1
|
Greige S, Abdallah M, Webster CF, Harb M, Beyenal H, Wazne M. Microbial community analysis of the biofilms of both working and counter electrodes in single-chamber microbial electrolysis cells. Enzyme Microb Technol 2025; 188:110650. [PMID: 40209635 PMCID: PMC12103991 DOI: 10.1016/j.enzmictec.2025.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study was conducted to delineate microbial community development and composition on both working and counter electrodes in single-chamber microbial electrolysis cells (MECs) using synthetic wastewater. Two separate bioelectrochemical reactors were inoculated with anaerobic sludge. The first was operated at an anodic potential poised at + 0.4 V and the second one at a cathodic potential poised at -0.7 V, both vs. an Ag/AgCl reference electrode. The performance of the MECs, including current generation, bioelectrochemical activity of the biofilms on both the working and counter electrodes, and chemical oxygen demand (COD) depletion were monitored over the last 45 days of operation. Scanning electron microscopy (SEM) and 16S rRNA gene sequencing were performed to delineate the development and morphology of the microbial communities on both the working and the counter electrodes. The current generated at the anodic working electrode provided evidence of the growth of anode-respiring exoelectrogens (Clostridium sensu stricto). Similarly, the Faradaic current data at the cathodic working electrode confirmed the formation of an electroactive biofilm dominated by acetoclastic and hydrogenotrophic methanogens (Methanothrix and Methanobacterium). Microbial communities on the counter electrodes were found to be richer but less diverse compared to those on the working electrodes. These communities were likely influenced by the fluctuating potentials at the counter electrodes. SEM observations were consistent with the microbial analysis. These findings demonstrate the ability of a mixed inoculum to shift towards anode-reducing and cathode methanogenic communities using a complex substrate on a constant working electrode and varying counter electrode potentials.
Collapse
Affiliation(s)
- Stephanie Greige
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Mohamad Abdallah
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Christina F Webster
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud Wazne
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
2
|
Liu H, He P, Chen Y, Wang X, Zou R, Xing T, Xu S, Wu C, Maurer C, Lichtfouse E. Coupling of biogas residue biochar and low-magnitude electric fields promotes anaerobic co-digestion of sewage sludge and food waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2118-2131. [PMID: 38678413 DOI: 10.2166/wst.2024.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
Biochar-assisted anaerobic digestion (AD) remains constrained due to the inefficient decomposition of complex organics, even with the direct interspecies electron transfer (DIET) pathway. The coupling of electrochemistry with the anaerobic biological treatment could shorten lengthy retention time in co-digestion by improving electron transfer rates and inducing functional microbial acclimation. Thus, this work investigated the potential of improving the performance of AD by coupling low-magnitude electric fields with biochar derived from the anaerobically digested biogas residue. Different voltages (0.3, 0.6, and 0.9 V) were applied at various stages to assess the impact on biochar-assisted AD. The results indicate that an external voltage of 0.3 V, coupled with 5 g/L of biochar, elevates CH4 yield by 45.5% compared to biogas residue biochar alone, and the coupled approach increased biogas production by up to 143% within 10 days. This finding may be partly explained by the enhanced utilization of substrates and the increased amounts of specific methanogens such as Methanobacterium and Methanosarcina. The abundance of the former increased from 4.0 to 11.3%, which enhances the DIET between microorganisms. Furthermore, the coupling method shows better potential for enhancing AD compared to preparing iron-based biochar, and these results present potential avenues for its broader applications.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Peng He
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Yang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Xingkang Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Ruixiang Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Tao Xing
- Jiangsu Lianxing Complete Equipment Manufacturing Co., Ltd, 96 Feiyue Road, Jingjiang, Jiangsu, China; Jiangsu Dingxin Environmental Protection Technology Co., Ltd, 95 Feiyue Road, Jingjiang, Jiangsu, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China E-mail:
| | - Claudia Maurer
- University of Stuttgart - Institute of Sanitary Engineering, Water Quality and 12 Waste Management, Bandtäle 2, Stuttgart 70569, Germany
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Miao CH, Wang XF, Qiao B, Xu QM, Cao CY, Cheng JS. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72628-72638. [PMID: 35612705 DOI: 10.1007/s11356-022-21029-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a cheap and abundant organic resource that can be used as a substrate for the production of the broad-spectrum antifungal compound iturin A. To increase the efficiency of food waste biotransformation, different artificial consortia incorporating the iturin A producer Bacillus amyloliquefaciens HM618 together with engineered Bacillus subtilis WB800N producing lipase or amylase were constructed. The results showed that recombinant B. subtilis WB-A13 had the highest amylase activity of 23406.4 U/mL, and that the lipase activity of recombinant B. subtilis WB-L01 was 57.5 U/mL. When strain HM618 was co-cultured with strain WB-A14, the higher yield of iturin A reached to 7.66 mg/L, representing a 32.9% increase compared to the pure culture of strain HM618. In the three-strain consortium comprising strains HM618, WB-L02, and WB-A14 with initial OD600 values of 0.2, 0.15, and 0.15, respectively, the yield of iturin A reached 8.12 mg/L, which was 38.6% higher than the control. Taken together, artificial consortia of B. amyloliquefaciens and recombinant B. subtilis can produce an increased yield of iturin A, which provides a new strategy for the valorization of food waste.
