1
|
Moreno-Vega G, Frazão LR, De-La-Cruz LT, Lopes RM. Changes in the swimming behavior of Temora turbinata (Copepoda, Calanoida) in response to sub-lethal concentrations of caffeine and triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107352. [PMID: 40209295 DOI: 10.1016/j.aquatox.2025.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Caffeine (CAF) and triclosan (TCS) are contaminants of emerging environmental concern due to their widespread presence in marine environments and their potential biological effects on non-target organisms. Despite growing efforts to assess the toxicity of CAF and TCS in aquatic organisms, knowledge of their impacts on marine zooplankton remains limited, particularly regarding physiological aspects such as swimming behavior, a key component of copepod ecology. As the most abundant group of zooplankton, copepods play a crucial role in pelagic food webs and biogeochemical carbon cycles. This study presents findings from microcosm experiments designed to evaluate the immediate effects of two sub-lethal concentrations of CAF and TCS on the three-dimensional swimming behavior of the marine calanoid copepod Temora turbinata. Using 3D horizontal optical system, we analyzed the displacement patterns and swimming speeds of adult T. turbinata individuals before, during, and after exposure to 50 µg L⁻¹ and 100 µg L⁻¹ concentrations of CAF and TCS. Results indicate that both CAF and TCS immediately affect copepod free-swimming behavior, with CAF exposure inducing hyperactivity and TCS exposure leading to hypoactivity. By addressing knowledge gaps concerning the effects of emerging contaminants on marine zooplankton, this study supports the use of copepod kinematics as a sensitive indicator of short-term responses to sub-lethal chemical exposure, providing a predictive tool for assessing contaminant effects on planktonic communities.
Collapse
Affiliation(s)
- Gelaysi Moreno-Vega
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Luciana Rocha Frazão
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Leandro Ticlia De-La-Cruz
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Rubens M Lopes
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil.
| |
Collapse
|
2
|
Frazão LR, Penninck SB, Signori CN, Lopes RM. Pharmaceuticals and personal care products in the coastal zone of Ubatuba (Brazil): An ecological and touristic hotspot facing high contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179167. [PMID: 40121917 DOI: 10.1016/j.scitotenv.2025.179167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
This study presents the first investigation into the occurrence, spatial distribution, and ecological risk of pharmaceuticals and personal care products (PPCPs) in the coastal zone of Ubatuba, a tourist hotspot with significant ecological value located on the southeastern coast of Brazil. Sampling was conducted immediately after the New Year holidays, over two consecutive years (January 2019 and 2020), in two areas with distinct physiographic and oceanographic characteristics and different levels of anthropogenic impact: Flamengo Inlet and Ubatuba Bay. Quantitative analysis using high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) detected 15 of the 22 target compounds, including antihypertensives, anti-inflammatory/analgesics, β-blockers, caffeine, cocaine, and its human metabolite, benzoylecgonine. Concentrations ranged from 0.024 ng L-1 (carbamazepine) to 3500 ng L-1 (caffeine). The occurrence of caffeine, cocaine, diclofenac, and propanolol at outer stations in Flamengo Inlet suggests that lateral advection by coastal currents may transport these contaminants along the inner shelf, far from their original sources. Ecological risk assessment indicated that caffeine and diclofenac pose a high risk in both study areas, with phytoplankton being the most sensitive to these contaminants. Notably, concentrations of some target compounds in Ubatuba Bay were comparable to or exceeded those reported in highly urbanized coastal regions globally. Our findings complement earlier studies and contradict the assumption that PPCPs contamination are mainly connected with highly anthropized areas. This also highlights the need to investigate the impact of domestic sewage and touristic pollution on ecologically sensitive coastal habitats to obtain a more comprehensive view of PPCPs pollution and its implication for conservation goals and public health.
Collapse
Affiliation(s)
- Luciana Rocha Frazão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil.
| | - Silvana Batista Penninck
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil.
