1
|
Liang Y, Feng A, Al-Dhabi NA, Zhang J, Xing W, Chen T, Han Y, Zeng G, Tang L, Tang W. Efficient antibiotic tetracycline degradation and toxicity abatement via the perovskite-type CaFe xNi 1-xO 3 assisted heterogeneous electro-Fenton system. WATER RESEARCH 2025; 279:123432. [PMID: 40054283 DOI: 10.1016/j.watres.2025.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 05/06/2025]
Abstract
As one of the emerging contaminants, antibiotics are posing a great threat to the human health and environment, which requires effective treatment methods. Heterogeneous electro-Fenton is a promising technique for organic contaminant elimination, but preparation of an appropriate heterogeneous electro-Fenton catalyst still remains challenging. In this work, the feasibility of perovskite-type CaFexNi1-xO3 as heterogeneous electro-Fenton catalyst for tetracycline (TC) removal and toxicity abatement has been explored. It was found that, among the examined CaFexNi1-xO3 catalysts with different Ni doping amount, CaFe3/4Ni1/4O3 exhibited the best performance, achieving 92.1 % TC removal within 30 min without pH adjustment in the presence of 0.05 M Na2SO4 electrolyte. Choosing Cl--containing electrolyte enabled further improvement towards TC elimination. In addition, the CaFe3/4Ni1/4O3 based heterogeneous electro-Fenton system presented other advantages including good recyclability and universal applicability, and significant toxicity reduction (verified via both ECOSAR simulation and soybean germination test). The TC degradation pathways were elucidated through identification of intermediate products and DFT calculations. Mechanism investigations revealed that there existed a strong synergy between Fe and Ni, and ·OH and ·O2- played the primary roles in the system while 1O2 played an auxiliary role. This study presented a promising heterogeneous electro-Fenton catalyst for degradation of antibiotics such as tetracycline.
Collapse
Affiliation(s)
- Yuling Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Aochen Feng
- Hubei Xiecheng Transportation Environmental Protection Co., Ltd., Wuhan 430040, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jing Zhang
- MCC Capital Engineering and Research Incorporation Limited, Beijing 100176, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Tao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuxuan Han
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Caruncho-Pérez S, Bernárdez N, Pazos M, Sanromán MÁ, González-Romero E. Voltammetric methodology for the quality control and monitoring of sulfamethoxazole removal from water. Talanta 2025; 284:127255. [PMID: 39591868 DOI: 10.1016/j.talanta.2024.127255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Sulfamethoxazole is an antibiotic that is among the drugs most frequently found in waters around the world because of its habitual consumption and its high chemical stability that prevents it from being eliminated from the environment. In this study, an electroanalytical methodology based on differential pulse voltammetry is developed for the analysis of sulfamethoxazole at trace levels in water. After the optimization of the instrumental parameters a linear range from 6.59 to 96.27 μM was found with limits of detection and quantification of 1.98 and 6.59 μM, respectively, with an RSD below 6 %. Moreover, several validation studies involving different pH values, water samples and instrumentation-techniques were performed in order to ensure the robustness of the method. For this purpose, the peak area was used as quantitative variable since it is not affected by the pH of the medium even if there is any modification of this parameter during the experiments. Furthermore, the effect of other drug such as trimethoprim on the analytical signal of sulfamethoxazole was also evaluated. Once the method was developed it was tested on the quality control of Soltrim®, obtaining recoveries between 98 and 102 %. Lastly, the voltammetric method was applied for the in situ monitoring of sulfamethoxazole's removal from water samples, specifically by anodic oxidation and electro-Fenton treatments. While the former was coupled to an adsorption process, the latter was carried out with different iron sources including commercial medicines that can be found in wastewater. The problem of significant variation in pH during the treatment was solved by working with the peak area, and so obtaining valid and reliable kinetic data. Although anodic oxidation proved to be faster considering the calculated kobs, electro-Fenton turned out to be more efficient in eliminating the drug, achieving the disappearance of its analytical signal in only 30 min of treatment.
Collapse
Affiliation(s)
- Sara Caruncho-Pérez
- Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain.
| | - Nuria Bernárdez
- CINTECX - Universidade de Vigo, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Marta Pazos
- CINTECX - Universidade de Vigo, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain
| | - M Ángeles Sanromán
- CINTECX - Universidade de Vigo, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Elisa González-Romero
- Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain.
| |
Collapse
|
3
|
Wang X, Zhang C, Song G, Jing J, Li S, Zhou M, Dewil R. Highly efficient FeS/Fe 3O 4 @ biomass carbon bifunctional catalyst with enriched oxygen vacancies for heterogeneous electro-Fenton catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135692. [PMID: 39213775 DOI: 10.1016/j.jhazmat.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Low H2O2 production, narrow adaptive pH range and slow Fe(II) regeneration on the cathode still limit efficiency of electro-Fenton (EF) and its application. Herein, we designed a bifunctional catalyst with FeS and Fe3O4 nanoparticles dispersed on porous carbon (CFeS@C) using template of sodium alginate (SA)/FeSO4 hydrogel mixed with carbon black (CB), which presented high H2O2 generation efficiency and outstanding tetracycline degradation efficiency under wide pH ranges (3-8) with a low energy consumption of 19.6 kWh/kg total organic carbon (TOC). The introduction of CB created abundant oxygen vacancies in CFeS@C, promoting the oxygen adsorption and the electrochemical generation of H2O2, which further boosted the formation of •OH due to the interaction with Fe2+ on the cathode surface. Simultaneously, the reaction between the outer layer of FeS and Fe3+ not only accelerated iron cycling but also reduced the solution pH. It was verified that •OH and 1O2 played a dominant role in organics degradation. The system maintained stability after 10 cycles and effectiveness in the treatment of pharmaceutical wastewater. This study would offer a new strategy to develop an efficient and durable bifunctional catalyst for heterogeneous EF system working in wide pH conditions for wastewater treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuaishuai Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, J. De Nayerlaan 5, Sint-Katelijne-Waver B-2860, Belgium
| |
Collapse
|
4
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
5
|
Wang Z, Hu N, Wang L, Zhao H, Zhao G. In Situ Production of Hydroxyl Radicals via Three-Electron Oxygen Reduction: Opportunities for Water Treatment. Angew Chem Int Ed Engl 2024; 63:e202407628. [PMID: 39007234 DOI: 10.1002/anie.202407628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The electro-Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two-electron oxygen reduction reaction (ORR), the electrochemical three-electron (3e-) ORR can directly activate molecular oxygen to yield the hydroxyl radical (⋅OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e- ORR is a vital process for efficiently producing ⋅OH in situ, thus charting a new path toward the development of green water-treatment technologies. This review summarizes the characteristics and mechanisms of the 3e- ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ⋅OH through the modulation of the reaction pathway, shedding light on the rational design of 3e- ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large-scale utilization of ⋅OH are discussed based on achieving optimal 3e- ORR regulation and the potential to combine it with other technologies.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lan Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
6
|
Brillas E, Peralta-Hernandez JM. The recent development of innovative photoelectro-Fenton processes for the effective and cost-effective remediation of organic pollutants in waters. CHEMOSPHERE 2024; 366:143465. [PMID: 39369749 DOI: 10.1016/j.chemosphere.2024.143465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Wastewaters with toxic and recalcitrant organic contaminants are poorly remediated in conventional wastewater treatment plants. So, powerful processes need to be developed to destroy such organic pollutants to preserve the quality of the aquatic environment. This critical and comprehensive review presents the recent innovative development of photoelectro-Fenton (PEF) covering the period 2019-September 2024. This emerging photo-assisted Fenton-based electrochemical advanced oxidation process (EAOP) is an efficient and cost-effective treatment for water remediation. It possesses a great oxidation power because the in-situ generated hydroxyl radical as oxidant is combined with the photolysis of the organic by-products under UV or sunlight irradiation. The review is initiated by a brief description of the characteristics of the PEF process to stand out in the role of generated oxidizing agents. Further, the homogeneous PEF. PEF-like, solar PEF (SPEF), and SPEF-like processes with iron catalysts are discussed, taking examples of their application to the removal and mineralization of solutions of industrial chemicals, herbicides, dyes, pharmaceuticals, and direct real wastewaters. Novel heterogeneous PEF treatments of such pollutants with solid iron catalysts or functionalized cathodes are analyzed. Finally, novel hybrid processes including PEF/photocatalysis and PEF/photoelectrocatalysis, followed by novel and potent sequential processes like electrocoagulation-PEF and persulfate-PEF, are discussed. Throughout the manuscript, special attention was made to the total operating cost of PEF, which is more expensive than conventional electro-Fenton due to the high electric cost of the UV lamp, pointing to consider the much more cost-effective SPEF as a preferable alternative in practice.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, Barcelona, CP, 08028, Spain.
