1
|
Pacheco-Álvarez MOA, Sevillano-Arredondo RM, Serrano O, Peralta-Hernández JM. Copper-PANI-graphite HB2 composite for eco-friendly efficient degradation of textile dyes: Advancements in wastewater treatment enhanced by solar radiation. CHEMOSPHERE 2024; 366:143537. [PMID: 39413933 DOI: 10.1016/j.chemosphere.2024.143537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This research aimed to assess the potential of Cu50PANI@UG composite for sunlight drive photocatalytic dye degradation, targeting specifically Thymol Blue (TB) and Black NT (BNT) dyes and their mixture (DM). The Cu50PANI@UG composite was successfully synthesized via electropolymerization in acetonitrile/sulfuric acid mixture under atmospheric conditions. Photocatalytic experiments were conducted by exposing aqueous dye solutions to sunlight. N,N-dimethyl-p-nitrosoaniline (RNO) served as a molecular probe for detecting hydroxyl radicals (•OH). Additionally, experiments capturing free radicals were performed to identify active components, with a concomitant proposal of plausible degradation reaction mechanism for the Photo-Fenton-Like degradation into the Cu50PANI@UG composite + H2O2 + hv reaction system. Various operating parameters affecting dye degradation were evaluated, including catalyst dosage (from 0.27 to 0.67 g L-1), H2O2 concentration (from 16 to 64 mM), pH (from 3.0 to 9.0), and dye concentration (from 25 to 100 mg L-1). Optimization of key parameters such as pH, catalyst dosage, and H2O2 concentration was conducted. The highest degradation efficiency, ca. 100% of DM dye, was achieved within 35 min under optimized conditions, using Cu50PANI@UG composite as a catalytic precursor. These conditions were determined as follows: Catalyst dosage = 0.67 g L-1, pH = 3.0-6.0, H2O2 = 32-64 mM, and irradiation time of 35 min. The degradation percentage under the Response Surface Methodology (RSM) was utilized as a statistical tool to correlate influential parameters. Four consecutive reusability trials were performed to assess catalyst stability.
Collapse
Affiliation(s)
- Martin O A Pacheco-Álvarez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| | - Rosa M Sevillano-Arredondo
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - Oracio Serrano
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - Juan Manuel Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
2
|
Herrera-Chávez S, Pacheco-Álvarez M, Kadier A, Brillas E, Peralta-Hernández JM. Efficient electrochemical advanced degradation of Red CL and Red WB dyes from the tanning industry using a boron-doped diamond anode. CHEMOSPHERE 2024; 363:142825. [PMID: 38996982 DOI: 10.1016/j.chemosphere.2024.142825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous •OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous •OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.
Collapse
Affiliation(s)
- Sonia Herrera-Chávez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico
| | - Martin Pacheco-Álvarez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico.
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, CP 08028, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico.
| |
Collapse
|
3
|
Kamenická B, Kuchtová G. Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach. CHEMOSPHERE 2024; 363:142799. [PMID: 38986779 DOI: 10.1016/j.chemosphere.2024.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.
Collapse
Affiliation(s)
- Barbora Kamenická
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
4
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
5
|
Yang ZX, Xie WY, Ye FF, Li DH. Application of Pd-Sn modified Ru-Ir electrode for treating high chlorine ammonia-nitrogen wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:1040-1051. [PMID: 36250397 DOI: 10.1080/09593330.2022.2137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Electro-catalytic technology is a promising approach for wastewater treatment, owing to its easy operation, minimal generation of secondary pollution, small foot-print and rapid start-up. In this work, the chlorine evolution potential of the Pd-Sn modified ruthenium(Ru)-iridium(Ir) electrode was investigated for the electro-catalytic treatment of high chlorine ammonia-nitrogen wastewater. The effect of reaction conditions on the removal of ammonia-nitrogen, kinetics and apparent activation energy of ammonia-nitrogen removal were studied. The possible denitrification process of high chlorine ammonia-nitrogen wastewater was discussed. The results indicated that the chlorine evolution potential of the Pd-Sn modified Ru-Ir electrode was 1.0956 V(vs. SCE). The electro-catalytic treatment of high chlorine ammonia-nitrogen conformed to zero-order kinetic law, and the apparent activation energy of removal process was 14.089 kJ/mol. With a current was 0.5 A, the removal efficiency of ammonia-nitrogen could achieve 100% at a reaction time of 40 min. Indirect oxidation played an essential role in the electro-catalytic ammonia-nitrogen removal using the Pd-Sn modified Ru-Ir electrode. This paper demonstrated that the electro-catalytic technology was a promising approach for efficiently treating the high chlorine ammonia-nitrogen wastewater.
Collapse
Affiliation(s)
- Zhen-Xing Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Wen-Yu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Fang-Fang Ye
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - De-Hao Li
- Yangjiang Vocational and Technical College, Yangjiang, People's Republic of China
| |
Collapse
|
6
|
Vinayagam V, Palani KN, Ganesh S, Rajesh S, Akula VV, Avoodaiappan R, Kushwaha OS, Pugazhendhi A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. ENVIRONMENTAL RESEARCH 2024; 240:117500. [PMID: 37914013 DOI: 10.1016/j.envres.2023.117500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The existence of various pollutants in water environment contributes to global pollution and poses significant threats to humans, wildlife, and other living beings. The emergence of an effective, realistic, cost-effective, and environmentally acceptable technique to treat wastewater generated from different sectors is critical for reducing pollutant accumulation in the environment. The electrochemical advanced oxidation method is a productive technology for treating hazardous effluents because of its potential benefits such as lack of secondary pollutant and high oxidation efficiency. Recent researches on advanced oxidation processes (AOPs) in the period of 2018-2022 are highlighted in this paper. This review emphasizes on recent advances in electro-oxidation (EO), ozone oxidation, sonolysis, radiation, electro-Fenton (EF), photolysis and photocatalysis targeted at treating pharmaceuticals, dyes and pesticides polluted effluents. In the first half of the review, the concept of the AOPs are discussed briefly. Later, the influence of increasing current density, pH, electrode, electrolyte and initial concentration of effluents on degradation are discussed. Lastly, previously reported designs of electrochemical reactors, as well as data on intermediates generated and energy consumption during the electro oxidation and Fenton processes are discussed. According to the literature study, the electro-oxidation technique is more appropriate for organic compounds, whilst the electro-Fenton technique appear to be more appropriate for more complex molecules.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | | | - Sudha Ganesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Siddharth Rajesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Ramapriyan Avoodaiappan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
7
|
Ranga M, Sinha S. Mechanism and Techno‐Economic Analysis of the Electrochemical Process. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Monica Ranga
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| | - Shishir Sinha
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| |
Collapse
|
8
|
Paquini LD, Marconsini LT, Profeti LPR, Campos OS, Profeti D, Ribeiro J. An overview of electrochemical advanced oxidation processes applied for the removal of azo-dyes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Titchou FE, Zazou H, Afanga H, Jamila EG, Ait Akbour R, Hamdani M, Oturan MA. Comparative study of the removal of direct red 23 by anodic oxidation, electro-Fenton, photo-anodic oxidation and photoelectro-Fenton in chloride and sulfate media. ENVIRONMENTAL RESEARCH 2022; 204:112353. [PMID: 34774509 DOI: 10.1016/j.envres.2021.112353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
This study aims to compare the efficiency of anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), and their association with UV irradiation (photo anodic oxidation (PAO), and photo electro-Fenton (PEF) for the removal of Direct Red 23 from wastewater using a BDD/carbon felt cell in chloride and sulfate medium and in their combination. The effect of the supporting electrolyte was investigated in AO-H2O2 and EF processes. High discoloration efficiency was obtained in chloride media while a higher mineralization rate was achieved in sulfate media. The EF process reached higher total organic carbon (TOC) removal efficiency than AO-H2O2. 90% TOC removal rate was achieved by the EF against 82% by AO-H2O2 in sulfate media. The influence of using the mixt supporting electrolyte formed of 75% Na2SO4 + 25% NaCl was found to have beneficial effect on TOC removal, achieving 89% and 97% by AO-H2O2 and EF, respectively. High currents led to higher mineralization rates while low currents yielded to a higher mineralization current efficiency (MCE%) and lower energy consumption (EC). UV irradiation enhanced process efficiency. Mineralization efficiency followed the sequence: AO-H2O2 < PAO < EF < PEF. The PEF process was able to remove TOC completely at 5 mA cm-2 current density and 6 h of electrolysis with a MCE% value of 16.57% and EC value of 1.29 kWh g-1 TOC removed.
