1
|
Das P, Barik SK, Bal M. Microplastic transport dynamics and the path forward with magnetic nanoparticle based solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125496. [PMID: 40306211 DOI: 10.1016/j.jenvman.2025.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Microplastics (MPs) have been found widely in aquatic systems and recognized as harmful pollutants for both human health and the environment. As a consequence, it has become essential to find solutions to resolve this issue. This study summarizes the extensive distribution of MPs across various aquatic environments. This paper highlights different types of magnetic nanoparticle and their efficiencies, retention time, kinetics or isotherms models and mechanisms of removal for different types of pollutants as well as MPs. Moreover, this study offers an extensive exploration of the interactions between magnetic nanoparticles (MNPs) and MPs, exploring the inherent mechanism of aggregation in detail. Furthermore, it highlights the recent developments in understanding the effectiveness of MNPs in removing MPs, demonstrating recent advancements in this area of research. It assesses the working principles, benefits, and drawbacks of various synthesis methods for nanoparticle formation, which have high potential for the remediation of MPs. Additionally, this work provides the potential future directions for further research. This comprehensive study uncovers key factors that could be significantly helpful in the development of remediation techniques that are more sustainable and effective.
Collapse
Affiliation(s)
- Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Sudhir Kumar Barik
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
2
|
Georgin J, Franco DSP, Dehmani Y, Nguyen-Tri P, El Messaoudi N. Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174501. [PMID: 38971239 DOI: 10.1016/j.scitotenv.2024.174501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Currently, pollution due to heavy metals, in particular dissolved mercury, is a major concern for society and the environment. This work aims to evaluate the current scenario regarding the removal/elimination of mercury. Mercury removal through adsorption is mainly done through artificial resins and metallic-organic frameworks. In the case of the zinc organic framework, it was able to adsorb Hg2+, reaching an adsorption capacity of 802 mg g-1. As for the Hg(0) the coconut husk was found to have the lowest equilibrium time, 30 min, and the highest adsorption capacity of 956.2 mg g-1. Experimental reports and molecular simulation indicate that the adsorption of mercury and other chemical forms occurs due to electrostatic interactions, ion exchange, precipitation, complexation, chelation, and covalent bonds, according to the material nature. The reported thermodynamic results show that, in most cases, the mercury adsorption has an endothermic nature with enthalpy levels below 40 kJ mol-1. Thermal and chemical regeneration methods lead to a similar number of 5 cycles for different materials. The presence of other ions, in particular cadmium, lead, and copper, generates an antagonistic effect for mercury adsorption. Regarding the other current technologies, it was found that mercury removal is feasible through precipitation, phytoremediation, and marine microalgae; all these methods require constant chemicals or a slow rate of removal according to the conditions. Advanced oxidative processes have noteworthy removal of Hg(0); however, Fenton processes lead to mineralization, which leads to Fe2+ and Fe3+ in solution; sonochemical processes are impossible to scale up at the current technology level; and electrochemical processes consume more energy and require constant changes of the anode and cathode. Overall, it is possible to conclude that the adsorption process remains a more friendly, economical, and greener process in comparison with other processes.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Younes Dehmani
- Laboratory of Chemistry/Biology Applied to the Environment, Faculty of Sciences, Moulay Ismaïl University, BP 11201-Zitoune, Meknes 50070, Morocco
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
3
|
Zhang S, Zhu G, Xu X, Luo F, Tian D, Liu Y, Wang Q, Chen Q, Jiang Y, Qi J, Xu J, Wu F, Feng X, Tang Q, Guo W, Lu Y. Two all-biomass cellulose/amino acid spherical nanoadsorbents based on a tri-aldehyde spherical nanocellulose II amino acid premodification platform for the efficient removal of Cr(VI) and Cu(II). Int J Biol Macromol 2024; 258:128748. [PMID: 38104693 DOI: 10.1016/j.ijbiomac.2023.128748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared. The morphologies as well as chemical and crystal structures of the two adsorbents were studied in detail. Notably, the synthesized adsorbents exhibited two important characteristics, namely, a spherical nanoparticle morphology and cellulose II crystal structure, which significantly enhanced their adsorption performance. The mechanism of the adsorption of Cr(VI) onto CTNAP-Lys and that of Cu(II) onto CTNAP-Cys were studied in detail, and the adsorption capacities were determined to be as high as 361.69 (Cr(VI)) and 252.38 mg/g (Cu(II)). Using the proposed strategy, it should be possible to prepare other all-biomass cellulose/amino acid spherical nanomaterials with high functional group density for adsorption, medical, catalytic, analytical chemistry, corrosion, and photochromic applications.