| | - Juan M Peralta-Hernandez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
7
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|
9
|
Chen X, Wang Y, Fan X, Zhu G, Liu Y, Quan X. Efficient electro-Fenton degradation of organic pollutants via the synergistic effect of 1O 2 and •OH generated on single FeN 4 sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173042. [PMID: 38723975 DOI: 10.1016/j.scitotenv.2024.173042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The electro-Fenton with in situ generated 1O2 and •OH is a promising method for the degradation of micropollutants. However, its application is hindered by the lack of catalysts that can efficiently generate 1O2 and •OH from electrochemical oxygen reduction. Herein, N-doped stacked carbon nanosheets supported Fe single atoms (Fe-NSC) with FeN4 sites were designed for simultaneous generation of 1O2 and •OH to enhance electro-Fenton degradation. Due to the synergistic effect of 1O2 and •OH, a variety of contaminants (phenol, 2,4-dichlorophenol, sulfamethoxazole, atrazine and bisphenol A) were efficiently degraded with high kinetic constants of 0.037-0.071 min-1 by the electro-Fenton with Fe-NSC as cathode (-0.6 V vs Ag/AgCl, pH 6). Moreover, the superior performance for electro-Fenton degradation was well maintained in a wide pH range from 3 to 10 even with interference of various inorganic salt ions. It was found that FeN4 sites with pyridinic N coordination were responsible for its good performance for electro-Fenton degradation. Its 1O2 yield was higher than •OH yield, and the contribution of 1O2 was more significant than •OH for pollutant degradation.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaqi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Genwang Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Mahmoud M, Mossad M, Mahanna H. Degradation of levofloxacin using electro coagulation residuals-alginate beads as a novel heterogeneous electro-fenton composite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120972. [PMID: 38678901 DOI: 10.1016/j.jenvman.2024.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The presence of levofloxacin (LEV) in aqueous solutions can pose health risks to humans, have adverse effects on aquatic organisms and ecosystems, and contribute to the development of antibiotic-resistant bacteria. This study aims to investigate the feasibility of using electrocoagulation residuals (ECRs) as a heterogeneous catalyst in the electro-Fenton process for degrading LEV. By combining electrocoagulation residuals with sodium alginate, ECRs-alginate beads were synthesized as a heterogeneous electro-Fenton composite. The response surface method was employed to investigate the optimization and influence of various operating parameters such as the initial concentration of LEV (10-50 mg/L), voltage (15-35 V), pH (3-9), and catalyst dose (1-9 g/L). The successful incorporation of iron and other metals into the ECRs-alginate beads was confirmed by characterization tests such as EDX and FTIR. By conducting a batch reaction under optimal conditions (initial LEV concentration = 20 mg/L, pH = 4.5, voltage = 30V, and catalyst dose = 7 g/L), a remarkable degradation of 99% for LEV was achieved. Additionally, under these optimal conditions, a high removal efficiency of 92.3% for total organic carbon (TOC) could be attained within 120 min and these findings are remarkable compared to previous studies. The results further indicated that the degradation of levofloxacin (LEV) could be accurately quantified by utilizing the first-order kinetic reaction with a 0.03 min-1 rate constant. The synthesized beads offered notable advantages in terms of being eco-friendly, simple to use, highly efficient, and easily recoverable from the liquid medium after use.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed Mossad
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Hani Mahanna
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Yao Y, Yang J, Zhu C, Lu L, Fang Q, Xu C, He Z, Song S, Shen Y. Unveiling the metallic size effect on O2 adsorption and activation for enhanced electro-Fenton degradation of aromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132739. [PMID: 37856960 DOI: 10.1016/j.jhazmat.2023.132739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Metal-atom-modified nitrogen-doped carbon materials (M-N-C) have emerged as promising candidates for electro-Fenton degradation of pollutants. Nonetheless, a comprehensive exploration of size-dependent M-N-C catalysts in the electro-Fenton process remains limited, posing challenges in designing surface-anchored metal species with precise sizes. Herein, a heterogeneous-homogeneous coupled electro-Fenton (HHC-EF) system was designed and various M-N-C catalysts anchored with Co single atoms (CoSA-N-C), Co clusters (CoAC-N-C), and Co nanoparticles (CoNP-N-C) were successfully synthesized and employed in an HHC-EF system. Intriguingly, CoAC-N-C achieved outstanding removal efficiencies of 99.9% for BPA and RhB within 10 and 15 min, respectively, with the fastest reaction kinetics (0.70 min-1 for BPA and 0.34 min-1 for RhB). Electron spin resonance and trapping experiments revealed that·OH played a crucial role in the HHC-EF process. Moreover, experiments and theoretical calculations revealed that the unique metallic size effect facilitate the in-situ electro-generation of H2O2. Specifically, the atomic interaction between neighboring Co atoms in clusters enhanced O2 adsorption and activation by strengthening the Co-N bond and transforming O2 adsorption configuration to the Yeager-type. This study provides valuable insights that could inspire the size-oriented metal-based catalyst design from the perspective of the potential atomic distance effect.