Collapse
Affiliation(s)
- Fatima Ezzahra Titchou
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco
| | - Hicham Zazou
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco
| | - Hanane Afanga
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco
| | - El Gaayda Jamila
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco
| | - Rachid Ait Akbour
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco
| | - Mohamed Hamdani
- Ibn Zohr University, Faculty of Sciences, Chemical Department, BO 8106, Dakhla district, Agadir, Morocco.
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, 77454, Marne-la-Vallée, France.
| |
Collapse
|
10
|
Kuchtová G, Mikulášek P, Dušek L. The role of dye’s structure on the degradation rate during indirect anodic oxidation. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Bakaraki Turan N, Sari Erkan H, Ilhan F, Onkal Engin G. Decolorization of textile wastewater by electrooxidation process using different anode materials: Statistical optimization. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1683. [PMID: 35044018 DOI: 10.1002/wer.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The presence of reactive dyes in textile wastewater is a serious environmental concern due to their associated mutagenic and carcinogenic effects. The present study aims to analyze the effect of different anodic materials on the decolorization of a real textile wastewater effluent. For this purpose, four different anodic materials-TiO2-coated platine, TiO2-coated ruthenium dioxide (RuO2) (viz., RuO2), titanium dioxide (TiO2), and graphite-were connected, respectively, to titanium dioxide (TiO2) used as a cathode electrode. Color and cost optimization studies were performed using the response surface methodology and the Box-Behnken experimental design (BBD). According to ANOVA results, the R2 values for Pt/TiO2, RuO2/TiO2, TiO2/TiO2, and graphite/TiO2 electrode pairs were found to be 97.4%, 93.8%, 92.44%, and 92.2%, respectively, indicating a good compatibility as it is close to one. The results show that color removal efficiencies at the optimal conditions were 86.3%, 90.8%, 91.5%, and 93.6% for Pt/TiO2, graphite/TiO2, TiO2/TiO2, and RuO2/TiO2, respectively. Furthermore, energy consumption cost at the optimum conditions was also evaluated, and the results were as follows: Pt/TiO2 (0.95 €/m3), graphite/TiO2 (0.74 €/m3), TiO2/TiO2 (0.31 €/m3), and RuO2/TiO2 (0.26 €/m3). Consequently, this research paper shows that all of the tested anodic materials give satisfactory color removal efficiencies higher than 86%. When energy consumption and color removal are considered together, the use of TiO2/TiO2 and RuO2/TiO2 pairs would be preferred. PRACTITIONER POINTS: Anodic contribution was investigated for decolorization of textile wastewater by electrooxidation process. Graphite, TiO2-coated Pt, TiO2-coated RuO2, and TiO2 were used as anode materials. Highest color removal with lowest energy consumption was achieved with TiO2-coated RuO2 anode material (93.6%).
Collapse
Affiliation(s)
- Nouha Bakaraki Turan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sari Erkan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Verbel-Olarte MI, Serna-Galvis EA, Salazar-Ospina L, Jiménez JN, Porras J, Pulgarin C, Torres-Palma RA. Irreversible inactivation of carbapenem-resistant Klebsiella pneumoniae and its genes in water by photo-electro-oxidation and photo-electro-Fenton - Processes action modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148360. [PMID: 34146813 DOI: 10.1016/j.scitotenv.2021.148360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae is a critical priority pathogen according to the World Health Organization's classification. Effluents of municipal wastewater treatment plants (EWWTP) may be a route for K. pneumoniae dissemination. Herein, the inactivation of this microorganism in simulated EWWTP by the photo-electro-oxidation (PEO) and photo-electro-Fenton (PEF) processes was evaluated. Firstly, the disinfecting ability and action pathways of these processes were established. PEO achieved faster K. pneumoniae inactivation (6 log units in 75 min of treatment) than the PEF process (6 log units in 105 min of treatment). PEO completely inactivated K. pneumoniae due to the simultaneous action of UVA light, electrogenerated H2O2, and anodic oxidation pathways. The slower inactivation of K. pneumoniae when using PEF was related to interfering screen effects of iron oxides on light penetration and the diffusion of the bacteria to the anode. However, both PEO and PEF avoided the recovery and regrowth of treated bacteria (with no detectable increase in the bacteria concentration after 24 h of incubation). In addition to the bacteria evolution, the effect of treatment processes on the resistance gene was examined. Despite inactivation of K. pneumoniae by PEF was slower than by PEO, the former process induced a stronger degrading action on the gene, conferring the resistance to carbapenems (PEF had a Ct value of 24.92 cycles after 105 min of treatment, while PEO presented a Ct of 19.97 cycles after 75 min). The results of this research indicate that electrochemical processes such as PEO and PEF are highly effective at dealing with resistant K. pneumoniae in the EWWTP matrix.