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil.
| | - Rubens M Lopes
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil.
| |
Collapse
|
3
|
Rodrigues DADS, Starling MCVM, Barros ALCD, Santos MC, da Silva ES, Viana GCC, Ribeiro LFDS, Simcik MF, Amorim CC. Occurrence of antibiotics, hormones and PFAs in surface water from a Nile tilapia aquaculture facility in a Brazilian hydroelectric reservoir. CHEMOSPHERE 2024; 352:141444. [PMID: 38346513 DOI: 10.1016/j.chemosphere.2024.141444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (β-estradiol). Estrone (10.24 ng g-1) and β-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 μg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.
Collapse
Affiliation(s)
- Daniel Aparecido da S Rodrigues
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Clara V M Starling
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - André Luiz C de Barros
- ProAmb - Graduate Program in Environmental Engineering, Department of Environmental Engineering, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil, in Memoriam
| | - Mônica C Santos
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eloísa Stéphanie da Silva
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guenther Carlos C Viana
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lara Fabian da S Ribeiro
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matt F Simcik
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN, 55455, USA
| | - Camila C Amorim
- GruPOA - Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; SIMOA - Intelligent Systems for Environmental Monitoring, Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Caldas LL, Moreira RA, Espíndola ELG, Novelli A. Environmental Risk Assessment of Drugs in Tropical Freshwaters Using Ceriodaphnia silvestrii as Test Organism. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:106. [PMID: 37284985 DOI: 10.1007/s00128-023-03739-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
In this study we evaluated the acute (immobility/mortality) and chronic (survival and reproduction) effects of the drugs caffeine, diclofenac sodium salt, ketoprofen, paracetamol and salicylic acid on the cladoceran Ceriodaphnia silvestrii. The environmental risks of these substances for tropical freshwaters were estimated from the risk quotient MEC/PNEC. Sensitivity in acute exposures varied up on the drug as follows: salicylic acid (EC50 = 69.15 mg L- 1) < caffeine (EC50 = 45.94 mg L- 1) < paracetamol (EC50 = 34.49 mg L- 1) < ketoprofen (EC50 = 24.84 mg L- 1) < diclofenac sodium salt (EC50 = 14.59 mg L- 1). Chronic toxicity data showed negative effects of the drugs on reproduction. Paracetamol and salicylic acid caused reduction in fecundity in concentrations starting from 10 mg L- 1 and 35 mg L- 1, respectively. Ketoprofen caused total inhibition at 5 mg L- 1. MEC/PNEC values were relatively low for all drugs. The risk was estimated as low or insignificant, except for caffeine, whose MEC/PNEC value was greater than 1 (moderate risk).
Collapse
Affiliation(s)
- Lucas Lopes Caldas
- PPGECIA and GEEA/DEAM, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, 49100-000, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Andrea Novelli
- PPGECIA and GEEA/DEAM, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, 49100-000, Brazil
| |
Collapse
|
5
|
Paixão GR, Camparotto NG, Brião GDV, Oliveira RDL, Colmenares JC, Prediger P, Vieira MGA. Synthesis of mesoporous P‑doped carbon and its application in propranolol drug removal: Characterization, kinetics and isothermal studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
7
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence of pharmaceuticals and cocaine in the urban drainage channels located on the outskirts of the São Vicente Island (São Paulo, Brazil) and related ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57931-57945. [PMID: 35359205 PMCID: PMC8970415 DOI: 10.1007/s11356-022-19736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
"Wealth by the sea and poverty away from the sea breeze" is a metaphor that mirrors what happens along the Brazilian coastal zone, namely in São Vicente Island, São Paulo, Brazil. Due to the high cost of the properties on this shore, the impoverished population started to migrate to the northern outskirts of the island (away from the tourist beaches), potentiating the emergence of poor housing conditions, namely stilt-house slums. Consequently, the urban drainage channels across these outskirts neighbourhoods are potentially contaminated by human wastes. In this context, the occurrence and preliminary ecological risk assessment of eleven pharmaceuticals of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in five urban drainage channels whose diffuse loads flow continuously to the estuarine waters of São Vicente Island. The results showed the widespread presence of these environmental stressors in all urban channels analysed, namely losartan (7.3-2680.0 ng/L), caffeine (314.0-726.0 ng/L), acetaminophen (7.0-78.2 ng/L), atenolol (6.2-23.6 ng/L), benzoylecgonine (10.2-17.2 ng/L), furosemide (1.0-7.2 ng/L), cocaine (2.3-6.7 ng/L), carbamazepine (0.2-2.6 ng/L), diclofenac (1.1-2.5 ng/L), orphenadrine (0.2-1.1 ng/L) and chlortalidone (0.5-1.0 ng/L). The overall total estimated load of pharmaceuticals and personal care products flowing to the estuarine waters of São Vicente Island is on the order of 41.1 g/day. The ecological risk assessment revealed a great environmental concern for São Vicente Island, ranging between low (e.g. carbamazepine and cocaine) and moderate to high (e.g. caffeine, acetaminophen and losartan) threats for the aquatic biota. Therefore, initiatives promoting basic sanitation, land-use regularisation and population awareness are highly recommended.