Collapse
Affiliation(s)
- Yanchi Yao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jingyi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Chao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
12
|
Nawaz MI, Yi C, Zafar AM, Yi R, Abbas B, Sulemana H, Wu C. Efficient degradation and mineralization of aniline in aqueous solution by new dielectric barrier discharge non-thermal plasma. ENVIRONMENTAL RESEARCH 2023; 237:117015. [PMID: 37648191 DOI: 10.1016/j.envres.2023.117015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Aniline is a priority pollutant that is unfavorable to the environment and human health due to its carcinogenic and mutagenic nature. The performance of the dielectric barrier discharge reactor was examined based on the aniline degradation efficiency. Different parameters were studied and optimized to treat various wastewater conditions. Role of active species for aniline degradation was investigated by the addition of inhibitors and promoters. The optimum conditions were 20 mg/L initial concentration, 1.8 kV applied voltage, 4 L/min gas flow rate and a pH of 8.82. It was observed that 87% of aniline was degraded in 60 min of dielectric barrier discharge treatment at optimum conditions. UV-Vis spectra showed gradual increase in the treatment efficiency of aniline with the propagation of treatment time. Mineralization of AN was confirmed by TOC measurement and a decrease in pH during the process. To elicit the aniline degradation route, HPLC and LC-MS techniques were used to detect the intermediates and byproducts. It was identified that aniline degraded into different organic byproducts and was dissociated into carbon dioxide and water. Comparison of the current system with existing advanced oxidation processes showed that DBD has a remarkable potential for the elimination of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Imran Nawaz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Chengwu Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Abdul Mannan Zafar
- Civil and Environmental Engineering Department, United Arab Emirates University, AlAin, 15551, United Arab Emirates; Biotechnology Research Center, Technology Innovation Institute, Masdar, 9639, Abu Dhabi, United Arab Emirates.
| | - Rongjie Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Babar Abbas
- Department of Environmental Engineering, University of Engineering and Technology, Taxila, 47080, Pakistan.
| | - Husseini Sulemana
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Chundu Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Fdez-Sanromán A, Pazos M, Sanromán MA, Rosales E. Heterogeneous electro-Fenton system using Fe-MOF as catalyst and electrocatalyst for degradation of pharmaceuticals. CHEMOSPHERE 2023; 340:139942. [PMID: 37634590 DOI: 10.1016/j.chemosphere.2023.139942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
In recent years, heterogeneous electro-Fenton processes have gained considerable attention as an alternative to homogeneous processes. In this context, the aim of this study is the use of a commercial iron metal-organic framework (Fe-MOF), Basolite® F-300, as a base material for the design of a heterogeneous electro-Fenton treatment system for the removal of antipyrine. Initially, the catalyst was applied as powder in aqueous solution and three key parameters of the electro-Fenton process (pH, Fe-MOF concentration and current density) were evaluated and optimized by a Central Composite Design Face Centred (CCD-FC) using antipyrine removal and energy consumption as response functions. Near complete antipyrine removal (94%) was achieved under optimal conditions: pH 3, Fe-MOF 157.78 mg/L and current density 6.67 mA/cm2, obtaining an energy consumption of 0.29 W·h per mg of antipyrine removed. Later, two electrocatalysts (Fe-MOF functionalized cathodes), prepared by different Fe-MOF immobilisation approaches (composite of carbon black/polytetrafluoroethylene or by electrospinning on Ni foam), were synthesized. Their characterisation showed notable Fe-MOF incorporation into the material and favourable properties as electrocatalysts. Both Fe-MOF functionalized cathodes were evaluated in the removal of antipyrine at different pH (acidic and natural) and current density (27.78 and 55.56 mA/cm2), achieving in the best conditions removal levels around 80% in 1 h without any operational problems. In addition, several intermediates generated during the treatment were identified and their toxicity estimated. According to the obtained results, the degradation compounds have less toxicity than the parent compounds, confirming the effectiveness of the treatment.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - M Angeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
14
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst. CHEMOSPHERE 2023; 341:140129. [PMID: 37690550 DOI: 10.1016/j.chemosphere.2023.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
15
|
Liu H, Li X, Zhang X, Coulon F, Wang C. Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation. CHEMOSPHERE 2023; 337:139404. [PMID: 37399998 DOI: 10.1016/j.chemosphere.2023.139404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Ghaffarian Khorram A, Fallah N, Nasernejad B, Afsham N, Esmaelzadeh M, Vatanpour V. Electrochemical-based processes for produced water and oily wastewater treatment: A review. CHEMOSPHERE 2023; 338:139565. [PMID: 37482313 DOI: 10.1016/j.chemosphere.2023.139565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The greatest volume of by-products produced in oil and gas recovery operations is referred to as produced water and increasing environmental concerns and strict legislations on discharging it into the environment cause to more attention for focusing on degradation methods for treatment of produced water especially electrochemical technologies. This article provides an overview of electrochemical technologies for treating oily wastewater and produced water, including: electro-coagulation, electro-Fenton, electrochemical oxidation and electrochemical membrane reactor as a single stage and combination of these technologies as multi-stage treatment process. Many researchers have carried out experiments to examine the impact of various factors such as material (i.e, electrode material) and operational conditions (i.e., potential, current density, pH, electrode distance, and other factors) for organic elimination to obtain the high efficiency. Results of each method are reviewed and discussed according to these studies, comprehensively. Furthermore, several challenges need to be overcome and perspectives for future study are proposed for each method.
Collapse
Affiliation(s)
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahdi Esmaelzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey.
| |
Collapse
|
17
|
Muzenda C, Nkwachukwu OV, Jayeola KD, Zinyemba O, Zhou M, Arotiba OA. Heterogenous electro-Fenton degradation of sulfamethoxazole on a polyethylene glycol-coated magnetite nanoparticles catalyst. CHEMOSPHERE 2023; 339:139698. [PMID: 37532200 DOI: 10.1016/j.chemosphere.2023.139698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
We report the preparation and application of poly (ethylene) glycol (PEG) coated magnetite nanoparticles (MNPs) catalyst for the heterogeneous electro-Fenton (HEF) degradation of sulfamethoxazole in real wastewater PEG-coated MNPs of four MNP:PEG ratios were synthesised using the co-precipitation method. The synthesised MNP were characterised using FTIR, XRD, EDX, TEM, and CHN elemental analysis. It was observed that the coating of MNP with PEG influences the nanoparticle size, agglomeration tendencies and catalytic efficiency of MNPs properties in the HEF degradation process. A 1:1 optimal MNP:PEG catalyst yielded 91% sulfamethoxazole degradation and 48% total organic carbon removal in 60 min, which is an improvement of 11% over degradation with the uncoated MNP. The PEG-coated MNP showed higher stability in 10 consecutive reaction cycles, reduced leaching, and improved performance at a lower dosage and broader pH range than the uncoated MNPs. These results show that coating MNP with PEG enhances HEF catalytic performance in the degradation of sulfamethoxazole in wastewater.