Collapse
Affiliation(s)
- Martha I Verbel-Olarte
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraim A Serna-Galvis
- Grupo de Investigaciones Biomédicas Uniremington. Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia.
| | - Lorena Salazar-Ospina
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Línea de Epidemiología Molecular Bacteriana, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - J Natalia Jiménez
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Línea de Epidemiología Molecular Bacteriana, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington. Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Cesar Pulgarin
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Institute of Chemical Science and Engineering, Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015 Lausanne, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
13
|
Electrochemical Degradation of Crystal Violet Using Ti/Pt/SnO2 Electrode. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01 mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.
Collapse
|
14
|
Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Dong P, Chen X, Guo M, Wu Z, Wang H, Lin F, Zhang J, Wang S, Zhao C, Sun H. Heterogeneous electro-Fenton catalysis with self-supporting CFP@MnO 2-Fe 3O 4/C cathode for shale gas fracturing flowback wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125208. [PMID: 33513556 DOI: 10.1016/j.jhazmat.2021.125208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Self-supporting electrodes have triggered great interests in improving electro-Fenton (EF) system for degradation of refractory organic pollutants. In this work, a novel self-supporting carbon fiber paper (CFP) electrode modified by transition metals, e.g. Fe and Mn, was fabricated and employed as a heterogeneous EF cathode. The prepared electrode exhibited excellent degradation for a number of typical organic pollutants along with superior stability. Remarkably, a high removal efficiency was achieved in the EF treatment of shale gas fracturing flowback wastewater. Results indicated that 65.2% TOC and 74.8% COD were eliminated after 4 h degradation. The residual COD value of the real wastewater was 80 mg L-1, meeting the emission requirement of the integrated wastewater discharge standard (COD<100 mg L-1) with a low specific energy consumption of 6.9kWhkg-1COD-1. This work demonstrates a competing alternative for efficient decontamination of real wastewater using an electro-Fenton strategy with a low-cost electrode.
Collapse
Affiliation(s)
- Pei Dong
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xi Chen
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Meiting Guo
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zhiyuan Wu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Haolong Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Feifei Lin
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jinqiang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shuaijun Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chaocheng Zhao
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| |
Collapse
|
16
|
Ethylenediaminetetraacetic Acid Assisted Synthesis of Bismuth Oxide/Indium Oxide Microspheres with Good Photocatalytic Performance. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2021. [DOI: 10.1380/ejssnt.2021.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Corona-Bautista M, Picos-Benítez A, Villaseñor-Basulto D, Bandala E, Peralta-Hernández JM. Discoloration of azo dye Brown HT using different advanced oxidation processes. CHEMOSPHERE 2021; 267:129234. [PMID: 33352363 DOI: 10.1016/j.chemosphere.2020.129234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In this study, known combinations of Advanced Oxidation Processes (AOPs, namely Electro-Fenton (EF), Photo-Electro-Fenton (PEF), Electro-Oxidation (EO), and EO/Ozone (O3) were compared for the discoloration of tannery industry azo dye Brown HT (BHT). The different AOPs were tested in a 0.160 L batch electrochemical stirred thank reactor using Boron Doped Diamond (BDD) electrodes. The influence of parameters such as the current density (j) and the initial BHT concentration were to exanimated on the efficiency of all the tested processes. The oxidation tendency of EF, and PEF were compared with those of EO and O3, based on their efficiency for BHT discoloration, which resulted as PEF > EF > EO > O3. The AOPs showing the best oxidation performance was PEF which, using Na2SO4 (0.05 M) electrolyte solution and Fe2+ (0.5 mM), pH 3.0, j = 71 mA cm-2, and 500 rpm process, achieved 100% discoloration and 80% chemical oxygen demand (COD) abatement after 60 min of treatment for two initial BHT concentrations (50 and 80 mg L-1). The process accounted for a current efficiency of 30% and energy consumption 2.25 kWh (g COD)-1 through the discoloration test. The azo dye gradually degraded, yielding non-toxic oxalic, oxamic, and glyoxylic acid, whose Fe(III) complexes were quickly photolyzed.
Collapse
Affiliation(s)
- Mayra Corona-Bautista
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, Guanajuato, C.P, 36040, Mexico
| | - Alain Picos-Benítez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, Guanajuato, C.P, 36040, Mexico
| | - Deborah Villaseñor-Basulto
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, Guanajuato, C.P, 36040, Mexico
| | - Erick Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV, 89119-7363, USA
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, Guanajuato, C.P, 36040, Mexico.
| |
Collapse
|
18
|
Villalobos-Lara AD, Álvarez F, Gamiño-Arroyo Z, Navarro R, Peralta-Hernández JM, Fuentes R, Pérez T. Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor. CHEMOSPHERE 2021; 264:128491. [PMID: 33045507 DOI: 10.1016/j.chemosphere.2020.128491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
The removal of highly concentrated pollutants, presented in a wastewater mixture from industrial tannery effluents by electrocoagulation, was examined. All experiments were carried out in a rotating cylinder electrode reactor with six aluminum anodes and two sedimentation tanks. The influence of the applied current density and rotational speed on the removal efficiency of an electrocoagulation reactor was studied. Chemical oxygen demand was diminished at 70%, while total suspended solids, chromium (III) and turbidity were almost eliminated (>90%) with 6 mA cm-2 of the applied current density. Additionally, a homogeneous cathodic deposit was obtained at the end of each test. Those cathodic deposits and flocs were analyzed by SEM-EDS. Calculations of the cell energy consumption and the produced aluminum cost were estimated for 6 mA cm-2 and 100 rpm, obtaining 1.98 kWh m-3 and $0.7 USD m-3, respectively.
Collapse
Affiliation(s)
- A Daniel Villalobos-Lara
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, Gto., CP, 36050, Mexico
| | - Francisco Álvarez
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, Gto., CP, 36050, Mexico
| | - Zeferino Gamiño-Arroyo
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, Gto., CP, 36050, Mexico
| | - Ricardo Navarro
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Pueblito de Rocha s/n, Gto., CP, 36040, Mexico
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Pueblito de Rocha s/n, Gto., CP, 36040, Mexico
| | - Rosalba Fuentes
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, Gto., CP, 36050, Mexico
| | - Tzayam Pérez
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, Gto., CP, 36050, Mexico.
