1
|
Greige S, Abdallah M, Webster CF, Harb M, Beyenal H, Wazne M. Microbial community analysis of the biofilms of both working and counter electrodes in single-chamber microbial electrolysis cells. Enzyme Microb Technol 2025; 188:110650. [PMID: 40209635 DOI: 10.1016/j.enzmictec.2025.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study was conducted to delineate microbial community development and composition on both working and counter electrodes in single-chamber microbial electrolysis cells (MECs) using synthetic wastewater. Two separate bioelectrochemical reactors were inoculated with anaerobic sludge. The first was operated at an anodic potential poised at + 0.4 V and the second one at a cathodic potential poised at -0.7 V, both vs. an Ag/AgCl reference electrode. The performance of the MECs, including current generation, bioelectrochemical activity of the biofilms on both the working and counter electrodes, and chemical oxygen demand (COD) depletion were monitored over the last 45 days of operation. Scanning electron microscopy (SEM) and 16S rRNA gene sequencing were performed to delineate the development and morphology of the microbial communities on both the working and the counter electrodes. The current generated at the anodic working electrode provided evidence of the growth of anode-respiring exoelectrogens (Clostridium sensu stricto). Similarly, the Faradaic current data at the cathodic working electrode confirmed the formation of an electroactive biofilm dominated by acetoclastic and hydrogenotrophic methanogens (Methanothrix and Methanobacterium). Microbial communities on the counter electrodes were found to be richer but less diverse compared to those on the working electrodes. These communities were likely influenced by the fluctuating potentials at the counter electrodes. SEM observations were consistent with the microbial analysis. These findings demonstrate the ability of a mixed inoculum to shift towards anode-reducing and cathode methanogenic communities using a complex substrate on a constant working electrode and varying counter electrode potentials.
Collapse
Affiliation(s)
- Stephanie Greige
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Mohamad Abdallah
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Christina F Webster
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud Wazne
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
2
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Liu C, Guo D, Wen S, Dang Y, Sun D, Li P. Transcriptomic insights unveil the crucial roles of cytochromes, NADH, and pili in Ag(I) reduction by Geobacter sulfurreducens. CHEMOSPHERE 2024; 358:142174. [PMID: 38685325 DOI: 10.1016/j.chemosphere.2024.142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.
Collapse
Affiliation(s)
- Chunmao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongchao Guo
- School of Computer Science, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Su Wen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Zakaria BS, Azizi SMM, Pramanik BK, Hai FI, Elbeshbishy E, Dhar BR. Responses of syntrophic microbial communities and their interactions with polystyrene nanoplastics in a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166082. [PMID: 37544438 DOI: 10.1016/j.scitotenv.2023.166082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microbial electrochemical technologies are promising for simultaneous energy recovery and wastewater treatment. Although the inhibitory effects of emerging pollutants, particularly micro/nanoplastics (MPs/NPs), on conventional wastewater systems have been extensively studied, the current understanding of their impact on microbial electrochemical systems is still quite limited. Microplastics are plastic particles ranging from 1 μm to 5 mm. However, nanoplastics are smaller plastic particles ranging from 1 to 100 nm. Due to their smaller size and greater surface area, they can penetrate deeper into biofilm structures and cell membranes, potentially disrupting their integrity and leading to changes in biofilm composition and function. This study first reports the impact of polystyrene nanoplastics (PsNPs) on syntrophic anode microbial communities in a microbial electrolysis cell. Low concentrations of PsNPs (50 and 250 μg/L) had a minimal impact on current density and hydrogen production. However, 500 μg/L of PsNPs decreased the maximum current density and specific hydrogen production rate by ∼43 % and ∼48 %, respectively. Exposure to PsNPs increased extracellular polymeric substance (EPS) levels, with a higher ratio of carbohydrates to proteins, suggesting a potential defense mechanism through EPS secretion. The downregulation of genes associated with extracellular electron transfer was observed at 500 μg/L of PsNPs. Furthermore, the detrimental impact of 500 μg/L PsNPs on the microbiome was evident from the decrease in 16S rRNA gene copies, microbial diversity, richness, and relative abundances of key electroactive and fermentative bacteria. For the first time, this study presents the inhibitory threshold of any NPs on syntrophic electroactive biofilms within a microbial electrochemical system.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, Australia
| | - Elsayed Elbeshbishy
- Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Ma H, Dong X, Yan Y, Shi K, Wang H, Lu H, Xue J, Qiao Y, Cheng D, Jiang Q. Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108176-108187. [PMID: 37749470 DOI: 10.1007/s11356-023-29929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m-2 were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L-1), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L-1) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.