Collapse
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Oluchi V Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Kehinde D Jayeola
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Orpah Zinyemba
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
18
|
Chi C, Zhou X, Wang Y, Gao X, Bai J, Guo Y, Ni J. Treatment of coking wastewater using a needle coke electro-Fenton cathode: optimizing of COD, NH 4+-N, and TOC removal and characterization of pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:106-122. [PMID: 37452537 PMCID: wst_2023_172 DOI: 10.2166/wst.2023.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Coking wastewater is a typical organic refractory wastewater characterized by high chemical oxygen demand (COD), NH4+-N, and total organic carbon (TOC). Herein, coking wastewater was treated using a heterogeneous electro-Fenton (EF) system comprising a novel iron-loaded needle coke composite cathode (Fe-NCCC) and a dimensionally stable anode. The response surface methodology was used to optimize the reaction conditions. The predicted and actual COD removal rates were 92.13 and 89.96% under optimum conditions of an applied voltage of 4.92 V, an electrode spacing of 2.29 cm, and an initial pH of 3.01. The optimized removal rate of NH4+-N and TOC was 84.12 and 73.44%, respectively. The color of coking wastewater decreased from 250-fold to colorless, and the BOD5/COD increased from 0.126 to 0.34. Gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy show that macromolecular heterocyclic organic compounds decomposed into straight-chain small molecules and even completely mineralized. The energy consumption of the EF process was 23.5 RMB Yuan per cubic meter of coking wastewater. The EF system comprising the Fe-NCCC can effectively remove pollutants from coking wastewater, has low electricity consumption, and can simultaneously reduce various pollution indicators with potential applications in the treatment of high-concentration and difficult-to-degrade organic wastewater.
Collapse
Affiliation(s)
- Chen Chi
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China E-mail:
| | - Xinyu Zhou
- Ansteel Mining Engineering Corporation, Anshan 114004, China
| | - Yanqiu Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Engineering Research Center of Advanced Coal & Coking Technology and Efficient Utilization of Coal Resources, The Education Department of Liaoning Province, Anshan 114051, China
| | - Xinyu Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Jinfeng Bai
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Engineering Research Center of Advanced Coal & Coking Technology and Efficient Utilization of Coal Resources, The Education Department of Liaoning Province, Anshan 114051, China
| | - Yuting Guo
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Jianwen Ni
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
19
|
Casado J. Minerals as catalysts of heterogeneous Electro-Fenton and derived processes for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27776-7. [PMID: 37266777 DOI: 10.1007/s11356-023-27776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton's reagent, which generates highly reactive oxygen species, are efficient in removing biorefractory organic pollutants from wastewater. However, Fenton's reagent has drawbacks such as the generation of iron sludge, high consumption of H2O2, and the need for pH control. To address these issues, Electro-Fenton (EF) and heterogeneous Electro-Fenton (HEF) have been developed. HEF, which uses solid catalysts, has gained increasing attention, and this review focuses on the use of mineral catalysts in HEF and derived processes. The reviewed studies highlight the advantages of using mineral catalysts, such as efficiency, stability, affordability, and environmental friendliness. However, obstacles to overcome include the agglomeration of unsupported nanoparticles and the complex preparation techniques and poor stability of some catalyst-containing cathodes. The review also discusses the optimal pH range and dosage of the heterogeneous catalysts and compares the performance of iron sulfides versus iron oxides. Although natural minerals appear to be the best choice for effluents at pH>4, no scale-up reports have been found. The need for further development in this field and the importance of considering the environmental impact of trace toxic metals or catalytic nanoparticles in the treated water on the receiving ecosystem is emphasized. Finally, the article acknowledges the high energy consumption of HEF processes at the lab scale and calls for their performance development to achieve environmentally friendly and cost-effective results using real wastewaters on a pilot scale.
Collapse
Affiliation(s)
- Juan Casado
- Facultad de Ciencias y Biociencias, Universidad Autónoma de Barcelona, Campus UAB s/n, 08038, Bellaterra, Barcelona, Spain.
| |
Collapse
|
20
|
Cruz Del Álamo A, Puga A, Pariente MI, Rosales E, Molina R, Pazos M, Martínez F, Sanromán MA. Activity and stability of bifunctional perovskite/carbon-based electrodes for the removal of antipyrine by electro-Fenton process. CHEMOSPHERE 2023; 334:138858. [PMID: 37178935 DOI: 10.1016/j.chemosphere.2023.138858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Bifunctional perovskite/carbon-black(CB)/polytetrafluoroethylene(PTFE) electrodes for electro-generation and catalytic decomposition of hydrogen peroxide to oxidizing hydroxyl radicals have been fabricated. These electrodes were tested for electroFenton (EF) removal of antipyrine (ANT) as a model antipyretic and analgesic drug. The influence of the binder loading (20 and 40 wt % PTFE) and type of solvent (1,3-dipropanediol and water) was studied for the preparation of CB/PTFE electrodes. The electrode prepared with 20 wt % PTFE and water exhibited a low impedance and remarkable H2O2 electro-generation (about 1 g/L after 240 min, a production rate of ca. 6.5 mg/h·cm2). The incorporation of perovskite on CB/PTFE electrodes was also studied following two different methods: i) direct deposition on the CB/PTFE electrode surface and ii) addition in the own CB/PTFE/water paste used for the fabrication. Physicochemical and electrochemical characterization techniques were used for the electrode's characterization. The dispersion of perovskite particles in the own electrode matrix (method ii) exhibited a higher EF performance than the immobilisation onto the electrode surface (method i). EF experiments at 40 mA/cm2 and pH 7 (non-acidified conditions) showed ANT and TOC removals of 30% and 17%, respectively. The increase of current intensity up to 120 mA/cm2 achieved the complete removal of ANT and 92% of TOC mineralisation in 240 min. The bifunctional electrode also proved high stability and durability after 15 h of operation.
Collapse
Affiliation(s)
- A Cruz Del Álamo
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - A Puga
- CINTECX, Universidad de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - M I Pariente
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - E Rosales
- CINTECX, Universidad de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - M Pazos
- CINTECX, Universidad de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain.
| | - M A Sanromán
- CINTECX, Universidad de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, Vigo, 36310, Spain.
| |
Collapse
|
21
|
Chen Z, Zhang Y, Cao T, Zhang R, Yao K. Highly applicable dual-cathode electro-Fenton system with self-adjusting pH and ferrous species. ENVIRONMENTAL RESEARCH 2023; 231:116099. [PMID: 37172680 DOI: 10.1016/j.envres.2023.116099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Due to the high dependence on the pH of influent water and the level of ferrous species, the applicability of the electro-Fenton (EF) system is poor. A highly applicable dual-cathode (DC) EF system with self-adjusting pH and ferrous species is proposed: gas diffusion electrode (GDE) for generation H2O2 and Fe/S doped multi-walled carbon nanotubes (Fe/S-MWCNT) modification active cathode (AC) for adjusting pH and iron species. The strong synergistic enhancement effect between two cathodes (synergy factor up to 90.3%) improves the catalytic activity of this composite system about 12.4 times higher than that of cathode alone. Impressively, AC has the ability of self-regulate to shift towards the optimal Fenton pH (around 3.0) without adding reagents. Even pH can be adjusted from 9.0 to 3.4 within 60 min. This characteristic gives the system a wide range of pH applications, while avoiding the disadvantage of the high cost of traditional EF in pre-acidification. Furthermore, DC has a high and stable ferrous species supply, and the iron leaching amount is about twice less than that of heterogeneous EF system. Long-term stability of the DC system and its easy activity regeneration exhibit the potential of environmental remediation in industrial application.