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da, Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade Do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
9
|
Dos Santos JA, Quadra GR, Almeida RM, Soranço L, Lobo H, Rocha VN, Bialetzki A, Reis JL, Roland F, Barros N. Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:161-167. [PMID: 34773559 DOI: 10.1007/s10646-021-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood. We exposed larvae of an endemic Neotropical catfish (Rhamdia quelen) to a range of caffeine concentrations for 30 days. We found that larvae exposed to the highest concentration (16 mg L-1) showed skeletal deformations and reduced growth. We further compiled measured environmental concentrations of caffeine in surface freshwater globally and performed a risk assessment. Our analysis points to a low risk to R. quelen and equally sensitive fish species in ~90% of the freshwater ecosystems considered in our analysis. The risk quotient is higher in freshwater ecosystems of South and Central America, where R. quelen is endemic. Although the ecotoxicological risk is currently low in most places, increased caffeine consumption, exacerbated by the lack of sanitation, is expected to increase caffeine concentrations in many parts of the world, posing a threat of sublethal morphological effects to local fish species.
Collapse
Affiliation(s)
- Joyce Andreia Dos Santos
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil.
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Gabrielle Rabelo Quadra
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Rafael M Almeida
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
- School of Earth, Environmental, and Marine Scinences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Laís Soranço
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Haroldo Lobo
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Vinicius Novaes Rocha
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Andréa Bialetzki
- Laboratório de Ictioplâncton/Nupélia (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura)/UEM/ Universidade Estadual de Maringá. Av. Colombo, 5790, Bloco G-80, Maringá, CEP 87020-900, Paraná, Brazil
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)/Departamento de Biologia/UEM, Universidade Estadual de Maringá. Av. Colombo, 5790, Bloco G-80, Maringá, CEP 87020-900, Paraná, Brazil
| | - Janildo Ludolf Reis
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Fábio Roland
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Nathan Barros
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
10
|
Mashile PP, Nomngongo PN. Magnetic Cellulose-Chitosan Nanocomposite for Simultaneous Removal of Emerging Contaminants: Adsorption Kinetics and Equilibrium Studies. Gels 2021; 7:gels7040190. [PMID: 34842666 PMCID: PMC8628732 DOI: 10.3390/gels7040190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of pharmaceuticals in water systems threatens both terrestrial and aquatic life across the globe. Some of such contaminants are β-blockers and anticonvulsants, which have been constantly detected in different water systems. Various methodologies have been introduced for the removal of these emerging pollutants from different waters. Among them, adsorption using nanomaterials has proved to be an efficient and cost-effective process for the removal of pharmaceuticals from contaminated water. In this this study, a firsthand/time approach applying a recyclable magnetic cellulose-chitosan nanocomposite for effective simultaneous removal of two β-blockers (atenolol (ATN)) and propranolol (PRP) and an anticonvulsant (carbamazepine (CBZ)) is reported. A detailed characterization of the eco-friendly, biocompatible cellulose-chitosan nanocomposite with magnetic properties was performed at various rates of synthesis using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy. A N2c adsorption-desorption test showed that the prepared nanocomposite is mesoporous, with a BET area of 112 m2 g-1. The BET isotherms results showed that the magnetic cellulose-chitosan nanocomposite has a pore size of 24.1 nm. The adsorption equilibrium of PRP and CBZ fitted with the Langmuir isotherm was consistent with the highest coefficient of determination (R2 = 0.9945) and (R2 = 0.9942), respectively, while the Sips model provided a better fit for ATN, with a coefficient of determination R2 = 0.9956. The adsorption rate was accompanied by a pseudo-second-order kinetics. Moreover, the swelling test showed that up to 100 percent swelling of the magnetic cellulose-chitosan nanocomposite was achieved.