Collapse
Affiliation(s)
- Shaobo Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Gaolu Zhu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueju Xu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fanghan Luo
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qi Chen
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yongze Jiang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jinqiu Qi
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Wang J, Wang G, Deng X, Luo M, Xu S, Jiang B, Yuan G, An S, Liu J. One-pot synthesis of novel mesoporous FeOOH modified NaZrH(PO 4) 2·H 2O for the enhanced removal of Co(II) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5912-5927. [PMID: 38133758 DOI: 10.1007/s11356-023-31541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
One-pot synthesis of a novel mesoporous hydroxyl oxidize iron functional Na-zirconium phosphate (FeOOH-NaZrH(PO4)2·H2O) composites was firstly characterized and investigated its Co(II) adsorption from aqueous solution. Compared to NaZrH(PO4)2·H2O (65.7 mg⋅g-1), the maximum Co(II) adsorption capacity of FeOOH-NaZrH(PO4)2·H2O was improved to be 95.1 mg⋅g-1. BET verified the mesoporous structures of FeOOH-NaZrH(PO4)2·H2O with a larger pore volume than NaZrH(PO4)2·H2O. High pH values, initial Co(II) concentration, and temperature benefited the Co(II) adsorption. Kinetics, isotherms, and thermodynamics indicated an endothermic, spontaneous chemisorption process. FeOOH-NaZrH(PO4)2·H2O has a better Co(II) adsorption selectivity than that of NaZrH(PO4)2·H2O. In particular, FeOOH-NaZrH(PO4)2·H2O exhibited an outstanding reusability after ten cycles of tests. The main possible mechanism for adsorbents uptake Co(II) involved in ion exchange, electrostatic interaction, and -OH, Zr-O bond coordination based on FTIR and XPS analysis. This work presents a feasible strategy to prepare novel modified zirconium phosphate composites for extracting Co(II) from solutions and providing a new insight into the understanding of Co(II) adsorption in the real nuclear Co(II)-containing wastewater.
Collapse
Affiliation(s)
- Jing Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Guangxi Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Xiaoqin Deng
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Maodan Luo
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Su Xu
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Bing Jiang
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Guoyuan Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Shuwen An
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Jun Liu
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Shamaki A, Benjamin Ogueri C, Alomary S, Zondode M, Ndaw M, Hou J, Pramanik S, Pokharel S, Tadesse S, Liou SC, Du X, Tucker M, Sze K, Li J, Lisfi A, Wuttig M, Severn G, Pan YL, Lan Y. Photovoltaic amorphous feroxyhyte nanostructures synthesized by atmospheric AC microplasma. NANOTECHNOLOGY 2023; 35:085601. [PMID: 37963407 DOI: 10.1088/1361-6528/ad0c73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Feroxyhite (δ-FeOOH) nanomaterials were successfully synthesized through the atmospheric AC microplasma method at room temperature from ferrous sulfate aqueous solutions. Various syntheses conditions, including electric voltage, electric field strength, ferrous concentration, hydrogen peroxide concentration, and reaction duration, were systematically investigated. The synthesized products were characterized through x-ray diffraction, UV-vis absorption spectroscopy, photoluminescence spectroscopy, infra-red spectroscopy, and electron microscopy. The bandgap of the produced materials were strongly dependent of the ferrous concentration while the product ratio was dependent on all experimental conditions. The synthesis mechanism was thoroughly discussed. The synthesized nanomaterials were amorphous nanospheres, showing superparamagnetic properties at room temperature. The synthesized oxyhydroxide is a potential photovoltaic material besides its reported applications in photocatalysts and supercapacitors. The application of this synthesis technique could be extended to synthesize other oxy-hydroxide nanomaterials for renewable energy applications facilely, scalablely, cost-effectively, and environmentally.