Collapse
Affiliation(s)
- Zhuang Chen
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Ting Cao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ranran Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Kaiwen Yao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
22
|
Zeng G, Wang J, Dai M, Meng Y, Luo H, Zhou Q, Lin L, Zang K, Meng Z, Pan X. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161826. [PMID: 36708820 DOI: 10.1016/j.scitotenv.2023.161826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Natural iron-bearing minerals are widely distributed in the environment and show prominent catalytic performance in pollutant removal. This work provides an overview of groundwater restoration technologies utilizing heterogeneous electro-Fenton (HEF) techniques with the aid of different iron forms as catalysts. In particular, applications of natural iron-bearing minerals in groundwater in the HEF system have been thoroughly summarized from either the view of organic pollutant removal or degradation. Based on the analysis of the catalytic mechanism in the HEF process by pyrite (FeS2), goethite (α-FeOOH), and magnetite (Fe3O4) and the geochemistry analysis of these natural iron-bearing minerals in groundwater, the feasibility and challenges of HEF for organic degradation by using typical iron minerals in groundwater have been discussed, and natural factors affecting the HEF process have been analyzed so that appropriate in situ remedial measures can be applied to contaminated groundwater.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ji Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutong Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academic of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
23
|
Sampaio EF, Soares O, Pereira MR, Rodrigues CS, Madeira LM. Fe-containing carbon-coated monoliths prepared by CVD in gaseous toluene abatement – parametric analysis of the Fenton process. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
24
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
25
|
Puga A, Rosales E, Pazos M, Sanromán MA. Application of Deep Eutectic Solvents (DES) for the Synthesis of Iron Heterogeneous Catalyst: Application to Sulfamethoxazole Degradation by Advanced Oxidation Processes. Catalysts 2023. [DOI: 10.3390/catal13040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The development of novel approaches to the remotion of pharmaceuticals in wastewater is a subject of concern due to their effect on living beings and the environment. Advanced oxidation processes and the use of relevant catalysts are feasible treatment alternatives that require further development. The development of suitable heterogeneous catalysts is a necessity. This work proposes the synthesis of an iron catalyst in a deep eutectic solvent (Fe-DES) composed of choline chloride and citric acid, which was physically and chemically characterized using SEM-EDS and TEM, FTIR, RAMAN, XRD and XPS. The characterisation confirmed the presence of iron in the form of hematite. Fe-DES was shown to be a multipurpose catalyst that can be applied in the removal of sulfamethoxazole as a reagent in the Fenton and electro-Fenton processes and as an activator of peroxymonosulfate (PMS) processes. After testing the catalyst with the aforementioned techniques, the best result was achieved by combining these processes in an electro-PMS, with great efficiency achieved by dual activation of the PMS with the catalyst and electric field, attaining total elimination at natural pH in 90 min. Furthermore, the degradation was confirmed by the detection of short-chain carboxylic acids (oxalic, succinic, and acetic) and reduction in toxicity values. These results confirm the suitability of Fe-DES to degrade high-priority pharmaceutical compounds.
Collapse
|
26
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Chang C, Gupta P. Exploring the Oxidative Effects of the Microbial Electro-Fenton Process on the Depolymerization of Lignin Extracted from Rice Straw in a Bio-Electrochemical System Coupled with Wastewater Treatment. Biomacromolecules 2023; 24:1220-1232. [PMID: 36800267 DOI: 10.1021/acs.biomac.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Lignin is a potential renewable feedstock to produce value-added compounds, but the overwhelming bulk of it is either burned for energy or discarded as waste. This paper addressed two critical issues: waste-to-value generation and management by demonstrating the in situ depolymerization of lignin extracted from waste rice straw utilizing the microbial electro-Fenton process in a microbial peroxide-producing cell (MPPC), a type of bio-electrochemical cell, for value addition while synchronously treating wastewater. The MPPC electrochemical voltage yields of 0.171 ± 0.05-0.497 ± 0.2 V produced 9 ± 0.43-34 ± 0.11 mM of H2O2, which was utilized to depolymerize lignin at various concentrations. Interestingly, a direct correlation was observed between lignin depolymerization and H2O2 concentration, while Fourier-transform infrared spectroscopy data revealed a constant disruption of the lignin structure accurately in the wavenumber region of 1000-1750 cm-1 irrespective of the H2O2 concentration. Carboxylic acid derivatives, benzopyran, hexanoic acid, and other valuable compounds were detected in the LC QTOF MS data from the depolymerized lignin mixture. Remarkably, SEM analysis demonstrated morphological changes in depolymerized lignin induced by the oxidative effects of hydroxyl radicals. Biochemical oxygen demand and chemical oxygen demand removal was 60 ± 3-85 ± 1% in anodic wastewater treatment. This research provides a sustainable and efficient technique for lignin valorization and wastewater treatment.
Collapse
Affiliation(s)
- Changsomba Chang
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
28
|
Chen Z, Zhang Y, Gu W, Yang M, Yao K, Cao T, Li S. Investigating the electrochemical advanced oxidation mechanism of N-doped graphene aerogel: Molecular dynamics simulation combined with DFT method. ENVIRONMENTAL RESEARCH 2023; 220:115198. [PMID: 36592814 DOI: 10.1016/j.envres.2022.115198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen-doped graphene as a perfectly-efficient and environmentally compatible electrocatalyst won widespread attention in electrochemical advanced oxidation processes (EAOP). However, the relationship between surface structure regulation and activity of catalysts is still lacking in systematic scientific guidance. Herein, nitrogen-doped graphene aerogel (NGA) was conveniently prepared through hydrothermal treatment, and then utilized to fabricate the gas diffusion electrode (GDE) as the cathode for tetracycline (TC) removal. High free radical yield (81.2 μM) and fast reaction rate (0.1469 min-1) were found in NGA system. The molecular dynamics simulation (MD) results showed that the interaction energy of NGA was greater than the raw graphene aerogel (GA). The adsorption activation of H2O2 and the degradation of TC occurred in the first adsorption layer of catalysts, and both processes turned more orderly after nitrogen doping. Moreover, the van der Waals interaction was stronger than the electrostatic interaction. Density function theory (DFT) revealed that the adsorption energy of H2O2 at graphitic N, pyridinic N, and pyrrolic N sites was -0.03 eV, -0.39 eV, and -0.30 eV, respectively. Pyridinic N sites were inferred as the main functional regions of in-situ activation •OH, there were more likely to occur ectopic reaction in pyrrolic N, and graphitic N were responsible for improving H2O2 production. By revealing the microstructure and activation characteristics of NGA, an experiment-simulation complementary strategy is provided in the EAOP to discover or to optimize new catalysts.