| |
Collapse
|
19
|
Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129101] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141527. [PMID: 33113672 DOI: 10.1016/j.scitotenv.2020.141527] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of chemical compounds are used in human activities; however, part of these compounds reach surface water, groundwater and even water considered for potable uses. Due to the limited efficiency of water treatment by the Water and Wastewater Treatment Plants, the presence of these compounds in natural and human consumption waters can be very harmful due to their high persistence and adverse effects; these characteristics define the contaminants of emerging concern (CECs). Water treatment by Electrochemical Advanced Oxidation Processes (EAOPs) has been evaluated as a promising process for the removal of persistent and recalcitrant organic contaminants. With this background, the present review aims to gather studies and information published between 2015 and 2020 regarding the occurrence of CECs in surface, potable and groundwater, its treatment by EAOPs, the main operating conditions and by-product generation of EAOPs, contaminant toxicity assessments and international statutory guideline values concerning CEC standards and allowable concentrations in the environment and treated drinking water. Therefore, in this review it was found that the compounds bisphenol A (BPA), diethyltoluamide (DEET), 17α-ethinyl estradiol (EE2), perfluorobutanoic acid (PFBA), carbamazepine, caffeine and atrazine were the most frequently detected in water sources, with concentrations ranging from 35.54-4800, 1.21-98, 0.005-38.5, 5-742.904, 0.0071-586, 0.89-1040, and 100-323 (ng L-1), respectively. Among the operational conditions of EAOPs, current density, pH and oxidant concentration are the main operational parameters that have an influence on these treatment technologies, besides the by-products generated, which might be removed by the integration of EAOPs with biological digestion treatments. Regarding the values of water quality standards, many CECs do not have established standard allowable concentration values, which represents a concern toward the possible toxic effects of these compounds on non-target organisms.
Collapse
Affiliation(s)
- Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil.
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Renata M de Souza
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Heloise B Quesada
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Rosângela Bergamasco
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Aline T Baptista
- Academic Department of Food and Chemical Engineering, Federal Technology University of Parana - UTFPR, Via Rosalina Maria dos Santos, 1233.CEP 87301-899 - Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| |
Collapse
|
21
|
Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y, Cai L, Wang Y, Song W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. BIORESOURCE TECHNOLOGY 2020; 318:124082. [PMID: 32932115 DOI: 10.1016/j.biortech.2020.124082] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/22/2023]
Abstract
In this study, an activated wakame biochar material (AWBM) was prepared by a one-step calcination and activation method, whose adsorption performances for methylene blue (MB), Rhodamine B (RB) and malachite green (MG) were also analyzed. The results showed AWBM was a mesoporous fluffy structure material with a higher specific surface (1156.25 m2/g), exhibiting superior adsorption capacities for MB (841.64 mg/g), RB (533.77 mg/g) and MG (4066.96 mg/g), respectively. In addition, FT-IR analysis showed that AWBM possessed abundant active groups (such as -OH, -CO and -CH), further enhancing the adsorption efficiencies. The Langmuir model could better fit the three dyes adsorption isotherms process using AWBM, and the Pseudo-second-order model could better describe the adsorption kinetic experimental data. The thermodynamic analysis showed that the three dyes adsorption using AWBM was spontaneous endothermic reaction. This study suggests AWBM has enormous potential in the application of removing organic dyes from wastewater.
Collapse
Affiliation(s)
- Xinxin Yao
- College of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lili Ji
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Jian Guo
- College of Food and Medical, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Shaoliang Ge
- College of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wencheng Lu
- College of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yingna Chen
- College of Food and Medical, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lu Cai
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yaning Wang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wendong Song
- College of Petrochemical and Energy Engineering College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| |
Collapse
|
22
|
González-Costas JM, Gómez-Fernández S, García J, González-Romero E. Screen-printed electrodes-based technology: Environmental application to real time monitoring of phenolic degradation by phytoremediation with horseradish roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140782. [PMID: 32693277 DOI: 10.1016/j.scitotenv.2020.140782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The following is a description of a simple strategy for monitoring phenolic pollutants from highly-contaminated water samples. These phenolic compounds are removed from tap water using horseradish roots (Raphanus sativus) that contain peroxidase as catalyst and H2O2 to generate hydroxyl radicals. The later (•OH) acts on the aromatic structure, causing them to degrade to non-toxic by-products. The tool used to follow up the evolution of the process is based on screen-printed carbon electrodes (SPCEs) as electrochemical sensor for simultaneous detection of hydroquinone (Epa at 0.047 V), m-cresol (Epa at 0.506 V) and 4-nitrophenol (Epa at 0.696 V) by differential pulse voltammetry (DPV). This electroanalytical methodology enables close monitoring of the situation and rapid sensor response time. Furthermore, this direct methodology works for opaque and heterogeneous samples, as tap water with chopped horseradish roots, without any treatment of samples previously to the analysis. For better knowledge of the electrodic-transfer process, the electrochemical behavior of these phenolic compounds by cyclic voltammetry (CV) is also included. This simple methodology shows a low detection limit (below to 5 μM) and an excellent selectivity (peak potential separation between them up to 200 mV or greater) in a linear range of three orders of concentration (from 1-5 μM to 1 mM) for all of the analytes studied. The DPV responses of the phenolic compounds during the phytoremediation process are simultaneously monitored by this direct, cheap, reproducible (RSD < 2.3%) and rapid DPV-SPCE electroanalytical methodology. Portable device as electrochemical sensor with this optimized and validated technology can be applied for decentralized analysis, on-site assays and rapid screening purposes. The use of the horseradish roots achieves the total elimination of phenolic pollutants in concentrations 1000 times higher than the legal limits in less than 1 h.
Collapse
Affiliation(s)
- Javier M González-Costas
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| | - Siria Gómez-Fernández
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Josefa García
- Department of Applied Physics, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Elisa González-Romero
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| |
Collapse
|
23
|
Tang Y, He D, Guo Y, Qu W, Shang J, Zhou L, Pan R, Dong W. Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. CHEMOSPHERE 2020; 258:127368. [PMID: 32554018 DOI: 10.1016/j.chemosphere.2020.127368] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Boron-doped diamond (BDD) is an excellent electrode material. As the anode in an electrochemical degradation tank, BDD has been receiving widespread attention for the treatment of azo dye wastewater. In this study, electrochemical oxidation (EO) was applied to electrolyze reactive brilliant yellow X-6G (X-6G) using BDD as the anode and Pt as the cathode. To balance the degradative effects and power consumption in the electrolysis process, the effects of a series of operating parameters, including current density, supporting electrolyte, initial pH, reaction temperature and initial dye concentration, were systematically studied. The oxidative process was analyzed by color removal rate, and the degree of mineralization was evaluated by TOC. The optimal experimental parameters were finally determined: 100 mA cm-2, 0.05 M Na2SO4 electrolyte, pH 3.03, 60 °C, and an initial X-6G concentration of 100 mg L-1. As a result, color completely disappeared after 0.75 h of electrolysis, and TOC was removed by 72.8% after 2 h of electrolysis. In conclusion, the EO of a BDD electrode as an anode can be a potent treatment method for X-6G synthetic wastewater.