Collapse
Affiliation(s)
- Aysha Shamaki
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Chiedozie Benjamin Ogueri
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Seham Alomary
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Mobolaji Zondode
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Marieme Ndaw
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Jie Hou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Souvik Pramanik
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, United States of America
| | - Sabin Pokharel
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Solomon Tadesse
- Department of Chemistry, Morgan State University, Baltimore, MD 21251, United States of America
| | - Sz-Chian Liou
- Advanced Imaging & Microscopy Laboratory, Maryland NanoCenter, University of Maryland, College Park, MD 20742, United States of America
| | - Xiaobo Du
- Department of Physics, Jilin University, Changchun, People's Republic of China
| | - Mikel Tucker
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Kit Sze
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Jiang Li
- Department of Civil Engineering, Morgan State University, Baltimore, MD 21251, United States of America
| | - Abdellah Lisfi
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| | - Manfred Wuttig
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States of America
| | - Greg Severn
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, United States of America
| | - Yong-Le Pan
- DEVCOM, Army Research Laboratory, Adelphi, Maryland 20783, United States of America
| | - Yucheng Lan
- Department of Physics and Engineering Physic, Morgan State University, Baltimore, MD 21251, United States of America
| |
Collapse
|
6
|
Li M, Kang Y, Ma H, Dong J, Wang Y, Kuang S. Efficient removal of heavy metals from aqueous solutions using Mn-doped FeOOH: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116161. [PMID: 37196694 DOI: 10.1016/j.envres.2023.116161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
The treatment of heavy metal ion contamination in aquatic ecosystems has been a growing global concern for centuries. Iron oxide nanomaterials are effective in heavy metals removal, but are frequently challenging due to the precipitation of Fe(III) and poor reusability. To improve the removal of heavy metals by iron hydroxyl oxide (FeOOH), the iron-manganese oxide material (FMBO) was separately prepared to remove Cd(II), Ni(II), and Pb(II) in individual and multiple systems. Results revealed that the loading of Mn enlarged the specific surface area and stabilized the structure of FeOOH. FMBO achieved 18%, 17%, and 40% higher removal capacities of Cd(II), Ni(II), and Pb(II) than that of FeOOH, respectively. Besides, mass spectrometry analysis demonstrated that the surface hydroxyls (-OH, Fe/Mn-OH) of FeOOH and FMBO provided the active sites for metal complexation. Fe(III) was reduced by Mn ions and further complexed with heavy metals. Further density functional theory calculations revealed that Mn loading led to the structural reconstruction of the electron transfer, which significantly promoted stable hybridization. This confirmed that FMBO improved the properties of FeOOH and was efficient for removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Mei Li
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yan Kang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| | - Haoqin Ma
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jiahao Dong
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yuqi Wang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Shaoping Kuang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
7
|
Song J, Zhao N, Zhao L. Self-assembly and phase transition of gold nanoclusters in natural deep eutectic solvent for visual detection of toxicants in water environment. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Ghosh S, Othmani A, Malloum A, Ke Christ O, Onyeaka H, AlKafaas SS, Nnaji ND, Bornman C, Al-Sharify ZT, Ahmadi S, Dehghani MH, Mubarak NM, Tyagi I, Karri RR, Koduru JR, Suhas. Removal of mercury from industrial effluents by adsorption and advanced oxidation processes: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Huang P, Yang W, Johnson VE, Si M, Zhao F, Liao Q, Su C, Yang Z. Selenium-sulfur functionalized biochar as amendment for mercury-contaminated soil: High effective immobilization and inhibition of mercury re-activation. CHEMOSPHERE 2022; 306:135552. [PMID: 35779677 DOI: 10.1016/j.chemosphere.2022.135552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The contamination of soils by mercury (Hg) seriously threatens the local ecological environment and public health. S-functionalized amendments are common remediation technology, yet, Hg re-activation often occurs in the commonly used immobilization remediation by S-functionalized amendments, resulting in an unsatisfactory remediation effect. In this study, a novel FeS-Se functionalized biochar composite (FeS-Se-BC) amendment was prepared and applied for the efficient remediation of Hg-polluted soil. An immobilization efficiency of 99.62% and 99.22% for H2O-extractable Hg and TCLP solution-extractable Hg was achieved with the application of FeS-Se-BC(0.05) after 180 d. The analyses of XPS, Hg-TPD, SEM-EDS demonstrated that excellent remediation performance by FeS-Se-BC resulted from the synergistic effect of FeS and Se to form HgS and HgSe concurrently. In comparison to the treatments of biochar and FeS-functionalized biochar (FeS-BC), FeS-Se-BC promoted the transformation of exchangeable, carbonate-bound, and Fe-Mn oxides-bound Hg fractions into organic material-bound, and residual fractions, effectively reducing the risk of Hg-contaminated soil from a highly dangerous level to a low risk. Furthermore, the introduction of Se clearly inhibited the re-activation of Hg and reduced the release of Hg by 81.12% compared to FeS-BC when the ratio of S2- to Hg was 5: 1 due to the formation of extremely stable HgSe. These results suggest that FeS-Se-BC has good potential for remediation of Hg-polluted soils which provides a new inhibitory idea for Hg re-activation after immobilization.