Collapse
Affiliation(s)
- Phodiso Prudence Mashile
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| |
Collapse
|
11
|
Gueye C, Aaron JJ, Gaye-Seye MD, Cisse L, Oturan N, Oturan MA. A spectrofluorimetric method for the determination of pindolol in natural waters using various organic and cyclodextrin media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55029-55040. [PMID: 34128161 DOI: 10.1007/s11356-021-14801-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
A simple, sensitive, and rapid spectrofluorimetric method was developed for the determination of the β-blocker pindolol. The native fluorescence of pindolol was measured in different organic solvents and in cyclodextrin aqueous media. The highest fluorescence signal was obtained in 2-propanol at λem = 303 nm with λex = 260 nm. Analytical figures of merit for the spectrofluorimetric determination of pindolol were satisfactory, with wide linear dynamic range (LDR) values of two orders of magnitude, and rather low limit of detection (LOD) values between 0.2 and 8.7 ng/mL. Moreover, the addition of cyclodextrins (HP-β-CD and β-CD) in aqueous media enhanced the fluorescence of pindolol. In addition, the inclusion complexes of pindolol with cyclodextrins were investigated and the stability constants of complexes were calculated by means of the method of nonlinear regression (NLR). The method was successfully applied to the analysis of tap water and natural water samples, spiked with pindolol.
Collapse
Affiliation(s)
- Coumba Gueye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jean-Jacques Aaron
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France.
| | - Mame Diabou Gaye-Seye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lamine Cisse
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| |
Collapse
|
12
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
13
|
Picó Y, Campo J, Alfarhan AH, El-Sheikh MA, Barceló D. A reconnaissance study of pharmaceuticals, pesticides, perfluoroalkyl substances and organophosphorus flame retardants in the aquatic environment, wild plants and vegetables of two Saudi Arabia urban areas: Environmental and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145843. [PMID: 33640550 DOI: 10.1016/j.scitotenv.2021.145843] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 05/23/2023]
Abstract
In this study, the occurrence of 12 organophosphorus flame retardants (OPFRs), 64 pesticides, 21 perfluoroalkyl substances (PFASs) and 34 pharmaceuticals and personal care products (PPCPs) in surface water, sediments and vegetation collected from seven locations along the South Riyadh and six locations along the Al-Jubail industrial city (Saudi Arabia) were reported. The median of the concentrations of ƩOPFRs, ƩPesticides, ƩPFASs and ƩPPCPs in water was 297, 231, 29.7 and 3794 ng L-1, respectively, in sediments 56.2, 40.4, 5.66 and 419 ng g-1 d.w., in crops for human consumption of 45.6, 42.0, 0.46 and 42.0 ng g-1, in farm crops of 13.4, 57.5, 3.2 and 637 ng g-1, and in natural vegetation of 51.7, 10.3, 1.88 and 1580 ng g-1. Predominant compounds in all matrices were tris-(1,3-dichloro-2-propyl)phosphate (TClPP), acetamiprid, imidacloprid, caffeine, bisphenol A (BPA), diclofenac and ibuprofen. Tris(2-butoxyethyl) phosphate (TBEP), tris-(2-ethylhexyl)phosphate (TPhP), perfluoroctanoic acid (PFOA), perfluoroalkyl sulfonate (PFOS) and paracetamol were also in many samples but at low concentrations. The contaminants' levels showed similar values in both cities. However, pesticide levels were significantly higher in surface water (p < 0.05) and lower in natural vegetation (p < 0.05) of Riyadh than those of Al-Jubail. The risk assessment for the aquatic biota showed that abamectin, diazinon (pesticides), bisphenol A and caffeine (PPCPs) had the highest risk levels. The cumulative risk assessment showed that the contaminant mixture in all water samples is of concern. As far as the risk to human health is concerned, individual contaminants did not show a significant hazard for the population. However, OPFRs and pesticide requires a closed monitoring since % of admissible daily intakes (ADIs) or reference doses (RfD) are high. This is one of the most comprehensive study covering environmental and human risk assessment of emerging contaminants carried out in Saudi Arabia.