Collapse
Affiliation(s)
- Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
4
|
Nguyen HTT, Noori MT, Min B. Accelerating anaerobic digestion process with novel single chamber microbial electrochemical systems with baffle. BIORESOURCE TECHNOLOGY 2022; 359:127474. [PMID: 35714783 DOI: 10.1016/j.biortech.2022.127474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A newly designed microbial electrochemical system (MES) with the addition of a baffle between the electrodes was integrated with the anaerobic digestion (AD) process for biogas upgradation. Novel MES configuration attained an increased methane production rate of 292.6 mL/L∙d and methane yield of 0.36 ± 0.006 [Formula: see text] /gCOD, which were higher than the values (185.3 mL/L∙d and 0.33 ± 0.009 [Formula: see text] /gCOD) from the MES operation without baffle, respectively. Moreover, the MES with baffle operation resulted in increased substrate removal (88.4 ± 0.5%) and less volatile fatty acids accumulation with a high energy efficiency of 99.6 %. Microbial community analysis revealed that acids metabolizing bacteria, Firmicutes, and Methanothrix were highly enriched in the cathode biofilm of MES with baffle. This study suggests that the baffle addition into the single chamber MES is beneficial to further improve the methanogenesis process for practical applications in the scaled-up MES-AD process.
Collapse
Affiliation(s)
- Huong Thi Thu Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
5
|
Enhanced ex-situ biomethanation of hydrogen and carbon dioxide in a trickling filter bed reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Quashie FK, Feng K, Fang A, Agorinya S, Antwi P, Kabutey FT, Xing D. Efficiency and key functional genera responsible for simultaneous methanation and bioelectricity generation within a continuous stirred microbial electrolysis cell (CSMEC) treating food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143746. [PMID: 33229085 DOI: 10.1016/j.scitotenv.2020.143746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the efficient treatment of high strength food waste under varying hydraulic retention times (48 h, 36 h and 24 h) in a continuous stirred tank reactor (CSTR) integrated with microbial electrolysis cell (MEC) to become a continuous stirred microbial electrolysis cell (CSMEC). COD removal efficiency in the CSMEC surpassed 92% with OLR ranging from 0.4 to 21.31 kg COD/m3·d compared to that of the CSTR. The maximum current density (based on the cathode surface area) was 1125.35 ± 81 mA/m2 in the CSMEC. Biogas yield and methane production rates increased by 16.5% and 19.3% in the CSMEC respectively compared to the CSTR. CSMEC was 1.52 times better in performance compared to the CSTR. Firmicutes, Synergistetes, Bacteroidetes, Thermotogae, Chloroflexi and Proteobacteria were the dominant phyla associated with both CSMEC and CSTR. Archaeal microbial community analysis showed Methanosaeta, Methanobacterium, Methanosarcina and Methanocorpusculum as the dominant populations associated with the CSMEC.