Collapse
Affiliation(s)
- Han Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Yi Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Hao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Haoyun Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China.
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China.
| |
Collapse
|
6
|
Cai J, Yu N, Guan F, Cai X, Hou R, Yuan Y. Response of electroactive biofilms from real wastewater to metal ion shock in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157158. [PMID: 35798101 DOI: 10.1016/j.scitotenv.2022.157158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.
Collapse
Affiliation(s)
- Jiexuan Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Pereira J, de Nooy S, Sleutels T, Ter Heijne A. Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms. Biotechnol Adv 2022; 60:108011. [PMID: 35753624 DOI: 10.1016/j.biotechadv.2022.108011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Optimization of bio-electrochemical systems (BESs) relies on a better understanding of electro-active biofilms (EABfs). These microbial communities are studied with a range of techniques, including electrochemical, visual and chemical techniques. Even though each of these techniques provides very valuable and wide-ranging information about EABfs, such as performance, morphology and biofilm composition, they are often destructive. Therefore, the information obtained from EABfs development and characterization studies are limited to a single characterization of EABfs and often limited to one time point that determines the end of the experiment. Despite being scarcer and not as commonly reported as destructive techniques, non-destructive visual techniques can be used to supplement EABfs characterization by adding in-situ information of EABfs functioning and its development throughout time. This opens the door to EABfs monitoring studies that can complement the information obtained with destructive techniques. In this review, we provide an overview of visual techniques and discuss the opportunities for combination with the established electrochemical techniques to study EABfs. By providing an overview of suitable visual techniques and discussing practical examples of combination of visual with electrochemical methods, this review aims at serving as a source of inspiration for future studies in the field of BESs.
Collapse
Affiliation(s)
- João Pereira
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Sam de Nooy
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Alam MM, Masud A, Scharf B, Bradley I, Aich N. Long-Term Exposure and Effects of rGO-nZVI Nanohybrids and Their Parent Nanomaterials on Wastewater-Nitrifying Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:512-524. [PMID: 34931813 DOI: 10.1021/acs.est.1c02586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single nanomaterials and nanohybrids (NHs) can inhibit microbial processes in wastewater treatment, especially nitrification. While existing studies focus on short-term and acute exposures of single nanomaterials on wastewater microbial community growth and function, long-term, low-exposure, and emerging NHs need to be examined. These NHs have distinctly different physicochemical properties than their parent nanomaterials and, therefore, may exert previously unknown effects onto wastewater microbial communities. This study systematically investigated long-term [∼6 solid residence time [(SRT)] exposure effects of a widely used carbon-metal NH (rGO-nZVI = 1:2 and 1:0.2, mass ratio) and compared these effects to their single-parent nanomaterials (i.e., rGO and nZVI) in nitrifying sequencing batch reactors. nZVI and NH-dosed reactors showed relatively unaffected microbial communities compared to control, whereas rGO showed a significantly different (p = 0.022) and less diverse community. nZVI promoted a diverse community and significantly higher (p < 0.05) biomass growth under steady-state conditions. While long-term chronic exposure (10 mg·L-1) of single nanomaterials and NHs had limited impact on long-term nutrient recovery, functionally, the reactors dosed with higher iron content, that is, nZVI and rGO-nZVI (1:2), promoted faster NH4+-N removal due to higher biomass growth and upregulation of amoA genes at the transcript level, respectively. The transmission electron microscopy images and scanning electron microscopy─energy-dispersive X-ray spectroscopy analysis revealed high incorporation of iron in nZVI-dosed biomass, which promoted higher cellular growth and a diverse community. Overall, this study shows that NHs have unique effects on microbial community growth and function that cannot be predicted from parent materials alone.