Collapse
Affiliation(s)
- Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain.
| | - Julian Campo
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
14
|
Castaño-Sánchez A, Pereira JL, Gonçalves FJM, Reboleira ASPS. Sensitivity of a widespread groundwater copepod to different contaminants. CHEMOSPHERE 2021; 274:129911. [PMID: 33979935 DOI: 10.1016/j.chemosphere.2021.129911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is an indispensable resource for humankind and sustainable biomes functioning. Anthropogenic disturbance threatens groundwater ecosystems globally, but to which extent groundwater organisms respond to stressors remains poorly understood. Groundwater animals are rare, with small populations, difficult to find and to breed in the lab, which poses a main challenge to the assessment of their responses to pollutants. Despite the difficulties, assessing the toxicity of a large spectrum of stressors to groundwater organisms is a priority to inform towards appropriate environmental protection of these ecosystems. We tested the sensitivity to CuSO4, diclofenac, and NaCl of a groundwater population of the copepod Diacyclops crassicaudis crassicaudis and compared its sensitivity with the model organism Daphnia magna. We ranked its sensitivity using a species sensitivity distribution (SSD) approach using the feasible data available for groundwater and surface crustaceans. Our results show that the most toxic compound was CuSO4 for which higher amount of data was recorded and wider variability in response was observed. It was followed by diclofenac, largely lacking data for groundwater-adapted organisms, and the least toxic compound was NaCl. The differential sensitivity between D. crassicaudis and D. magna was contaminant-dependent. As a general trend D. crassicaudis was always distributed in the upper part of the SSD curves together with other groundwater-adapted organisms. Our results highlight that the widespread groundwater populations of the D. crassicaudis species complex, which can be successfully breed in the lab, may provide a reasonable approach to assess the ecological effects of anthropogenic stressors in groundwater ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Centre for Ecology, Evolution and Environmental Changes (cE3c), and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Quadra GR, Li Z, Silva PSA, Barros N, Roland F, Sobek A. Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:142-154. [PMID: 33999217 DOI: 10.1007/s00244-021-00853-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.
Collapse
Affiliation(s)
- Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Zhe Li
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| | | | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| |
Collapse
|
16
|
Yang L, Wang T, Zhou Y, Shi B, Bi R, Meng J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144080. [PMID: 33348152 DOI: 10.1016/j.scitotenv.2020.144080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 05/13/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) has become a global concern, as it poses a threat to the environment, especially to the aquatic ecosystem. This study focused on 30 PPCPs found in the Baiyangdian basin of the Xiong'an New Area, in the core of Beijing-Tianjin-Hebei region, with intensive human interventions during two seasons. In general, 30 PPCPs were all frequently detected, ranging from 42.3 to 7710 ng/L in May and 48.9 to 1300 ng/L in November. Sulfamethoxazole, ofloxacin, anhydro-erythromycin, carbamazepine, caffeine, and were screened as the predominant PPCPs. The rivers input was an essential source of PPCPs. The source apportionment with a series of analytical methods revealed that domestic sewage was the primary source, and untreated water also crucial for PPCPs contamination. The risk assessment suggested carbamazepine, caffeine, ofloxacin, and anhydro-erythromycin exhibited relatively high ecological risks for protecting most species such as algae, fish, and flowers in the aquatic ecosystem, especially near the outlet of WWTPs. Thus, management strategies for such PPCPs will be needed. Intensive human interventions, including a prohibition of fish breeding, water diversion project, and wastewater treatment in villages, were having an effective role in alleviating PPCPs contamination.