Collapse
Affiliation(s)
- Yining Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yanni Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jun Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Rong Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
24
|
Medrano-Rodríguez F, Picos-Benítez A, Brillas E, Bandala ER, Pérez T, Peralta-Hernández JM. Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Kong J, Huang W, Yang S, He H, Sun C, Xian Q, Jiang D. Photoelectro-Fenton system including electromagnetic induction electrodeless lamp and black carbon poly tetra fluoro ethylene air-diffusion cathode: Degradation kinetics, intermediates and pathway for azo dye. CHEMOSPHERE 2020; 253:126708. [PMID: 32298912 DOI: 10.1016/j.chemosphere.2020.126708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The role of illumination and cathode is important to improve the efficiency of photoelectro-Fenton (PEF) system. In this study, cathodes with black carbon-poly tetra fluoro ethylene (BC-PTFE) for increase the concentration of hydrogen peroxide in PEF. A new PEF system using EIEL and BC-PTFE air-diffusion cathode was established. The electrode performance was tested and the influence factors, degradation kinetics, intermediates, pathway and mechanism of the model compound methyl orange (MO) were studied. The capacities of concentration decays and total organic carbon (TOC) removals were compared between different electrochemical advanced oxidation processes. The experimental conditions were optimized for a current density of 20 mA cm-2 with 0.5 mM Fe2+ and 100 mg L-1 MO at 20 °C and pH 3.0 in an 8 L reservoir. The higher MO concentration was, the smaller pseudo-first-order kinetic constants of concentration decays and TOC removals were. Intermediate products were identified by gas chromatography-mass spectrometry and ion-exclusion high performance liquid chromatograph in EIEL-PEF. Combined with frontier electron density, the degradation pathway was deduced as follows: destruction of azo bond, substitution of •OH, dehydrogenation and oxidation, opening-ring and mineralization. In EIEL-PEF, the concentration of oxalic acid and oxamic acid reached the maximum value 9.2 and 1.5 mg L-1 at 60 and 90 min, respectively. The photolysis of N-intermediates produced NH4+-N was released in more proportion than NO3--N and oxamic acid-N. The study indicated that PEF system has the potential to remove organic pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wen Huang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Dong Jiang
- Changzhou Lannuo Photoelectric Technology Co., Ltd., Changzhou, Jiangsu, 213000, PR China
| |
Collapse
|
26
|
Espinoza LC, Sepúlveda P, García A, Martins de Godoi D, Salazar R. Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO 2 and IrO 2 nanoparticles. CHEMOSPHERE 2020; 251:126674. [PMID: 32359720 DOI: 10.1016/j.chemosphere.2020.126674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dimensionally stable anodes (DSA) have been widely used to degrade organic compounds because these surfaces promote the electrogeneration of active chlorine species in the bulk of the solution, as well as in the vicinity of the anode when NaCl is used as supporting electrolyte. In this work, the nanoparticles synthesis of IrO2 and RuO2 was performed to obtain two types of DSA electrodes named Class I and II to degrade oxamic acid. For Class I and II DSA, the nanoparticles used were synthesized separately and in the same reaction medium, respectively. Electrolysis were carried out in an open cylindrical cell without division at 25 °C, DSAs were used as anodes and a stainless-steel electrode as cathode, both elements have a geometric area of 2.8 cm2 immersed in 0.05 mol L-1 of NaCl or Na2SO4 and a current density of 3 mA cm-2 was applied for 6 h. Active chlorine species generated in the absence of oxamic acid in NaCl were also detected and quantified through ion chromatography. In Na2SO4 there was no degradation of the compound, but in NaCl the oxamic acid concentration reaching 85% with Class I DSA. The same tendency is observed in mineralization, in which Class I DSA allowed reaching a CO2 transformation close to 73%. The difference in the results occurs because with Class I DSA, more hypochlorite is generated than with Class II and therefore there is a larger amount of oxidizing species in the solution that enables the degradation and mineralization of oxamic acid.
Collapse
Affiliation(s)
- L Carolina Espinoza
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Pamela Sepúlveda
- Facultad de Química and Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandra García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Mexico
| | - Denis Martins de Godoi
- Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisicoquímica, São Paulo State University,UNESP, Araraquara, Brazil
| | - Ricardo Salazar
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| |
Collapse
|
27
|
Zhi D, Zhang J, Wang J, Luo L, Zhou Y, Zhou Y. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti 4O 7 and Ti/RuO 2-IrO 2 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110571. [PMID: 32421562 DOI: 10.1016/j.jenvman.2020.110571] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical treatments of coking wastewater (CW) and coal gasification wastewater (CGW) were conducted with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes were investigated by analyzing the effects of five key influencing factors including anodes material, current density, anode-cathode distance, initial pH value, and electrolyte type. The removal efficiencies of total organic carbon (TOC) were analyzed during the processes of CW and CGW electro-oxidation. The removal efficiencies of sixteen polynuclear aromatic hydrocarbons (PAHs) in CW and CGW by electro-oxidation were also explored to further assess the electrochemical activities of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The Ti/Ti4O7 anode achieved 78.7% COD removal efficiency of CW, 85.8% COD removal efficiency of CGW, 50.3% TOC removal efficiency of CW, and 54.8% TOC removal efficiency of CGW, higher than the Ti/RuO2-IrO2 anode (76.7%, 78.1%, 44.8% and 46.8%). The COD removal efficiencies increased with the applied current density, decreased with the increase of the anode-cathode distance, and slightly decreased with the increase of the initial pH value. Meanwhile, the removal efficiencies of sixteen PAHs by the Ti/Ti4O7 anode were mostly higher than those by the Ti/RuO2-IrO2 anode. By comprehensively analyzing the performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes on electrochemical treatments of CW and CGW, this study may supply insights into the application potentials of these anodes to the electrochemical treatments of real wastewater.