Collapse
Affiliation(s)
- Zhuang Chen
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Wenwen Gu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Mingwang Yang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Kaiwen Yao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ting Cao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shuai Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
29
|
Shokri A, Nasernejad B, Sanavi Fard M. Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment. WATER, AIR, AND SOIL POLLUTION 2023; 234:153. [PMID: 36844633 PMCID: PMC9942065 DOI: 10.1007/s11270-023-06139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023]
Abstract
The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H2O2 activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. Graphical Abstract
Collapse
Affiliation(s)
- Aref Shokri
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
- Jundi-Shapur Research Institute, Jundishapur University of Technology, Dezful, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
30
|
Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39431-39450. [PMID: 36763272 DOI: 10.1007/s11356-023-25726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Collapse
|
31
|
Compton P, Dehkordi NR, Sarrouf S, Ehsan MF, Alshawabkeh AN. In-situ Electrochemical Synthesis of H 2O 2 for p-nitrophenol Degradation Utilizing a Flow-through Three-dimensional Activated Carbon Cathode with Regeneration Capabilities. Electrochim Acta 2023; 441:141798. [PMID: 36874445 PMCID: PMC9983606 DOI: 10.1016/j.electacta.2022.141798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The growing ubiquity of recalcitrant organic contaminants in the aqueous environment poses risks to effective and efficient water treatment and reuse. A novel three-dimensional (3D) electrochemical flow-through reactor employing activated carbon (AC) encased in a stainless-steel (SS) mesh as a cathode is proposed for the removal and degradation of a model recalcitrant contaminant p-nitrophenol (PNP), a toxic compound that is not easily biodegradable or naturally photolyzed, can accumulate and lead to adverse environmental health outcomes, and is one of the more frequently detected pollutants in the environment. As a stable 3D electrode, granular AC supported by a SS mesh frame as a cathode is hypothesized to 1) electrogenerate H2O2 via a 2-electron oxygen reduction reaction on the AC surface, 2) initiate decomposition of this electrogenerated H2O2 to form hydroxyl radicals on catalytic sites of the AC surface 3) remove PNP molecules from the waste stream via adsorption, and 4) co-locate the PNP contaminant on the carbon surface to allow for oxidation by formed hydroxyl radicals. Additionally, this design is utilized to electrochemically regenerate the AC within the cathode that is significantly saturated with PNP to allow for environmentally friendly and economic reuse of this material. Under flow conditions with optimized parameters, the 3D AC electrode is nearly 20% more effective than traditional adsorption in removing PNP. 30 grams of AC within the 3D electrode can remove 100% of the PNP compound and 92% of TOC under flow. The carbon within the 3D cathode can be electrochemically regenerated in the proposed flow system and design thereby increasing the adsorptive capacity by 60%. Moreover, in combination with continuous electrochemical treatment, the total PNP removal is enhanced by 115% over adsorption. It is anticipated this platform holds great promises to eliminate analogous contaminants as well as mixtures.
Collapse
Affiliation(s)
- Patrick Compton
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Nazli Rafei Dehkordi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Stephanie Sarrouf
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Wang H, Wang C, Guo F, Yu J, Zhang Y, Harder M, Ntaikou I, Antonopoulou G, Lyberatos G, Yan Q. Enhancement of biosynthesis of polyhydroxyalkanoates (PHA) from Taihu blue algae by adding by-product acetic acid. J Biotechnol 2023; 363:32-39. [PMID: 36610479 DOI: 10.1016/j.jbiotec.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
As an easily obtained organic waste, by-product acetic acid could be an appropriate co-substrate with blue algae wastes (increase C/N ratio of substrates) for co-fermentation of PHA production. However, there are still acrylic acid and other chemicals in by-product acetic acid, which could cause severe inhibition for fermenting microorganisms during PHA production process. The current study represented that alkali pretreatment (pH level of 12) is a more favorable method compared with thermal pretreatment (80 ℃ for 30 min) for breaking cell walls of blue algae. It seemed that there was no synergistic effect of the combination of thermal and alkali pretreatment methods (temperature of 80 ℃ and pH level of 12). Optimal parameters during electro-fenton process for removal of inhibitors in by-product acetic acid were under current of 0.5 A, pH level of 3 and reaction time of 120 min. Both the highest dry weight of PHA and PHA concentration were achieved by applying blue algae and by-product acetic acid (after pretreatment) as co-substrates (mixed ratio of 3:1, stirring speed of 200 r/min, 24 h), indicating that using by-product acetic acid (after pretreatment) as co-substrate could increase C/N ratio and promote PHA production successfully. The current study could offer new insights for improving PHA production by co-fermentation.
Collapse
Affiliation(s)
- Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoyun Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fang Guo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Yu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 2105 Songhu Road, Yangpu District, Shanghai, China
| | - Marie Harder
- Department of Environmental Science and Engineering, Fudan University, 2105 Songhu Road, Yangpu District, Shanghai, China; Cockcroft Building, University of Brighton, Lewes Road, BN2 4GJ, United Kingdom
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece
| | | | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, Athens, GR 15780, Greece
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
33
|
Xue C, Cao Z, Tong X, Yang P, Li S, Chen X, Liu D, Huang W. Investigation of CuCoFe-LDH as an efficient and stable catalyst for the degradation of acetaminophen in heterogeneous electro-Fenton system: Key operating parameters, mechanisms and pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116787. [PMID: 36442449 DOI: 10.1016/j.jenvman.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals, as anthropogenic pollutants in a wide range of water sources, generally require specific treatment methods for degradation. A trimetallic layered double hydroxide (CuCoFe-LDH) was successfully fabricated by coprecipitation and applied as a novel heterogeneous electro-Fenton (EF) catalyst for the degradation of acetaminophen (ACT) from aqueous environments. The EF experiments showed that the CuCoFe-LDH/EF process achieved 100% of ACT degradation efficiency within 60 min at pH = 5, catalyst dosage of 0.50 g/L, current density of 10 mA/cm2 and initial ACT concentration of 20 mg/L. An impressive (>80%) mineralization of ACT was obtained over a wide pH range (pH 3-9) after 180 min. Meanwhile, the role of ·OH and O2.- were certified by radical quenching experiments and electron paramagnetic resonance (EPR) analysis. Through mechanism exploration, the coexistence of Cu and Co on Fe-based LDHs can accelerate the interfacial electron transfer and promote the formation of the reactive oxygen species (ROS), thus facilitating the EF process. Furthermore, the degradation by-products and possible degradation pathways of ACT in the CuCoFe-LDH/EF process were proposed. The reusability test and the treatment of various typical organic pollutants experiments indicated that the CuCoFe-LDH/EF process has excellent stability and broad application prospects. This work provides a valuable reference for the treatment of pharmaceuticals by the heterogeneous EF process in a wide range of pH.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenhua Cao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoqin Tong
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peizhen Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Songrong Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xi Chen
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Mukhopadhyay D, Chang C, Kulsreshtha M, Gupta P. Bio-separation of value-added products from Kraft lignin: A promising two-stage lignin biorefinery via microbial electrochemical technology. Int J Biol Macromol 2023; 227:307-315. [PMID: 36509205 DOI: 10.1016/j.ijbiomac.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The most ubiquitous aromatic biopolymer in nature, lignin offers a promising foundation for the development of bio-based chemicals with wide-ranging industrial uses attributable to its aromatic structure. Lignin must first be depolymerized into smaller oligomeric and monomeric units at the initial stage of lignin bioconversion, followed by separation to recover valuable products. This study demonstrates an integrative biorefinery idea based on in-situ depolymerization of the lignin via microbial electro-Fenton reaction in a microbial peroxide-producing cell and recovery of the identified products i.e., phenolic or aromatic monomers by one step high throughput chromatography. The yield percentage of acetovanillone, ethylvanillin, and ferulic acid recovered from the depolymerized lignin using the integrative biorefinery strategy were 2.1 %, 9.1 %, and 9.04 %, respectively. These products have diverse industrial usage and can be employed as platform chemicals. The development of a novel system for efficient simultaneous lignin depolymerization and subsequent quality separation are demonstrated in this study.