Collapse
Affiliation(s)
- Md Mahbubul Alam
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Arvid Masud
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brianna Scharf
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ian Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Jing X, Liu X, Zhang Z, Wang X, Rensing C, Zhou S. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. WATER RESEARCH 2022; 208:117860. [PMID: 34798422 DOI: 10.1016/j.watres.2021.117860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The present nitrogen fixation industry is usually energy-intensive and environmentally detrimental. Therefore, it is appealing to find alternatives. Here, we achieved both a synchronized biological nitrogen fixation and electric energy production by using Geobacter sulfurreducens in a microbial electrochemical system. The results showed that G. sulfurreducens was able to fix nitrogen depending on anode respiration, producing a maximum current density of 0.17 ± 0.015 mA cm-2 and a nitrogen-fixing activity of ca. 0.78 μmol C2H4 mg protein-1 h-1, thereby achieving a net total nitrogen-fixing rate of ca. 5.6 mg L-1 day-1. Specifically, nitrogen fixation did not impair coulombic efficiency. Transcriptomic and metabolic analyses demonstrated that anode respiration provided sufficient energy to drive nitrogen fixation, and in turn nitrogen fixation promoted anode respiration of the cell by increasing acetate catabolism but reducing acetate anabolism. Furthermore, we showed that G. sulfurreducens could be supplied in a bioelectrochemical system for N-deficient wastewater treatment to relieve N-deficiency stress contributing to the formation of an electroactive biofilm, thereby simultaneously achieving nitrogen fixation, current generation and dissoluble organic carbon removal. Our study revealed a synergistic effect between biological nitrogen fixation and current generation by G. sulfurreducens, providing a green nitrogen fixation alternative through shifting the nitrogen fixation field from energy consumption to energy production and having implications for N-deficient wastewater treatment.
Collapse
Affiliation(s)
- Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
10
|
Liu Y, Zhu X, Zhao Q, Yan X, Du Q, Li N, Liao C, Wang X. Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine. iScience 2021; 24:102933. [PMID: 34409277 PMCID: PMC8361215 DOI: 10.1016/j.isci.2021.102933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
The biosynthesis of metal nanoparticles from precious metals has been of wide concern. Their antibacterial activity is a main bottleneck restricting the bacterial activity and reduction performance. Here, bio-electrochemical systems were used to harvest electroactive biofilms (EABs), where bacteria were naturally protected by extracellular polymeric substances to keep activity. The biofilm was further encapsulated with polydopamine (PDA) as additional shield. Silver nanoparticles (AgNPs) were biosynthesized on EABs, whose electroactivity could be fully recovered after Ag+ reduction. The PDA increased bacterial viability by 90%–105%, confirmed as an effective protection against antibacterial activity of Ag+/AgNPs. The biosynthetic process changed the component and function of the microbial community, shifting from bacterial Fe reduction to archaeal methanogenesis. These results demonstrated that the electrochemical acclimation of EABs and encapsulation with PDA were effective protective measures during the biosynthesis of AgNPs. These approaches have a bright future in the green synthesis of nanomaterials, biotoxic wastewater treatment, and sustainable bio-catalysis. The EABs formed using BESs had an efficient ability to recover Ag+ to AgNPs The bio-reduction efficiencies of AgNPs reached more than 94% The PDA increased by 90%–105% of the bacterial viability The biosynthesis process changed the microbial community
Collapse
Affiliation(s)
- Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
11
|
Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes (Basel) 2021. [DOI: 10.3390/pr9071221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.
Collapse
|
12
|
Cai T, Jiang N, Zhen G, Meng L, Song J, Chen G, Liu Y, Huang M. Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115154. [PMID: 32650205 DOI: 10.1016/j.envpol.2020.115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
The insufficient removal of pollutants and bioelectricity production have become a bottleneck for high-concentration saline wastewater treatment through microbial fuel cell (MFC) technology. Herein, a novel supercapacitor MFC (SC-MFC) was constructed with carbon nanofibers composite electrodes to investigate pollutant removal ability, power generation, and electrochemical properties using real landfill leachate. The possible extracellular electron transfer and nitrogen element conversion pathways in the bioanode were also analyzed. Results showed that the SC-MFC had higher pollutant removal rates (COD: 59.4 ± 1.2%; NH4+-N: 78.2 ± 1.6%; and TN: 77.8 ± 1.2%), smaller internal impedance Rt (∼6 Ω), higher exchange current density i0 (2.1 × 10-4 A cm-2), and a larger catalytic current j0 (704 μA cm-2) with 60% leachate than those with 10% and 20% leachate, resulting in a power output of 298 ± 22 mW m-2. Ammonium could be incorporated by chemoautotrophic bacteria to produce organic compounds that could be further utilized by heterotrophs to generate power when biodegradable organic matters are depleted. Three conversion pathways of nitrogen might be involved, including NH4+ diffusion from anode to cathode chamber, nitrification, and the denitrification process. Additionally, cyclic voltammetry tests showed that both the direct electron transfer (DET) and the mediator electron transfer in bioanode were involved and dominated by DET. The microbial analysis revealed that the bioanode was dominated by salt-tolerant denitrifying bacteria (38.5%), which was deduced to be the key functional microorganism. The electrochemically active bacteria decreased significantly from 61.7% to 4% over three stages of leachate treatment. Overall, the SC-MFC has demonstrated the potential for wastewater treatment along with energy harvesting and provides a new avenue toward sustainable leachate management.