Collapse
Affiliation(s)
- Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
28
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Brillas E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. CHEMOSPHERE 2020; 250:126198. [PMID: 32105855 DOI: 10.1016/j.chemosphere.2020.126198] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 05/03/2023]
Abstract
Wastewaters containing recalcitrant and toxic organic pollutants are scarcely decontaminated in conventional wastewater facilities. Then, there is an urgent challenge the development of powerful oxidation processes to ensure their organic removal in order to preserve the water quality in the environment. This review presents the recent development of an electrochemical advanced oxidation process (EAOP) like the photoelectro-Fenton (PEF) process, covering the period 2010-2019, as an effective treatment for wastewater remediation. The high oxidation ability of this photo-assisted Fenton-based EAOP is due to the combination of in situ generated hydroxyl radicals and the photolytic action of UV or sunlight irradiation over the treated wastewater. Firstly, the fundamentals and characteristics of the PEF process are described to understand the role of oxidizing agents. Further, the properties of the homogeneous PEF process with iron catalyst and UV irradiation and the benefit of sunlight in the homogeneous solar PEF one (SPEF) are discussed, supported with examples over their application to the degradation and mineralization of synthetic solutions of industrial chemicals, herbicides, dyes and pharmaceuticals, as well as real wastewaters. Novel heterogeneous PEF processes involving solid iron catalysts or iron-modified cathodes are subsequently detailed. Finally, the oxidation power of hybrid processes including photocatalysis/PEF, solar photocatalysis/SPEF, photoelectrocatalysis/PEF and solar photoelectrocatalysis/SPEF, followed by that of sequential processes like electrocoagulation/PEF and biological oxidation coupled to SPEF, are analyzed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
30
|
Simultaneous Electrochemical Generation of Ferrate and Oxygen Radicals to Blue BR Dye Degradation. Processes (Basel) 2020. [DOI: 10.3390/pr8070753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, electro-oxidation (EOx) and in situ generation of ferrate ions [Fe(VI)] were tested to treat water contaminated with Blue BR dye (BBR) using a boron-doped diamond (BDD) anode. Two electrolytic media (0.1 M HClO4 and 0.05 M Na2SO4) were evaluated for the BDD, which simultaneously produced oxygen radicals (•OH) and [Fe(VI)]. The generation of [Fe(VI)] was characterized by cyclic voltammetry (CV) and the effect of different current intensity values (e.g., 7 mA cm−2, 15 mA cm−2, and 30 mA cm−2) was assessed during BBR degradation tests. The discoloration of BBR was followed by UV-Vis spectrophotometry. When the EOx process was used alone, only 78% BBR discoloration was achieved. The best electrochemical discoloration conditions were found using 0.05 M Na2SO4 and 30 mA cm−2. Using these conditions, overall BBR discoloration values up to 98%, 95%, and 87% with 12 mM, 6 mM, and 1 mM of FeSO4, respectively, were achieved. In the case of chemical oxygen demand (COD) reduction, the EOx process showed only a 37% COD reduction, whereas combining [Fe(VI)] generation using 12 mM of FeSO4 achieved an up to 61% COD reduction after 90 min. The evolution of reaction byproducts (oxalic acid) was performed using liquid chromatography analysis.
Collapse
|
31
|
Kumar A, Omar RA, Verma N. Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode. CHEMOSPHERE 2020; 248:126030. [PMID: 32032876 DOI: 10.1016/j.chemosphere.2020.126030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Gradually increasing concentrations of diclofenac (DCF), a widely used anti-inflammatory drug, in water bodies is an emerging concern because of the persistent characteristics and harmful environmental impact of the drug molecule. In this study, electro-oxidation using a novel copper (Cu) - reduced graphene oxide (rGO) electrode is indicated to be an efficient technology for treating DFC-laden wastewater. The Cu-rGO dispersed carbon film (∼1 mm thickness) is synthesized by carbonization and H2-reduction of a phenolic polymeric film in situ dispersed with a Cu salt and GO. The synthesized self-standing carbon film electrode is used for electro-oxidation of aqueous DCF. Analytical microscopic techniques are used to study the physicochemical properties of the material. Cyclic voltammetry analysis shows the prepared electrode generating a high oxidative current response. Approximately 100% DCF degradation is measured within 1 h at 1 V constant biased potential. Dual roles of Cu-rGO are presented as rGO facilitating direct oxidation via enhanced electron mobility at the electrode surface and Cu nanoparticles (NPs) participating in indirect oxidation by generating OH radicals in aqueous phase. The Cu NPs show an over-potential of -0.5 V vs. Ag/AgCl (100 mM KCl) for oxygen evolution, indicating indirect oxidation of DCF. The high non-faradic current density of 4 mA cm-2 generated at the positive potential (1 V) indicates direct oxidation of DCF. This study clearly indicates electro-oxidation using the Cu-rGO-dispersed carbon film electrode to be an efficient technique for remediation of pharmaceutical pollutants-contaminated wastewater.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rishabh Anand Omar
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nishith Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
32
|
Niu P, Wu G, Chen P, Zheng H, Cao Q, Jiang H. Optimization of Boron Doped TiO 2 as an Efficient Visible Light-Driven Photocatalyst for Organic Dye Degradation With High Reusability. Front Chem 2020; 8:172. [PMID: 32232026 PMCID: PMC7082229 DOI: 10.3389/fchem.2020.00172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
No visible light activity is the bottle neck for wide application of TiO2, and Boron doping is one of the effective way to broaden the adsorption edge of TiO2. In this study, several Boron doped TiO2 materials were prepared via a facile co-precipitation and calcination process. The B doping amounts were optimized by the degradation of rhodamine B (Rh B) under visible light irradiation, which indicated that when the mass fraction of boron is 6% (denoted as 6B-TiO2), the boron doped TiO2 materials exhibited the highest activity. In order to investigate the enhanced mechanism, the difference between B-doped TiO2 and bare TiO2 including visible light harvesting abilities, separation efficiencies of photo-generated electron-hole pairs, photo-induced electrons generation abilities, photo-induced charges transferring speed were studied and compared in details. h+ and ·O2- were determined to be the two main responsible active species in the photocatalytic oxidation process. Besides the high degradation efficiency, 6B-TiO2 also exhibited high reusability in the photocatalysis, which could be reused at least 5 cycles with almost no active reduction. The results indicate that 6B-TiO2 has high photocatalytic degradation ability toward organic dye of rhodamine B under visible light irradiation, which is a highly potential photocatalyst to cope with organic pollution.
Collapse
Affiliation(s)
- Pingping Niu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Guanghui Wu
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Huitao Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Qun Cao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
33
|
Sartaj S, Ali N, Khan A, Malik S, Bilal M, Khan M, Ali N, Hussain S, Khan H, Khan S. Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:971-984. [PMID: 32541115 DOI: 10.2166/wst.2020.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater containing dyes is considered as the top-priority pollutant when discharged into the environment. Herein, we report for the applicability of 254 nm ultraviolet light and electrochemical process using a titanium ruthenium oxide anode for the degradation of Allura red and erythrosine dyes. During the photolytic process, 95% of Allura red dye (50 ppm) was removed after 1 h at pH 12 and 35 °C, whereas 90% color removal of erythrosine dye (50 ppm) was achieved after 6 h of treatment at pH 6.0 and 30 °C. On the other hand, 99.60% of Allura red dye (200 ppm) was removed within 5 min by the electrochemical process applying a current density (5 mA cm-2) at pH 5.0 and 0.1 mol L-1 sodium chloride (NaCl) electrolytic medium. Similarly, 99.61% of erythrosine dye (50 ppm) degradation was achieved after 10 min at a current density of 8 mA cm-2, pH 6.0, and 0.1 mol L-1 of NaCl electrolyte. The minimum energy consumption value for Allura red and erythrosine dyes (0.196 and 0.941 kWh m-3, respectively) was calculated at optimum current densities of 5 and 8 mA cm-2. The results demonstrated that the electrochemical process is more efficient at removing dyes in a shorter time than the photolytic process since it generates powerful oxidants like the chlorine molecule, hypochlorous acid, and hypochlorite on the surface of the anode and initiates a chain reaction to oxidize the dyes molecules.