Collapse
Affiliation(s)
- Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Varney Edwin Johnson
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Changqing Su
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
10
|
Tapangpan P, Chiangraeng N, Boer SA, Semakul N, Nimmanpipug P, Rujiwatra A. Mercury removal efficiency of disulfide- and thiol-functionalized lanthanide coordination polymers. CHEMOSPHERE 2022; 305:135330. [PMID: 35724718 DOI: 10.1016/j.chemosphere.2022.135330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
To compare efficiency of disulfide and thiol groups in removing mercury from aqueous medium without noteworthy influence from structural differences, a series of new [LnIII(dtba)1.5(H2O)2] (LnIII = EuIII (I), GdIII (II) and TbIII (III), H2dtba = 4,4'-dithiobenzoic acid) were synthesized and characterized. The single crystal structure of I was elucidated and is described. Reaction of II with hydrazine gave IISH containing disulfide and thiol groups. Experimental data confirmed the preserved framework structure and the co-existing of disulfide and thiol groups in IISH. Robustness of II and IISH over a wide range of pH (2-10) was confirmed and their mercury removal performances at different pH were evaluated in terms of removal efficiencies (%R), equilibrium uptake capacities (qe) and distribution constant (Kd). The dependence of these parameters on pH is reported. The best values of %R, qe and Kd could be achieved at pH 10 at which surfaces of the adsorbents were negatively charged; 86%R, 429 mg g-1, and 6.04 × 103 mL g-1 (II), and 98%R, 490 mg g-1 and 5.08 × 104 mL g-1 (IISH). At pH 7, influences of the initial concentration of mercury on performances of the adsorbents as well as the adsorption isotherms and kinetics were examined from which the better performance of IISH has been concluded. The characterization of the adsorptions by the Langmuir model and the pseudo-second-order kinetic as well as their excellent consistency with the experimental data are included. At neutral pH, selectivity to the adsorption of mercury and tolerance to common anions were illustrated. The better affinity between mercury and thiol group and therefore its contribution to the better performance of IISH was then ascertained by a computational study.
Collapse
Affiliation(s)
- Pimchanok Tapangpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Stephanie A Boer
- ANSTO Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Lin Z, Huan Z, Zhang J, Li J, Li Z, Guo P, Zhu Y, Zhang T. CTAB-functionalized δ-FeOOH for the simultaneous removal of arsenate and phenylarsonic acid in phenylarsenic chemical warfare. CHEMOSPHERE 2022; 292:133373. [PMID: 34958793 DOI: 10.1016/j.chemosphere.2021.133373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/23/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
This study prepared a cetyltrimethylammonium bromide (CTAB) functionalized δ-FeOOH using the coprecipitation method to remove arsenate and phenylarsonic acid in water polluted by phenylarsonic chemical warfare agents. Under neutral conditions, the adsorption capacity for arsenate and phenylarsonic acid was 45.7 and 85.3 mg g-1, respectively. The adsorption process conformed to the pseudo-second-order kinetics and Freundlich isothermal adsorption model, and the adsorption was spontaneous and endothermic. The CTAB-functionalized δ-FeOOH could effectively resist the interference of coexisting anions except for CO32-, SiO32- and PO43-. Furthermore, the adsorption mechanism was proposed by combining the adsorption experimental results, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory analyses. The results showed that the adsorption of arsenate by the CTAB-functionalized δ-FeOOH was mainly through the formation of bidentate-dinuclear inner-sphere complexes and electrostatic interactions. While for phenylarsonic acid, the formation of monodentate-mononuclear inner-sphere complexes on (100) and (110) crystal facets, and the formation of bidentate-dinuclear inner-sphere complexes on the (002) crystal facet, as well as hydrogen bonding, electrostatic interaction, and π-hydrophobic interaction between organic compounds were the primary mechanism. Moreover, the CTAB-functionalized δ-FeOOH could maintain about 60% of the adsorption capacity for the two pollutants after five cycles. Overall, CTAB-functionalized δ-FeOOH has good potential for the remediation of inorganic and organic arsenic-contaminated water bodies.