Collapse
Affiliation(s)
- Dhruva Mukhopadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| | - Changsomba Chang
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| | - Mohit Kulsreshtha
- Department of Chemistry, Indian Institute of Technology, Roorkee, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
35
|
Paquini LD, Marconsini LT, Profeti LPR, Campos OS, Profeti D, Ribeiro J. An overview of electrochemical advanced oxidation processes applied for the removal of azo-dyes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Rostamizadeh M, Rahmani MS, Galli F, Gharibian S. Fast and Efficient Dye Elimination Over One-Pot Synthesized and Si-Rich [Fe]-ZSM-5 Catalyst in Electro-Fenton Process. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Shi K, Wang Y, Xu A, Zhu H, Gu L, Liu X, Shen J, Han W, Wei K. Integrated electro-Fenton system based on embedded U-tube GDE for efficient degradation of ibuprofen. CHEMOSPHERE 2023; 311:137196. [PMID: 36370765 DOI: 10.1016/j.chemosphere.2022.137196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ibuprofen (IBP) is a carcinogenic non-steroidal anti-inflammatory drug (NSAID). It is of certain hazard to aquatic animals and may cause potential harm to human health. As traditional methods cannot effectively remove such a pollutant, many advanced oxidation processes (AOPs) have been developed for its degradation. The electro-Fenton process has the advantages of strong oxidative ability, a synergistic effect of various degradation processes, and a wide application range. This study developed a high-performance gas diffusion electrode (GDE) for electrochemical hydrogen peroxide (H2O2) production. The optimum system performance was found at the current density of 10 mA cm-2, pH of 7.0, and air flow rate at 0.6 L min-1, where the accumulation of H2O2 could reach as high as 769.82 mg L-1. The computational fluid dynamics (CFD) simulation results revealed a fast mass-transfer property in this electro-Fenton system with U-tube GDEs, which resulted in a deep-level degradation (∼100%) of the pollutant (IBP) and a low-concentration degradation of 10 mg L-1 within a 120-min reaction period. The high-performance liquid chromatography-mass spectrometry (LC-MS) studies demonstrated that the hydroxyl radicals were the primary active species in the electro-Fenton system and that the degradation intermediates of IBP were mainly 1-(4-isobutylphenyl) ethanol and 2-hydroxy-2-(4-isobutyl phenyl) propanoic acid through four probable electro-Fenton degradation pathways. This report provides a facile and efficient way to construct a high-performance electro-Fenton reactor, which could be effectively used in advanced oxidation processes (AOPs) to remove emerging contaminants in wastewater and natural water.
Collapse
Affiliation(s)
- Kaiqiang Shi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Anlin Xu
- Nanjing Tech University, School of Environmental Science and Engineering, Nanjing 211816, Jiangsu, China.
| | - Hongwei Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Liankai Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Xiaodong Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
38
|
Deng F, Jiang J, Sirés I. State-of-the-art review and bibliometric analysis on electro-Fenton process. CARBON LETTERS 2023; 33. [PMCID: PMC9594000 DOI: 10.1007/s42823-022-00420-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/04/2023]
Abstract
The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 People’s Republic of China
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Ignasi Sirés
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Fast and Complete Destruction of the Anti-Cancer Drug Cytarabine from Water by Electrocatalytic Oxidation Using Electro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added to the solution as catalyst and it was electrochemically regenerated in the process. Complete degradation of 0.1 mM (24.3 mg L−1) CYT was achieved quickly in 15 min at 300 mA constant current electrolysis by hydroxyl radicals (●OH) electrocatalytically generated in the system. Almost complete mineralization (91.14% TOC removal) of the solution was obtained after 4 h of treatment. The mineralization current efficiency (MCE) and energy consumption (EC) during the mineralization process were evaluated. The absolute (second order) rate constant for the hydroxylation reaction of CYT by hydroxyl radicals was assessed by applying the competition kinetics method and found to be 5.35 × 109 M−1 s−1. The formation and evolution of oxidation reaction intermediates, short-chain carboxylic acids and inorganic ions were identified by gas chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography analyses, respectively. Based on the identified intermediate and end-products, a plausible mineralization pathway for the oxidation of CYT by hydroxyl radicals is proposed.
Collapse
|
40
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Tang L, Li M, Jiang J, Ge Y, Tang T, Xue S. Regulating the Anodic Catalytic Selectivity in Electro-Fenton Process for Enhanced Pollutant Removal. ACS ES&T ENGINEERING 2022; 2:2002-2013. [DOI: 10.1021/acsestengg.2c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Mengli Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Yun Ge
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Tian Tang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
42
|
Catalytic performances and leaching behavior of typical natural iron minerals as electro-Fenton catalysts for mineralization of imidacloprid. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Deriving an ɑ-Fe2O3/g-C3N4 nanocomposite from a naturally hematite-rich soil, for dual photocatalytic and photo-Fenton degradation of Acetaminophen under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Integrated Electro-photo-Fenton process and visible light-driven TiO2/rGO/Fe2O3 photocatalyst based on graphite cathode in the presence of iron anode for Metronidazole degradation. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Sampaio EFS, Guimarães V, Soares OSGP, Pereira MFR, Rodrigues CSD, Madeira LM. Degradation of Toluene from Gas Streams by Heterogeneous Fenton Oxidation in a Slurry Bubble Reactor with Activated Carbon-Based Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3274. [PMID: 36234402 PMCID: PMC9565738 DOI: 10.3390/nano12193274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
A novel approach for the treatment of volatile organic compounds from gaseous streams was developed. In order to accomplish this, a semi-batch bubble reactor was used, aiming to assess the toluene (selected as model compound) degradation from gaseous streams via heterogeneous Fenton oxidation. Activated carbon-based catalysts-metal-free or iron-impregnated-with different textural and chemical surface properties were used for the first time as catalysts, in order to degrade gaseous toluene using such technology. Complementary characterization techniques, such as nitrogen adsorption at -196 °C, elemental analysis, pH at the point of zero charge (pHPZC), inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM), were used. The materials' chemical surface properties, particularly the presence of N-surface groups, were herein found to play an important role in toluene adsorption and catalytic performance. The maximum amount of toluene transferred, 6.39 × 10-3 mol, was achieved using melamine-doped activated carbon (N-doped material) that was impregnated with iron (sample herein called ACM-Fe). This iron-based catalyst was found to be quite stable during three reutilization cycles.