Collapse
Affiliation(s)
- Seema Sartaj
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China; Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China E-mail:
| | - Menhad Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sajjad Hussain
- Faculty of Materials & Chemical Engineering GIK, Institute of Engineering Sciences & Technology, 23460 Topi, KP, Pakistan
| | - Hammad Khan
- Faculty of Materials & Chemical Engineering GIK, Institute of Engineering Sciences & Technology, 23460 Topi, KP, Pakistan
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970 Araraquara, SP, Brazil
| |
Collapse
|
34
|
González T, Dominguez JR, Cuerda-Correa EM, Correia SE, Donoso G. Selecting and improving activated homogeneous catalytic processes for pollutant removal. Kinetics, mineralization and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109972. [PMID: 31989988 DOI: 10.1016/j.jenvman.2019.109972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The degradation of a model pollutant, tartrazine, very used in food industry and usually present in WWTPs effluents and surface waters, was investigated by nine activated homogeneous catalytic processes, namely, Fe3+/H2O2, Fe2+/H2O2, UV/H2O2, UV/S2O82-, UV/Fe2+/H2O2, UV/Fe3+/H2O2, UV, VIS/Fe3+/H2O2, and VIS/Fe3+/H2O2/C2O42-. In order to compare the mineralization and oxidation ability of each process, the removal of dye, chemical oxygen demand (COD) and total organic carbon (TOC) were analyzed, as well as the overall kinetic rate constant. Also, the different oxidation path-ways (direct photolysis and/or oxidation by free radicals) were estimated for each system. After the comparison, the Fenton process, which had the highest mineralization values, was tested in luminous and dark phases using designed experiments, and the influences of all operating variables were studied by RSM.
Collapse
Affiliation(s)
- T González
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain.
| | - J R Dominguez
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - E M Cuerda-Correa
- Dept. Organic and Inorganic Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - S E Correia
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - G Donoso
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| |
Collapse
|
35
|
Xu S, Niu X, Hou Z, Gao C, Lu J, Pang Y, Fang M, Lu Y, Chen Y, S JK, Li T, Xu J. A multifunctional gelatine-quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121142. [PMID: 31639610 DOI: 10.1016/j.jhazmat.2019.121142] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 05/27/2023]
Abstract
Leather wastewater is one of the most polluting industrial emissions. The efficiency of wastewater remediation is limited by its complex composition. Herein, a novel strategy for designing modified gelatine with higher degree of quaternization (MG-2) is presented. The higher degree of quaternization allows sufficient adsorption of dyes in the tanning process. It is an in situ, environmentally friendly, and innovative strategy to limit dye emissions and can circumvent the subsequent waste management. Dyes such as Direct Purple N and Acid Black 24 could be adsorbed completely within 5 min by the MG-2 film formed from MG-2 solution. In addition, a remarkable efficiency in removing Acid Red 73, Golden Orange G, and Acid Orange II (>96.1% removal rates) was achieved within 30 min. The adsorption equilibrium data suggested that the adsorption capacity was positively correlated to the concentration of MG-2. When Acid Orange II and MG-2 were used in the industrial re-tanning process, the residual dye concentration in wastewater was only 23.1 mg L-1, indicating that MG-2 is a promising re-tanning agent for adsorbing dyes in the leather tanning process.
Collapse
Affiliation(s)
- Shilin Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Xinlei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250100, PR China
| | - Chunhong Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jianmei Lu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Yiyi Pang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Ming Fang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Yujie Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Joshy K S
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|
36
|
Ye Z, Brillas E, Centellas F, Cabot PL, Sirés I. Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. WATER RESEARCH 2020; 169:115219. [PMID: 31689603 DOI: 10.1016/j.watres.2019.115219] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO2-based anode an air-diffusion cathode for in-situ H2O2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)-EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of •OH from Fenton-like reactions between H2O2 and Fe(II)-EDDS or Fe(III)-EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)-EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)-EDDS, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)-EDDS due to the greater formation of •OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of •OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F- and NO3- ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl- to active chlorine. A detailed mechanism for the Fe(III)-EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed.
Collapse
Affiliation(s)
- Zhihong Ye
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
37
|
Jadhav S, Navarro-Mendoza R, Lozano-Sotomayor P, Galindo-Esquivel IR, Serrano O, Peralta-Hernández JM. Enhanced Photocatalytic Activity of TiO 2 Modified with GaI toward Environmental Application. Inorg Chem 2020; 59:1315-1322. [PMID: 31880434 DOI: 10.1021/acs.inorgchem.9b03020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gallium (Ga) ion-doped TiO2 (Ga-TiO2) nanocomposite with small particle size (9-10 nm) and high surface area (104 m2/g) has been easily synthesized via sol-gel method at low temperature by using low-valent GaI as a doping precursor. The structural and morphological characterization of Ga-TiO2 was carried out with standard analytical and spectroscopic techniques. Ga doping into the TiO2 matrix inhibited a phase transformation from anatase to rutile (photocatalytically inactive) form, even at a higher temperature of 750 °C. Finally, Ga-TiO2 nanocomposite showed high photocatalytic activity and exhibited 97% degradation of acid violet 63 dye within 60 min. The dye degradation rate constant was calculated as 1.6 × 10-1 and 1.4 × 10-1 min-1 under UV and white light irradiation, respectively, which is higher, as compared to the previously reported Ga-TiO2 composites to date.