Collapse
Affiliation(s)
- Zuhong Lin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenglai Huan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
12
|
Green Supported Cu nanoparticles on modified Fe3O4 nanoparticles using Thymbra spicata flower extract: Investigation of its antioxidant and the anti-human lung cancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Venkateswarlu S, Yoon M, Kim MJ. An environmentally benign synthesis of Fe 3O 4 nanoparticles to Fe 3O 4 nanoclusters: Rapid separation and removal of Hg(II) from an aqueous medium. CHEMOSPHERE 2022; 286:131673. [PMID: 34358889 DOI: 10.1016/j.chemosphere.2021.131673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In the field of nanotechnology, nanoadsorbents have emerged as a powerful tool for the purification of contaminated aqueous environments. Among the variety of nanoadsorbents developed so far, magnetite (Fe3O4) nanoparticles have drawn particular interest because of their quick separation, low cost, flexibility, reproducibility, and environmentally benign nature. Herein, we describe a new strategy for the synthesis of Fe3O4 nanoclusters, which is based on the use of naturally available edible mushrooms (Pleurotus eryngii) and environmentally benign propylene glycol as a solvent medium. By tuning the temperature, we successfully convert Fe3O4 nanoparticles into Fe3O4 nanoclusters via hydrothermal treatment, as evidenced by transmission electron microscopy. The Fe3O4 nanoclusters are functionalized with an organic molecule linker (dihydrolipoic acid, DHLA) to remove hazardous Hg(II) ions selectively. Batch adsorption experiments demonstrate that Hg(II) ions are strongly adsorbed on the material surface, and X-ray photoelectron and Fourier transform infrared spectroscopy techniques reveal the Hg(II) removal mechanism. The DHLA@Fe3O4 nanoclusters show a high removal efficiency of 99.2 % with a maximum Hg(II) removal capacity of 140.84 mg g-1. A kinetic study shows that the adsorption equilibrium is rapidly reached within 60 min and follows a pseudo second-order kinetic model. The adsorption and separation system can be readily recycled using an external magnet when the separation occurs within 10 s. We have studied the effect of various factors on the adsorption process, including pH, concentration, dosage, and temperature. The newly synthesized superparamagnetic DHLA@Fe3O4 nanoclusters open a new path for further development of the medical, catalysis, and environmental fields.
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea.
| |
Collapse
|
14
|
Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 2021; 296:102519. [PMID: 34496320 DOI: 10.1016/j.cis.2021.102519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
of the points of zero charge (PZC) and isoelectric points (IEP) of various materials published in the recent literature and of older results overlooked in the previous compilations. The roles of experimental conditions, especially of the temperature, of the nature and concentration of supporting electrolyte, and of the type of apparatus are emphasized. The newest results are compared with the zero points reported in previous reviews. Most recent studies were carried out with materials whose pH dependent surface charging is already well-documented, and the newest results are consistent with the older literature. Isoelectric points of Gd(OH)3, Sm(OH)3, and TeO2 have been reported for the first time in the recent literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|
15
|
Veisi H, Zohrabi A, Kamangar SA, Karmakar B, Saremi SG, Varmira K, Hamelian M. Green synthesis of Pd/Fe3O4 nanoparticles using Chamomile extract as highly active and recyclable catalyst for Suzuki coupling reaction. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Godbole R, Lee SJ, Kim YS, Seo HK, Kim BK, Chung HS, Jeong SH, Yoon DY, Lee HJ, Park JB. Efficient and additive-free synthesis of morphology variant iron oxyhydroxide nanostructures for phosphate adsorption application. NANOTECHNOLOGY 2021; 32:495602. [PMID: 34428759 DOI: 10.1088/1361-6528/ac2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Iron oxyhydroxide (FeOOH) nanostructures of different shapes were successfully synthesized on flexible textile cloth of polyester using a novel and simple technique based on hydrolysis method. The technique used herein is newly designed specifically to improve the efficiency in terms of energy, simplicity and cost involved in large scale synthesis of nanostructured thin films. Additionally, the morphology of nano-sized iron oxyhydroxide could be tuned into different shapes through variation in the type of precursors used for synthesis. The uniformity and adhesion of the depositions were also found to be excellent as examined by qualitative techniques. The as-deposited samples exhibited monoclinic and orthorhombic structures of FeOOH. A significant variation in the shape of as-deposited FeOOH nanostructures with change in precursor was observed through morphological studies, which displayed lance-shaped, rounded clusters and rod-like growth features in different cases. The nanocrystalline FeOOH can be directly applied to attract and trap phosphate from water reservoirs, thus contributing to environmental solutions. The proposed technique can also be utilized to deposit larger areas, which could be suitable for practical applications.
