei Xue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chen-Hao Ji
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wai H Mak
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ethan Rao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brian T McVerry
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Erika Callagon La Plante
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Dante Simonetti
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Ouiriemmi I, Díez AM, Rosales E, Pazos M, Sanromán MÁ. Pre-concentration by natural adsorbent as plausible tool for effective electro-Fenton removal of micropollutants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Wang Y, Xu A, Cui T, Zhang J, Yu H, Han W, Shen J, Li J, Sun X, Wang L. Construction and application of a 1-liter upflow-stacked microbial desalination cell. CHEMOSPHERE 2020; 248:126028. [PMID: 32018109 DOI: 10.1016/j.chemosphere.2020.126028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
As increasing demand of global reuse water, microbial desalination cell (MDC) is developed as a potential desalination approach to drive ion migration and separation through biodegradation without any additional energy. A novel, efficient, stable reactor coupled stacked MDC with upflow MDC was constructed, which was named as upflow-stacked MDC (USMDC). Compared with the traditional stacked MDC and upflow MDC, the desalination and generation performance of the USMDC was evaluated. Results showed that, after 24 h, the desalination ratio of USMDC can reach 91.9% when the external resistance was 1.5 Ω, which was 1.18 and 1.48 times higher than SMDC and UMDC, respectively. The long-term performance of the desalination efficiency was tested, which was maintained at 87.2-96.0% and stable for consecutive 120 days. Then, it was also the investigated that the relationship between desalination rate and external resistance during every period. The USMDC produced a maximum power density of 32.91 W m-3. In addition, the difference of current density between USMDC and SMDC indicates the turbulence generated by cylindrical structure could effectively decrease the internal resistance. It was also corroborated that salt concentration gradient and bipolar electrodialysis would decline the charge transfer efficiency. Accordingly, USMDC was verified having the superior desalination performance thus providing the possibility for application in wastewater reuse.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
20
|
Xu R, Zhou M, Wang H, Wang X, Wen X. Influences of temperature on the retention of PPCPs by nanofiltration membranes: Experiments and modeling assessment. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117817] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Hu P, Tian B, Xu Z, Jason Niu Q. Fabrication of high performance nanofiltration membrane on a coordination-driven assembled interlayer for water purification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116192] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Liu YL, Zhao YY, Wang XM, Wen XH, Huang X, Xie YF. Effect of varying piperazine concentration and post-modification on prepared nanofiltration membranes in selectively rejecting organic micropollutants and salts. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes: Rejection and fouling mechanisms. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Liu YL, Xiao K, Zhang AQ, Wang XM, Yang HW, Huang X, Xie YF. Exploring the interactions of organic micropollutants with polyamide nanofiltration membranes: A molecular docking study. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Influences of multi influent matrices on the retention of PPCPs by nanofiltration membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Liu YL, Wang XM, Yang HW, Xie YF, Huang X. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Han B, Liang S, Wang B, Zheng J, Xie X, Xiao K, Wang X, Huang X. Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Qiu J, Liu F, Yue C, Ling C, Li A. A recyclable nanosheet of Mo/N-doped TiO 2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation. CHEMOSPHERE 2019; 215:280-293. [PMID: 30321808 DOI: 10.1016/j.chemosphere.2018.09.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 05/25/2023]
Abstract
A novel nanosheet of Mo/N-codoped TiO2 nanorods immobilized on carbon nanofibers (MNTC nanosheet) was self-synthesized through two facile steps. The Mo/N-doped TiO2 nanorods dispersed through in situ growth on the network constructed by long and vertical carbon nanofibers (CNFs). The fabricated MNTC nanosheet displayed superb photocatalytic activity of methylene blue (MB), and the degradation ratio by the MNTC nanosheet was nearly twice than that of pure nanoparticles. The photocatalytic activities during the degradation process in the presence of environmental media such as inorganic salts and natural organic matter (NOM) were also determined. Intermediates were analyzed by ion chromatography and electrospray ionization-mass spectrometry to unravel the potential degradation pathways, and the excellent mineralization ratio for MB over MNTC nanosheet was 79.8%. The trapping active species experiments verified that h+ was the main active species in the degradation process. Notably, the recycling experiment proved that the MNTC nanosheet was more stable, and it was successfully applied in purifying practical wastewater. Lastly, the fabricated MNTC nanosheet also displayed remarkable degradation performance towards sulfamethoxazole and bisphenol A.
Collapse
Affiliation(s)
- Jinli Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Cailiang Yue
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chen Ling
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
29
|
Jang D, Jeong S, Jang A, Kang S. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:673-678. [PMID: 29803038 DOI: 10.1016/j.scitotenv.2018.05.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To elucidate the transport of emerging contaminants (CECs) in forward osmosis (FO) membrane process according to their solute properties, the rejections of CECs with various molecular weight, octanol/water partition coefficient (log Kow), and dissociation constant (pKa) were investigated. Among 12 selected CECs, negatively charged CECs exhibited the highest rejection efficiency than neutral or positively charged CECs due to the electrostatic repulsion between negatively charged CECs and membrane surfaces as well as diffusional hindrance by reversely transported salts from draw stream. The statistical analysis showed that the molecular weight was strongly correlated with the rejection of neutral CECs by size exclusion. Moreover, the correlation between adsorption and log Kow value of neutral CECs was observed due to the hydrophobic interaction. Positively charged CECs exhibited higher adsorption, but lower rejection than the negatively charged CECs due to the locally increased concentration by adsorption, and subsequent migration in FO membrane.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|