Collapse
Affiliation(s)
- Shraddha Jadhav
- Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36040
| | - Ricardo Navarro-Mendoza
- Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36040
| | - Paulina Lozano-Sotomayor
- Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36040
| | - Ignacio R Galindo-Esquivel
- Departamento de Ingeniería Química, Sede Noria Alta, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36020
| | - Oracio Serrano
- Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36040
| | - Juan M Peralta-Hernández
- Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Campus Guanajuato , Universidad de Guanajuato , Guanajuato , Mexico 36040
| |
Collapse
|
38
|
A 2.5D Electrode System Constructed of Magnetic Sb–SnO2 Particles and a PbO2 Electrode and Its Electrocatalysis Application on Acid Red G Degradation. Catalysts 2019. [DOI: 10.3390/catal9110875] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel electrode consisting of a Ti/PbO2 shell and Fe3O4/Sb–SnO2 particles was developed for electrochemical oxidation treatment of wastewater. Scanning electron microscope (SEM), X-ray diffraction (XRD), the current limiting method, toxicity experiments, and high-performance liquid chromatography were adopted to characterize its morphology, crystal structure, electrochemical properties, the toxicity of the wastewater, and hydroxyl radicals. Acid Red G (ARG), a typical azo dye, was additionally used to test the oxidation ability of the electrode. Results indicated that the 2.5D electrode could significantly improve the mass transfer coefficient and •OH content of the 2D electrode, thereby enhancing the decolorization, degradation, and mineralization effect of ARG, and reducing the toxicity of the wastewater. The experiments revealed that, at higher current density, lower dye concentration and higher temperature, the electrochemical oxidation of ARG favored. Under the condition of 50 mA/cm2, 25 °C, and 100 ppm, the ARG, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiency reached 100%, 65.89%, and 52.52%, respectively, and the energy consumption and the current efficiency were 1.06 kWh/g COD, 8.29%, and energy consumption for TOC and mineralization current efficiency were 3.81 kWh/g COD, 9.01%. Besides, the Fe3O4/Sb–SnO2 particles after electrolysis for 50 h still had remarkable stability. These results indicated that the ARG solution could be adequately removed on the 2.5D electrode, providing an effective method for wastewater treatment.
Collapse
|
39
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
40
|
Wen Z, Wang A, Zhang Y, Ren S, Tian X, Li J. Mineralization of cefoperazone in acid medium by the microwave discharge electrodeless lamp irradiated photoelectro-Fenton using a RuO 2/Ti or boron-doped diamond anode. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:186-194. [PMID: 30999142 DOI: 10.1016/j.jhazmat.2019.03.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The mineralization of 125 mL of 50-300 mg L-1 cefoperazone (CFPZ) has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation (AO), electro-Fenton (EF) and photoelectro-Fenton (PEF) with a RuO2/Ti or boron-doped diamond (BDD) anode and an activated carbon fiber (ACF) cathode. A microwave discharge electrodeless lamp (MDEL) was used as the UV source in PEF process. CFPZ decays always followed pseudo-first-order kinetics and their constant rates increased in the order: AO < EF < MDEL-PEF, regardless of anode types. Higher mineralization was achieved in all methods using BDD instead of RuO2/Ti, while the most potent BDD-MDEL-PEF gave 88% mineralization under its optimum conditions of 0.36 A, pH 3.0 and 1.0 mmol L-1 Fe2+. The synergistic mechanisms were explored by quantifying the electrogenerated H2O2 and formed •OH, in which 2.27 and 2.58 mmol L-1 H2O2 were accumulated in AO-H2O2 with RuO2/Ti or BDD anode, respectively, while 92.0 and 263.5 μmol L-1 •OH were generated in EF with RuO2/Ti or BDD anode, respectively. The oxidation power of EAOPs with different anodes was also compared by measuring the evolutions of NO3- and NH4+ as well as four generated carboxylic acids including oxalic, oxamic, formic and fumaric acids.
Collapse
Affiliation(s)
- Zhenjun Wen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China.
| | - Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Songyu Ren
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
41
|
Pacheco-Álvarez MO, Picos A, Pérez-Segura T, Peralta-Hernández JM. Proposal for highly efficient electrochemical discoloration and degradation of azo dyes with parallel arrangement electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Farshchi ME, Aghdasinia H, Khataee A. Heterogeneous Fenton reaction for elimination of Acid Yellow 36 in both fluidized-bed and stirred-tank reactors: Computational fluid dynamics versus experiments. WATER RESEARCH 2019; 151:203-214. [PMID: 30594832 DOI: 10.1016/j.watres.2018.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Heterogeneous Fenton process is a kind of advanced oxidation processes (AOPs) that is significant for wastewater treatment. In the first part of this study, acid yellow 36 (AY36) degradation process has occurred in two kinds of reactors: fluidized-bed and stirred-tank reactors. Performances of these two semi-pilot reactors are compared by evaluating the removal ratio of the dye and pH changes during the process. Pyrite has been used as a heterogeneous catalyst. For obtaining the characteristics of pyrite, XRD, SEM, and FT-IR analysis have been carried out. In the second part of this study, a modified computational fluid dynamics (CFD) method has been utilized to solve the momentum and mass balances for heterogeneous Fenton process in both reactors. In AOPs, free radicals are reactive and have a short lifetime, so that turbulence mixing would be a limiting factor for the reactions that radicals are involved. By introducing a new parameter, named turbulence mixing rate, as a reaction rate for reactive species like hydroxyl radicals, the results of removal ratio and pH changes during the process showed a good agreement between the experiments and the CFD simulations, compared with not including the mixing rate in the CFD simulations (conventional kinetic modeling). In addition, the results revealed the high performance of the fluidized-bed reactor for this process in both experiments and CFD simulation.
Collapse
Affiliation(s)
- Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| |
Collapse
|
43
|
Cerrón-Calle GA, Aranda-Aguirre AJ, Luyo C, Garcia-Segura S, Alarcón H. Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles. CHEMOSPHERE 2019; 219:296-304. [PMID: 30543965 DOI: 10.1016/j.chemosphere.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Photoelectrocatalysis provides an excellent frame for the application of photocatalytic nanostructured materials on easy recoverable supports. This study reports the two-step synthesis of hierarchically nanostructured ZnO/Ag composite photoelectrodes. Wurtzite ZnO was selectively electronucleated as spheroidal seeds on fluor doped tin oxide substrates and nanodecorated with Ag nanoclusters under electrochemical control. Hierarchically organized nanorods were selectively chemically grown on the plane (002) perpendicular to the substrate from ZnO/Ag seeds. Solutions emulating dye effluents with the usual contents of 0.1 M of NaCl and a model azo dye (Methyl Orange) were decolorized using ZnO/Ag nanorods in different treatments. Photocatalysis attained discrete decolorizations of 8% whereas photoelectrocatalysis completely decolorized solutions after 60 min. The influence of the metal/semiconductor interface (ZnO/Ag) as introduced Schottky barrier is studied demonstrating a four-fold enhancement on decolorization kinetics respect bare ZnO nanorods. The influence of the seed growth control on the final photoelectrocatalytic response is reported to control the hierarchical organization of nanorods. This resulted in different decolorization kinetics as result of the differences on the efficient use of the delivered photons conditioned by the photoelectrode structure.
Collapse
Affiliation(s)
- Gabriel Antonio Cerrón-Calle
- Universidad Nacional De Ingeniería, Lima, Peru; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| | | | | | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| | | |
Collapse
|