Collapse
Affiliation(s)
- Rhushikesh Godbole
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Sei-Jin Lee
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Yang Soo Kim
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Hyung-Kee Seo
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bo Kyoung Kim
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Hee-Suk Chung
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Sang-Hun Jeong
- Gwangju Center, Korea Basic Science Institute, 77 Yongbong-ro, Buk-gu, Gwangju 61168, Republic of Korea
| | - Dong-Yun Yoon
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 03759, Republic of Korea
| | - Ha-Jin Lee
- Department of Chemistry, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul 01797, Republic of Korea
| | - Jong Bae Park
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| |
Collapse
|
17
|
Huang Y, Kang Y, El-kott A, Ahmed AE, Khames A, Zein MA. Decorated Cu NPs on Lignin coated magnetic nanoparticles: Its performance in the reduction of nitroarenes and investigation of its anticancer activity in A549 lung cancer cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Aragaw TA, Bogale FM, Aragaw BA. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Yu F, Luo P, Chen Y, Jiang H, Wang X. The synthesis of novel fluorescent bimetal nanoclusters for aqueous mercury detection based on aggregation-induced quenching. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2575-2585. [PMID: 34013917 DOI: 10.1039/d1ay00342a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this research, new bimetal nanoclusters (DAMP-AuAg BNCs) with 4,6-diamino-2-mercaptopyrimidine (DAMP) as a reducing agent and stabilizer ligand were exploited. The nanoclusters displayed excellent fluorescent properties, very small size, good stability, and water solubility. It was found that the as-prepared DAMP-AuAg BNCs exhibited strong fluorescent emission at 640 nm under an excitation wavelength of 473 nm with a large Stokes shift of 167 nm, and the red fluorescence could be readily quenched with aqueous Hg2+. The DAMP-AuAg BNCs showed good specificity and sensitivity toward Hg2+ in aqueous solution, and the fluorescence analysis of Hg2+ showed a wide linear range from 0.85 μM to 246 μM and a detection limit of 20 nM. It is demonstrated that strong Hg2+-Au+ interactions led to the aggregation of nanoclusters, which caused the quenching of the fluorescence, and the affinity of Hg2+ for nitrogen should also be considered. Due to the relevant good performance of DAMP-AuAg BNCs, they were applied to the fluorescence analysis of Hg2+ in real water samples and were found to be a potential fluorescent sensor for aqueous mercury ions.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | |
Collapse
|
20
|
Hsini A, Benafqir M, Naciri Y, Laabd M, Bouziani A, Ez-zahery M, Lakhmiri R, Alem NE, Albourine A. Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: Adsorption behavior, regeneration and process capability studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126274] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Zeng Q, Hu L, Zhong H, He Z, Sun W, Xiong D. Efficient removal of Hg 2+ from aqueous solution by a novel composite of nano humboldtine decorated almandine (NHDA): Ion exchange, reducing-oxidation and adsorption. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124035. [PMID: 33035907 DOI: 10.1016/j.jhazmat.2020.124035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Efficient removal of Hg2+ from aqueous solution is key for environmental protection and human health. Herein, a novel composite of nano humboldtine decorated almandine was synthesized from almandine for the removal of Hg2+. Results showed that the Hg2+ removal process followed pseudo-second-order kinetic model and Langmuir equation, and the maximum adsorption capacity was 575.17 mg/g. Furthermore, Hg2+ removal by the composite was pH-dependent and low pH value facilitated the removal of Hg2+. SEM and HADDF-STEM results suggested a new rod morphology was generated and the adsorbed mercury was mainly enriched into this structure after reaction with Hg2+ solution. The removal mechanisms of Hg2+ by the composite was pH dependent, and included ion exchange, surface complexation, reduction and oxidation. Our results demonstrated that the composite was an ideal material for Hg2+ removal and the transformation ways of mercury related species could be a significant but currently underestimated pathway in natural and engineered systems.
Collapse
Affiliation(s)
- Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Daoling Xiong
- Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
22
|
Çalışkan M, Baran T. Decorated palladium nanoparticles on chitosan/δ-FeOOH microspheres: A highly active and recyclable catalyst for Suzuki coupling reaction and cyanation of aryl halides. Int J Biol Macromol 2021; 174:120-133. [PMID: 33513423 DOI: 10.1016/j.ijbiomac.2021.01.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
In this study, an eco-friendly and low cost magnetic nanocomposite consisting of chitosan/δ-FeOOH microspheres (CS/δ-FeOOH) was fabricated as a stabilizer by using a simple method. Pd nanoparticles (Pd NPs) were decorated on the designed CS/δ-FeOOH, and the resulting Pd NPs@CS/δ-FeOOH microspheres were employed as a heterogeneous catalyst in the construction of biaryl and benzonitriles. Pd NPs@CS/δ-FeOOH microspheres efficiently catalyzed the conversion of aryl iodides and bromides to the desired biaryls within 3 h. Moreover, Pd NPs@CS/δ-FeOOH microspheres showed high catalytic potential against synthesis of benzonitriles by providing yields up to of 99% within 4 h. More importantly, it was proved that Pd NPs@CS/δ-FeOOH microspheres were able to be easily recycled and reused up to eight runs for both reactions. This study reveals that Pd NPs@CS/δ-FeOOH microspheres are useful and recyclable nanocatalysts, which catalyze the synthesis of biaryl and benzonitriles with good reaction yields.