Collapse
Affiliation(s)
- Lu Yang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Yunqiao Zhou
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ran Bi
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Kosma CI, Kapsi MG, Konstas PSG, Trantopoulos EP, Boti VI, Konstantinou IK, Albanis TA. Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. ENVIRONMENTAL RESEARCH 2020; 191:110152. [PMID: 32877707 PMCID: PMC7456450 DOI: 10.1016/j.envres.2020.110152] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 05/07/2023]
Abstract
Nowadays the occurrence and associated risks of Pharmaceutical Active Compounds (PhACs) in the aquatic environment comprises a major issue. In the present study, a comprehensive survey on contamination profiles, occurrence, removals, temporal variation and ecological risk of multiclass multiresidue PhACs, such as antibiotics, non-steroidal anti-inflammatories, lipid regulators and phsychiatrics, (including past and newly monitored PhACs as well as some of their metabolites) was performed in wastewaters from the WWTP of Ioannina University hospital along one year period on a monthly sampling basis. WWTP influent and effluent samples were analyzed for physicochemical quality parameters and PhACs concentration levels using Ultra High Performance Liquid Chromatography-Orbitrap-Mass Spectrometry (UHPLC-Orbitrap-MS), after Solid Phase Extraction (SPE) through Oasis HLB cartridges. Influent concentrations ranged between < LOQ (Limit of Quantification) for diclofenac and tolfenamic acid and 48586 ng/L for caffeine, while effluent concentrations between < LOQ for tolfenamic acid and simvastatin and 3361 ng/L for caffeine. Removal efficiencies ranged between -132.6% for venlafaxine and 100% for caffeine. Environmental risk assessment by means of Risk Quotient (RQ) for maximum and minimum concentration levels as well as optimized by the frequency of exceeding toxicity threshold values, RQf, was applied revealing that up to 12 PhACs posed acute toxicity (clofibric acid, fenofibrate, sulfadiazine, sulfamethoxazole, trimethoprim, amitryptiline, fluoxetine, fluvoxamine, norfluoxetine, sertraline, venlafaxine, caffeine) while up to 4 compounds exerted long-term toxicity (sulfamethoxazole, fluoxetine, sertraline, caffeine) at least for one of the studied organisms. Furthermore, mixture RQMEC/PNEC and RQSTU effect of multiple compounds showed high potential risks of the target groups in some cases, although some contaminants were not included due to lack of available data. Results can be used to prioritization of PhACs and their metabolites for surveillance in receiving water bodies as well as development of knowledge on toxicity and mechanism(s) of action.
Collapse
Affiliation(s)
- Christina I Kosma
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Margarita G Kapsi
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | | | | | - Vasiliki I Boti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Ioannis K Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, Ioannina, 45110, Greece.