Collapse
Affiliation(s)
- Emanuel F. S. Sampaio
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - V. Guimarães
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - O. S. G. P. Soares
- LSRE–LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Fernando R. Pereira
- LSRE–LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S. D. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luis M. Madeira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
46
|
Li Y, Liu Y, Zhang X, Tian K, Tan D, Song X, Wang P, Jiang Q, Lu J. Electrochemical Reduction and Oxidation of Chlorinated Aromatic Compounds Enhanced by the Fe-ZSM-5 Catalyst: Kinetics and Mechanisms. ACS OMEGA 2022; 7:33500-33510. [PMID: 36157725 PMCID: PMC9494633 DOI: 10.1021/acsomega.2c04458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Devising cost-effective electrochemical catalyst system for the efficient degradation of chlorinated aromatic compounds is urgently needed for environmental pollution control. Herein, a Fe-ZSM-5 zeolite was used as a suspended catalyst to facilitate the degradation of lindane as a model chlorinated pesticide in an electrochemical system consisting of the commercial DSA (Ti/RuO2-IrO2) anode and graphite cathode. It was found that the Fe-ZSM-5 zeolite greatly accelerated the degradation of lindane, with the degradation rate constant more than 8 times higher than that without Fe-ZSM-5. In addition, the Fe-ZSM-5 zeolite widened the working pH range from 3 to 11, while efficient degradation of lindane in the absence of Fe-ZSM-5 was only obtained at pH ≤ 5. The degradation of lindane was primarily due to reductive dechlorination mediated by atomic H* followed by •OH oxidation. Fe-ZSM-5 zeolite could enrich lindane, H*, and •OH on its surface, thus provided a suitable local environment for lindane degradation. The Fe-ZSM-5 zeolite exhibited high stability and reusability, and reduced the energy consumption. This research provides a potential reduction-oxidation strategy for removing organochlorine compounds through a cost-efficient Fe-ZSM-5 catalytic electrochemical system.
Collapse
Affiliation(s)
- Yuexuan Li
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Yun Liu
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Xuan Zhang
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Kun Tian
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Ding Tan
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaosan Song
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Ping Wang
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Qian Jiang
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junhe Lu
- College
of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Chi C, Zhou X, Wang Y, Zhang H, Meng G, Hu Y, Bai Z. Preparation of needle coke composite cathode and its treatment of RhB wastewater. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Salazar R, Campos S, Martínez J, Luna F, Thiam A, Aranda M, Calzadilla W, Miralles-Cuevas S, Cabrera-Reina A. New development of a solar electrochemical raceway pond reactor for industrial wastewater treatment. ENVIRONMENTAL RESEARCH 2022; 212:113553. [PMID: 35661730 DOI: 10.1016/j.envres.2022.113553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, a solar electrochemical-raceway pond reactor (SEC-RPR) is used to treat textile industrial wastewater by solar photoelectron-Fenton (SPEF) at pilot plant scale for the first time. The SEC-RPR is composed of an electrochemical filter press-cell coupled to RPR, where H2O2 is electro-generated. A complete study about experimental variables such as current, catalyst concentration, pollutant load or liquid depth is conducted based on methyl orange removal, mineralization and decolorization. Validation of the SPEF process using SEC-RPR reached more than 80% of mineralization, as well as the complete decolorization of the solution. The good performance of the SPEF treatment in the new SEC-RPR led to quick degradation kinetics, mainly due to the synergetic action of solar radiation and good distribution of H2O2 electrogenerated in the photoreactor. 100% Methyl Orange degradation was achieved after 150, 60, 45, 30 and 20 min of reaction time applying current density equal to 5, 10, 20, 40 and 60 mA cm-2, respectively. However, the increase of current density decreased the mineralization current efficiency. Up to 10 aromatics intermediates and 5 short-chain carboxylic acids were identified by LC-MS and HPLC analysis and a reaction pathway for MO mineralization by SPEF is proposed. This study represents an essential preliminary step towards the development of the first SEC-RPR at demo scale.
Collapse
Affiliation(s)
- Ricardo Salazar
- Laboratory of Environmental Electrochemistry, LEQMA, Department of Chemical Materials, University of Santiago of Chile, USACH, Av. Libertador Bernardo O´Higgins, 3363, Estación Central, Santiago, Chile.
| | - Sebastián Campos
- Laboratory of Environmental Electrochemistry, LEQMA, Department of Chemical Materials, University of Santiago of Chile, USACH, Av. Libertador Bernardo O´Higgins, 3363, Estación Central, Santiago, Chile
| | - Javier Martínez
- Institutional Program for the Promotion of Research, Development and Innovation, Metropolitan Technological University, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Francisca Luna
- Laboratory of Environmental Electrochemistry, LEQMA, Department of Chemical Materials, University of Santiago of Chile, USACH, Av. Libertador Bernardo O´Higgins, 3363, Estación Central, Santiago, Chile
| | - Abdoulaye Thiam
- Institutional Program for the Promotion of Research, Development and Innovation, Metropolitan Technological University, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Mario Aranda
- Food and Drug Research Laboratory, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile
| | - Wendy Calzadilla
- Laboratory of Environmental Electrochemistry, LEQMA, Department of Chemical Materials, University of Santiago of Chile, USACH, Av. Libertador Bernardo O´Higgins, 3363, Estación Central, Santiago, Chile
| | - Sara Miralles-Cuevas
- Solar Platform of Almería-CIEMAT, Ctra Senés km 4, Tabernas, Almería, 04200, Spain
| | - Alejandro Cabrera-Reina
- Institutional Program for the Promotion of Research, Development and Innovation, Metropolitan Technological University, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| |
Collapse
|
49
|
Li Y, Cao W, Zuo X. O- and F-doped porous carbon bifunctional catalyst derived from polyvinylidene fluoride for sulfamerazine removal in the metal-free electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 212:113508. [PMID: 35613635 DOI: 10.1016/j.envres.2022.113508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom-doped carbon materials can effectively activate H2O2 into •OH during the metal-free electro-Fenton (EF) process. However, information on bifunctional catalysts for the simultaneous generation and activation of H2O2 is scarce. In this study, O- and F-doped porous carbon cathode materials (PPCs) were prepared by the direct carbonization of polyvinylidene fluoride (PVDF) for sulfamerazine (SMR) removal in a metal-free EF process. The porous structure and chemical composition of the PPCs were regulated by the carbonization temperature. PPC-6 (carbonized at 600 °C) exhibited optimal electrocatalytic performance in terms of electrochemical H2O2 generation and activation owing to its high specific surface area, mesoporous structure, and optimum fractions of doped O and F. Excellent performance of the 2e- oxygen reduction reaction was found with an H2O2 selectivity of 93.5% and an average electron transfer number of 2.13. An H2O2 accumulative concentration of 103.9 mg/L and an SMR removal efficiency of 90.1% were achieved during the metal-free EF process. PPC-6 was able to stably remove SMR over five consecutive cycles, retaining 92.6% of its original performance. Quantitative structure-activity relationship analysis revealed that doped oxygen functional groups contributed substantially to H2O2 generation, and semi-ionic C-F bonds with high electronegativity were the cause of the activation of H2O2 to •OH. These findings suggest that the PVDF-derived carbonaceous catalysts are feasible and desirable for metal-free EF processes.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - WenXing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - XiaoJun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
50
|
Muzenda C, Nkwachukwu OV, Arotiba OA. Synthetic Ilmenite (FeTiO 3) Nanoparticles as a Heterogeneous Electro-Fenton Catalyst for the Degradation of Tetracycline in Wastewater. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluchi V. Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Omotayo A. Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|