Collapse
Affiliation(s)
- Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey.
| |
Collapse
|
23
|
Huang Y, Su M, Chen D, Zhu L, Pang Y, Chen Y. Highly-efficient and easy separation of hexahedral sodium dodecyl sulfonate/δ-FeOOH colloidal particles for enhanced removal of aqueous thallium and uranium ions: Synergistic effect and mechanism study. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123800. [PMID: 33254803 DOI: 10.1016/j.jhazmat.2020.123800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Thallium (Tl) and uranium (U) contaminants pose serious threats to the ecological environment and human health. In this research, a cost-effective feroxyhite (δ-FeOOH) dispersed with sodium dodecyl sulfonate (SDS) was prepared and a series of experiments were optimized to explore the removal mechanism of Tl+ and UO22+ from the effluent. The SDS/δ-FeOOH exhibited highly dispersed colloidal particles and showed significantly enhanced adsorption performance on the removal of Tl and U in the presence of H2O2 and pH of 7.0. Equilibrium uptakes of 99.5% and 99.7% were rapidly achieved for Tl+ and UO22+ within 10 min, respectively. The Freundlich isotherm model fitted well with the adsorption data of Tl and U. The maximum isotherm sorption capacity of SDS/δ-FeOOH for Tl+ and UO22+ was 182.9 and 359.6 mg/g, respectively. The sorption of Tl followed the pseudo-second-order kinetic model, whereas the sorption of U followed the pseudo-first-order kinetic model. The uptake of Tl and U by SDS/δ-FeOOH was notably inhibited at Na+, K+ concentrations over 5.0 mM, and a high content of dissolved organic matter (over 0.5 mg/L). The mechanistic study revealed that ion exchange, precipitation, and surface complexation were main mechanisms for the removal of Tl and U. The findings of this study indicate that stabilizer dispersion may serve as an effective strategy to facilitate the treatment of wastewater containing Tl and U by using δ-FeOOH.
Collapse
Affiliation(s)
- Ying Huang
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou 510006, PR China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Liqiong Zhu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yixiong Pang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yongheng Chen
- Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
24
|
Guo S, Liu B, Zhang M, Li C, Wang X, Weng Y, Li L, Huang Y. A novel polyethyleneimine-decorated FeOOH nanoparticle for efficient siRNA delivery. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Basadi N, Ghanemi K, Nikpour Y. l-Cystine-functionalized graphene oxide nanosheets for effective extraction and preconcentration of mercury ions from environmental waters. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01368-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Ebiad MA, Abd El-Hafiz DR, Masod MB. β-FeOOH/C nanocomposite for elemental mercury removal as a new approach to environmental and natural gas processes. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING 2020; 80:103383. [DOI: 10.1016/j.jngse.2020.103383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Movahhedi F, Maghsodi A, Adlnasab L. Response surface methodology for heavy metals removal by tioglycolic-modified Zn–Fe layer double hydroxide as a magnetic recyclable adsorbent. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01149-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Adsorption Processing for the Removal of Toxic Hg(II) from Liquid Effluents: Advances in the 2019 Year. METALS 2020. [DOI: 10.3390/met10030412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mercury is a toxic metal, thus, it is an element which has more and more restrictions in its uses, but despite the above, the removal of this metal, from whatever the form in which it is encountered (zero valent metal, inorganic, or organic compounds), and from different sources, is of a widespread interest. In the case of Hg(II), or Hg2+, the investigations about the treatment of Hg(II)-bearing liquid effluents (real or in most cases synthetic solutions) appear not to end, and from the various separation technologies, adsorption is the most popular among researchers. In this topic, and in the 2019 year, more than 100 publications had been devoted to this field: Hg(II)-removal-adsorption. This work examined all of them.