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, Ioannina, 45110, Greece.
| |
Collapse
|
18
|
Quadra GR, Paranaíba JR, Vilas-Boas J, Roland F, Amado AM, Barros N, Dias RJP, Cardoso SJ. A global trend of caffeine consumption over time and related-environmental impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113343. [PMID: 31672373 DOI: 10.1016/j.envpol.2019.113343] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Caffeine is one of the most consumed substances, and it has been largely detected in aquatic ecosystems. We investigated the trends in caffeine consumption over three decades and its relationships with gross domestic product (GDP) and human development index (HDI) to understand global patterns and to identify potential hotspots of contamination. The total caffeine consumption is increasing mainly due to population growth. Moreover, caffeine consumption per capita is also increasing in some countries, such as Brazil, Italy, and Ethiopia. A high positive correlation between caffeine consumption per capita with HDI and GDP was found for coffee-importing countries in Europe, while a high negative correlation was found for coffee-exporting countries in Africa. The literature review showed that the highest caffeine concentrations coincide with countries that present an increasing caffeine consumption per capita. Also, approximately 35% of the caffeine concentrations reported in the literature were above the predicted no-effect concentration in the environment and, again, overlaps with countries with increasing per capita consumption. Despite the high degradation rate, caffeine consumption tends to increase in a near future, which may also increase the overall amount of caffeine that comes into the environment, possibly exceeding the thresholds of several species described as tolerant to the current environmental concentrations. Therefore, it is essential to prevent caffeine from reaching aquatic ecosystems, implementing sewage treatment systems, and improving their efficiency.
Collapse
Affiliation(s)
- Gabrielle R Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - José R Paranaíba
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Jéssica Vilas-Boas
- Laboratório de Protozoologia, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - André M Amado
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Roberto Júnio P Dias
- Laboratório de Protozoologia, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil; Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Simone J Cardoso
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil; Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
19
|
AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. WATER 2019. [DOI: 10.3390/w11122574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a suite of software tools aimed at investigating multiple bio-ecological facets of aquatic Groundwater Dependent Ecosystems (GDEs). The suite focuses on: (1) threats posed by pollutants to GDE invertebrates (Ecological Risk, ER); (2) threats posed by hydrological and hydromorphological alterations on the subsurface zone of lotic systems and groundwater-fed springs (Hydrological-Hydromorphological Risk, HHR); and (3) the conservation priority of GDE communities (Groundwater Biodiversity Concern index, GBC). The ER is assessed by comparing tolerance limits of invertebrate species to specific pollutants with the maximum observed concentration of the same pollutants at the target site(s). Comparison is based on an original, comprehensive dataset including the most updated information on tolerance to 116 pollutants for 474 freshwater invertebrate species. The HHR is assessed by accounting for the main direct and indirect effects on both the hyporheic zone of lotic systems and groundwater-fed springs, and by scoring each impact according to the potential effect on subsurface invertebrates. Finally, the GBC index is computed on the basis of the taxonomical composition of a target community, and allows the evaluation of its conservation priority in comparison to others.
Collapse
|
20
|
Di Lorenzo T, Di Cicco M, Di Censo D, Galante A, Boscaro F, Messana G, Paola Galassi DM. Environmental risk assessment of propranolol in the groundwater bodies of Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113189. [PMID: 31542673 DOI: 10.1016/j.envpol.2019.113189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A growing concern for contamination due to pharmaceutical compounds in groundwater is expanding globally. The β-blocker propranolol is a β-adrenoceptors antagonist commonly detected in European groundwater bodies. The effect of propranolol on stygobiotic species (obligate groundwater dweller species) is compelling in the framework of environmental risk assessment (ERA) of groundwater ecosystems. In fact, in Europe, ERA procedures for pharmaceuticals in groundwater are based on data obtained with surrogate surface water species. The use of surrogates has aroused some concern in the scientific arena since the first ERA guideline for groundwater was issued. We performed an ecotoxicological and a behavioural experiment with the stygobiotic crustacean species Diacyclops belgicus (Copepopda) to estimate a realistic value of the Predicted No Effect Concentration (PNEC) of propranolol for groundwater ecosystems and we compared this value with the PNEC estimated based on EU ERA procedures. The results of this study showed that i) presently, propranolol does not pose a risk to groundwater bodies in Europe at the concentrations shown in this study and ii) the PNEC of propranolol estimated through the EU ERA procedures is very conservative and allows to adequately protect these delicate ecosystems and their dwelling fauna. The methodological approach and the results of this study represent a first contribution to the improvement of ERA of groundwater ecosystems.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy; Institute for superconductors, oxides and other innovative materials and devices, National Research Council (CNR-SPIN), Via Vetoio 1, 67100 L'Aquila, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Gran Sasso, Assergi, 67100, L'Aquila, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Messana