Collapse
Affiliation(s)
- Teng Cai
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Guangyin Zhen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Jialing Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Gang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
13
|
Zakaria BS, Dhar BR. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139395. [PMID: 32454336 DOI: 10.1016/j.scitotenv.2020.139395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 05/25/2023]
Abstract
Understanding the toxic effect of silver nanoparticles (AgNPs) on various biological wastewater treatment systems is of significant interest to researchers. In recent years, microbial electrochemical technologies have opened up new opportunities for bioenergy and chemicals production from organic wastewater. However, the effects of AgNPs on microbial electrochemical systems are yet to be understood fully. Notably, no studies have investigated the impact of AgNPs on a microbial electrochemical system fed with a complex fermentable substrate. Here, we investigated the impact of AgNPs (50 mg/L) exposure to a biofilm anode in a microbial electrolysis cell (MEC) fed with glucose. The volumetric current density was 29 ± 2.0 A/m3 before the AgNPs exposure, which decreased to 20 ± 2.2 A/m3 after AgNPs exposure. The biofilms produced more extracellular polymeric substances (EPS) to cope with the AgNPs exposure, while carbohydrate to protein ratio in EPS considerably increased from 0.4 to 0.7. Scanning electron microscope (SEM) imaging also confirmed the marked excretion of EPS, forming a thick layer covering the anode biofilms after AgNPs injection. Transmission electron microscope (TEM) imaging showed that AgNPs still penetrated some microbial cells, which could explain the deterioration of MEC performance after AgNPs exposure. The relative expression level of the quorum signalling gene (LuxR) increased by 30%. Microbial community analyses suggested that various fermentative bacterial species (e.g., Bacteroides, Synergistaceae_vadinCA02, Dysgonomonas, etc.) were susceptible to AgNPs toxicity, which led to the disruption of their syntrophic partnership with electroactive bacteria. The abundance of some specific electroactive bacteria (e.g., Geobacter species) also decreased. Moreover, decreased relative expressions of various extracellular electron transfer associated genes (omcB, omcC, omcE, omcZ, omcS, and pilA) were observed. However, the members of family Enterobacteriaceae, known to perform a dual function of fermentation and anodic respiration, became dominant after biofilm anode exposed to AgNPs. Thus, EPS extraction provided partial protection against AgNPs exposure.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
14
|
Chung TH, Meshref MN, Dhar BR. Microbial electrochemical biosensor for rapid detection of naphthenic acid in aqueous solution. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhang X, Li R. Electrodes bioaugmentation promotes the removal of antibiotics from concentrated sludge in microbial electrolysis cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136997. [PMID: 32032993 DOI: 10.1016/j.scitotenv.2020.136997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Microbial electrolysis cells (MECs) had a potential to improve antibiotics removal from wastewater. However, research on antibiotics removal from concentrated sludge using MECs is still very limited. In this study, antibiotics removal and microbial responses in MECs treating concentrated sludge under different applied voltages (0.3 V-1.5 V) were investigated. Results showed that antibiotics removal efficiencies at 0.6 V and 1.0 V were 16.7%-26.6% higher than other applied voltages. The applied voltages had no obvious effects on the viability, activity and composition of microorganisms in the suspended sludge even up to 1.5 V. Bioelectrodes exhibited higher bioelectrocatalytic activity and denser microbial aggregation at 0.6 V and 1.0 V, under which higher antibiotics removal was also achieved. The enhanced removal of antibiotics at the optimal applied voltages was mainly contributed by the bioaugmentation of electrodes, but was irrelative with the electrochemical reaction and the microbial responses in suspended sludge.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
Caizán-Juanarena L, Krug JR, Vergeldt FJ, Kleijn JM, Velders AH, Van As H, Ter Heijne A. 3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. WATER RESEARCH 2019; 167:115059. [PMID: 31562986 DOI: 10.1016/j.watres.2019.115059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The use of microbial fuel cells (MFCs) for wastewater treatment fits in a circular economy context, as they can produce electricity by the removal of organic matter in the wastewater. Activated carbon (AC) granules are an attractive electrode material for bioanodes in MFCs, as they are cheap and provide electroactive bacteria with a large surface area for attachment. The characterization of biofilm growth on AC granules, however, is challenging due to their high roughness and three-dimensional structure. In this research, we show that 3D magnetic resonance imaging (MRI) can be used to visualize biofilm distribution and determine its volume on irregular-shaped single AC granules in a non-destructive way, while being combined with electrochemical and biomass analyses. Ten AC granules with electroactive biofilm (i.e. granular bioanodes) were collected at different growth stages (3 to 21 days after microbial inoculation) from a multi-anode MFC and T1-weighted 3D-MRI experiments were performed for three-dimensional biofilm visualization. With time, a more homogeneous biofilm distribution and an increased biofilm thickness could be observed in the 3D-MRI images. Biofilm volumes varied from 0.4 μL (day 4) to 2 μL (day 21) and were linearly correlated (R2 = 0.9) to the total produced electric charge and total nitrogen content of the granular bioanodes, with values of 66.4 C μL-1 and 17 μg N μL-1, respectively. In future, in situ MRI measurements could be used to monitor biofilm growth and distribution on AC granules.