Collapse
|
29
|
Li X, Wu T, Fu Y, Ding X, Li Z, Zhu G, Fan J. A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-δ-FeOOH nanoassembly. Biosens Bioelectron 2020; 150:111928. [DOI: 10.1016/j.bios.2019.111928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
|
30
|
Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O'Connor D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. ENVIRONMENT INTERNATIONAL 2020; 134:105281. [PMID: 31726360 DOI: 10.1016/j.envint.2019.105281] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 05/24/2023]
Abstract
Mercury contamination in soil, water and air is associated with potential toxicity to humans and ecosystems. Industrial activities such as coal combustion have led to increased mercury (Hg) concentrations in different environmental media. This review critically evaluates recent developments in technological approaches for the remediation of Hg contaminated soil, water and air, with a focus on emerging materials and innovative technologies. Extensive research on various nanomaterials, such as carbon nanotubes (CNTs), nanosheets and magnetic nanocomposites, for mercury removal are investigated. This paper also examines other emerging materials and their characteristics, including graphene, biochar, metal organic frameworks (MOFs), covalent organic frameworks (COFs), layered double hydroxides (LDHs) as well as other materials such as clay minerals and manganese oxides. Based on approaches including adsorption/desorption, oxidation/reduction and stabilization/containment, the performances of innovative technologies with the aid of these materials were examined. In addition, technologies involving organisms, such as phytoremediation, algae-based mercury removal, microbial reduction and constructed wetlands, were also reviewed, and the role of organisms, especially microorganisms, in these techniques are illustrated.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yining Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFe 2O 4@SiO 2 Nanomaterial with Core-Shell Structure. NANOMATERIALS 2019; 9:nano9111532. [PMID: 31671771 PMCID: PMC6915675 DOI: 10.3390/nano9111532] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
In order to reduce the difficulty and risk of operation, decrease the preparation time and improve the adsorption performance of magnetic nano-silicon adsorbent with core-shell structure, a carboxylated CoFe2O4@SiO2 was prepared by EDTA-functionalized method using a safe, mild and simple hydrothermal method. The results show that the prepared material of CoFe2O4@SiO2-EDTA has a maximum adsorption capacity of 103.3 mg/g for mercury ions (Hg(II)) at pH = 7. The adsorption process of Hg(II) is a chemical reaction involving chelation and single-layer adsorption, and follows the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Moreover, the removal of Hg(II) is a spontaneous and exothermic reaction. The material characterization, before and after adsorption, shows that CoFe2O4@SiO2-EDTA has excellent recyclability, hydrothermal stability and fully biodegradable properties. To summarize, it is a potential adsorption material for removing heavy metals from aqueous solutions in practical applications.
Collapse
|
32
|
Hu J, Li S, Chu J, Niu S, Wang J, Du Y, Li Z, Han X, Xu P. Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03876] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Labidi A, Salaberria AM, Labidi J, Abderrabba M. Preparation of novel carboxymethylchitosan-graft-poly(methylmethacrylate) under microwave irradiation as a chitosan-based material for Hg2+ removal. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Gong Y, Huang Y, Wang M, Liu F, Zhang T. Application of Iron-Based Materials for Remediation of Mercury in Water and Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:721-729. [PMID: 30756128 DOI: 10.1007/s00128-019-02559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Mercury contamination in soil and water has become a major concern to environmental quality and human health. Among the existing remediation technologies for mercury pollution control, sorption via iron-based materials has received wide attention as they are environmental friendly and economic, and their reactivity is high and controllable through modulating the morphology and surface properties of particulate materials. This paper aimed to provide a comprehensive overview on environmental application of a variety of iron-based sorbents, namely, zero valent iron, iron oxides, and iron sulfides, for mercury remediation. Techniques to improve the stability of these materials while enhancing mercury sequestration, such as nano-scale size control, surface functionalization, and mechanical support, were summarized. Mechanisms and factors affecting the interaction between mercury and iron-based materials were also discussed. Current knowledge gaps and future research needs are identified to facilitate a better understanding of molecular-level reaction mechanisms between iron-based materials and mercury and the long-term stability of the immobilized mercury.
Collapse
Affiliation(s)
- Yanyan Gong
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Yao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Mengxia Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Fangfei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
35
|
Li Y, Fu F, Cai W, Tang B. Synergistic effect of mesoporous feroxyhyte nanoparticles and Fe(II) on phosphate immobilization: Adsorption and chemical precipitation. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Venkateswarlu S, Govindaraju S, Sangubotla R, Kim J, Lee MH, Yun K. Biosynthesized Highly Stable Au/C Nanodots: Ideal Probes for the Selective and Sensitive Detection of Hg 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E245. [PMID: 30759765 PMCID: PMC6409943 DOI: 10.3390/nano9020245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 01/14/2023]
Abstract
The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Nanochemistry, Gachon University, Gyeonggi-do 13120, Korea.
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea.
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|