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| |
Collapse
|
21
|
Di Lorenzo T, Di Marzio WD, Fiasca B, Galassi DMP, Korbel K, Iepure S, Pereira JL, Reboleira ASPS, Schmidt SI, Hose GC. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:292-304. [PMID: 31103666 DOI: 10.1016/j.scitotenv.2019.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
As a consequence of the growing global dependence on groundwater resources, environmental risk assessments (ERA) for groundwater are increasingly required and, with that, ecotoxicological studies with groundwater fauna (stygofauna). However, the literature on the ecotoxicological studies with stygobiotic species (i.e. species that complete their life cycle exclusively in groundwater) has not expanded significantly since the first paper published in this field. The limitations regarding the use of stygobiotic species for ecotoxicological testing are clear and consistent across the globe; stygobiotic species are often 1) naturally present in low numbers, 2) difficult to collect, and 3) difficult to culture under laboratory conditions. This paper reviews the methods used in ecotoxicological studies performed with stygobiotic species, and provides ten recommendations for Good Laboratory Practice (GLP) for such tests. The recommendations focused on the following 10 points: 1) the taxonomic identification, the life stage/size and gender of the test organisms; 2) collection methodology of the organisms, including collection location, conditions and methods; 3) holding and acclimation conditions in the laboratory; 4) exposure conditions such as test set up and exposure time, number of replicates and densities of organisms in tests and in test vessels; 5) range-finding test set up and schedule; 6) final test design, including details of controls and treatments, and replication options; 7) incubation conditions, specifying temperature, pH and oxygenation levels throughout the test; 8) test duration; 9) observations and endpoints; 10) test validity criteria and compliance. The recommendations were developed for the purpose of supporting future short-term ecotoxicological testing with stygofauna through providing consistency in the protocols. A discussion of the potential implications for groundwater managers and decision-makers committed to ERA for groundwater is included.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy.
| | - Walter Dario Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito 67100, L'Aquila, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito 67100, L'Aquila, Italy
| | - Kathryn Korbel
- Department of Biological Sciences, Macquarie University, NSW 2019, Sydney, Australia
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán 15 Martínez, 2, 46980 Paterna, Valencia, Spain; University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwosza 59, 17 80-308 Gdańsk, Poland
| | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marines Studies, University of Aveiro, Aveiro, Portugal
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Susanne I Schmidt
- Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 37005 České Budějovice, Czech Republic
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW 2019, Sydney, Australia
| |
Collapse
|
22
|
Oxazepam Alters the Behavior of Crayfish at Diluted Concentrations, Venlafaxine Does Not. WATER 2019. [DOI: 10.3390/w11020196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pharmaceutically active compounds are only partially removed from wastewaters and hence may be major contaminants of freshwaters. Direct and indirect effects on aquatic organisms are reported at dilute concentrations. This study was focused on the possible effects of environmentally relevant concentrations (~1 µg L−1) of two psychoactive compounds on the behavior of freshwater crayfish. Experimental animals exposed to venlafaxine did not show any behavioral alteration. Crayfish exposed to the benzodiazepine oxazepam exhibited a significant alteration in the distance moved and activity, and the effects were different when individuals were ready for reproduction. Results suggested that even the low concentration of selected psychoactive pharmaceuticals could alter the behavioral patterns of crayfish, as reported for other pharmaceuticals. These results provide new information about the possible adverse effects of pharmaceuticals at dilute concentrations. From previous knowledge and our results, it is obvious that different compounds have different effects and the effects are even specific for different taxa. Detailed studies are therefore needed to assess the possible ecological consequences of particular substances, as well as for their mixtures.
Collapse
|