Collapse
Affiliation(s)
- Leire Caizán-Juanarena
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Julia R Krug
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - J Mieke Kleijn
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Zakaria BS, Lin L, Dhar BR. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:691-699. [PMID: 31280150 DOI: 10.1016/j.scitotenv.2019.06.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
This study, for the first time, documented microbial community shifts in response to the changes in anode potential in a microbial electrolysis cell (MEC) operated with primary sludge. At an anode potential of -0.4 V vs. Ag/AgCl, the MEC showed COD and VSS removal efficiencies of 73 ± 1% and 75 ± 2%, respectively. The volumetric current density and specific hydrogen production rate were 23 ± 1.2 A/m3, and 145 ± 4.1 L/m3-d, respectively. The anodic microbial community was consisted of various fermentative/hydrolytic bacteria (e.g., Bacteroides and Dysgonomonas) and anode-respiring bacteria (Geobacter), while different hydrolytic/fermentative bacteria were abundant in suspension. The MEC showed substantially inferior performance along with a higher accumulation of various volatile fatty acids when the anode potential was switched to more positive values (0 V and +0.4 V). Both biofilms and suspended communities were also shifted when the anode potential was changed. Notably, at +0.4 V, Geobacter genus entirely disappeared from the biofilms, while Paludibacter species (known fermentative bacteria) were selectively enriched in biofilms. Also, the relative abundance of genus Bacteroides (known hydrolytic bacteria) substantially decreased in both biofilms and suspension, which was correlated with the inferior hydrolysis of VSS. Quantitative comparison of biofilms and suspended microbial communities at different anode potentials revealed a sharp decrease in bacterial cell numbers in anode biofilms after changing anode potential from -0.4 V to +0.4 V. By contrast, bacterial cell numbers in suspension were slightly decreased. Collectively, these results provide new insights into the role of anode potential in shaping key microbial players associated with hydrolysis/fermentation and anodic respiration processes when MECs are operated with real biowastes.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Long Lin
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
18
|
Zhou H, Xu G. Effect of silver nanoparticles on an integrated fixed-film activated sludge-sequencing batch reactor: Performance and community structure. J Environ Sci (China) 2019; 80:229-239. [PMID: 30952340 DOI: 10.1016/j.jes.2018.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The effects of silver nanoparticles (AgNPs) on reactor performance, extracellular polymeric substances composition and microbial community structure and function in integrated fixed-film activated sludge-sequencing batch reactors (IFAS-SBRs) were investigated. Results showed that the addition of AgNPs from 0.1 to 10 mg/L exhibited no significant effects on nutrient removal. The average overall removal of COD, NH4+-N and PO43--P was 96.6%, 99.9% and 98.8%, respectively. The introduction of AgNPs caused an increase in extracellular polymeric substances content for the sludge and biofilm of IFAS-SBRs. The release of Ag+ from AgNPs and lactate dehydrogenase test implied the low toxicity of AgNPs to IFAS-SBRs. High-throughput sequencing revealed that microbial community structure showed significant shifts at phylum and genus levels after long-term exposure to AgNPs, but core functional groups responsible for nutrient removal remained at high abundance. Bacterial function prediction indicated that the metabolic categories showed no significant shifts under AgNPs stress, therefore good process performance could still be achieved.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|