Collapse
Affiliation(s)
- Frank Koblah Quashie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Nuclear Application Centre (NAC), National Nuclear Research Institute (NNRI), Ghana Atomic Energy Commission (GAEC), P.O. Box LG 80, Legon, Ghana
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sarah Agorinya
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Philip Antwi
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Park JG, Jiang D, Lee B, Jun HB. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): Insights into electrode materials, reactor configurations, and process designs. WATER RESEARCH 2020; 184:116214. [PMID: 32726737 DOI: 10.1016/j.watres.2020.116214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is one of the most widely adopted bioenergy recovery technologies globally. Despite the wide adoption, AD has been challenged by the unstable performances caused by imbalanced substrate and/or electron availability among different reaction steps. Bioelectrochemical anaerobic digestion (BEAD) is a promising concept that has demonstrated potential for balancing the electron transfer rates and enhancing the methane yield in AD during shocks. While great progress has been made, a wide range of, and sometimes inconsistent engineering and technical strategies were attempted to improve BEAD. To consolidate past efforts and guide future development, a comprehensive review of the fundamental bioprocesses in BEAD is provided herein, followed by a critical evaluation of the engineering and technical optimizations attempted thus far. Further, a few novel directions and strategies that can enhance the performance and practicality of BEAD are proposed for future research to consider. This review and outlook aim to provide a fundamental understanding of BEAD and inspire new research ideas in AD and BEAD in a mechanism-informed fashion.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Daqian Jiang
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Nature Engineering Co., LTD., 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
8
|
Park JG, Kwon HJ, Sposob M, Jun HB. Effect of a side-stream voltage supplied by sludge recirculation to an anaerobic digestion reactor. BIORESOURCE TECHNOLOGY 2020; 300:122643. [PMID: 31918298 DOI: 10.1016/j.biortech.2019.122643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
This study showed that side stream voltage supplied by sludge recirculation from an auxiliary bio-electrochemical anaerobic digestion (ABEAD) reactor appears to have a similar effect as main stream voltage supply to an anaerobic digestion (AD) reactor. The increased sludge recirculation rate enhanced the operation stability at a high OLR. H2-producing bacterial community was improved in bio-electrochemical anaerobic digestion (BEAD) and ABEAD reactors and was increased with increase in sludge recirculation rate. Despite the dominance of hydrogenotrophic methanogens in all reactors, high operational performances of BEAD and ABEAD reactors supports the results of H2-producing bacteria increase in those reactors. The ABEAD reactors having 1/7 of the capacity of the main AD reactor showed possibility of integration of BEAD technology into new and existing facilities economically. The findings of this study would provide useful information for approaching the commercialization of BEAD and suggest direction of further research for practical applications.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Michal Sposob
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
9
|
Cui MH, Sangeetha T, Gao L, Wang AJ. Hydrodynamics of up-flow hybrid anaerobic digestion reactors with built-in bioelectrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121046. [PMID: 31450205 DOI: 10.1016/j.jhazmat.2019.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Understanding the electrode configuration is vital for the successful application of bioelectrochemical system (BES) in recalcitrant wastewater treatment. Especially in those traditional anaerobic processes that integrate with BES to construct effective hybrid bioreactors. Hybrid bioreactors employed granular graphite as electrode material achieved 86.62 ± 1.83% decolorization efficiency of azo dye acid orange 7 (AO7) at influent AO7 loading rate of 800 g/(m3∙d) and it was about 6% higher than that with carbon fiber brush electrodes. Such electrodes were positioned above the anaerobic sludge layer and higher efficiency (8%) than the reactors with electrodes placed beneath the sludge layer was observed. Tracer experiments and modeling of residence time distribution indicated that the fluid pattern in hybrid bioreactors was modified to plug flow pattern and had a better consummate mixing ability compared to the conventional anaerobic reactor. Simulation using computational fluid dynamics technique showcased favorable mass transfer near electrode modules. The hydrodynamics of simulation and experimental results were connected by simplifying electrode module as a porous media model. This study thus proved that hybrid bioreactors can effectively enhance wastewater treatment comprehensively through the analysis of decolorization performance and hydrodynamics.
Collapse
Affiliation(s)
- Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Thangavel Sangeetha
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Lei Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
10
|
Changes of Bacterial Communities in an Anaerobic Digestion and a Bio-Electrochemical Anaerobic Digestion Reactors According to Organic Load. ENERGIES 2019. [DOI: 10.3390/en12152958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial communities change in bulk solution of anaerobic digestion (AD) and bio-electrochemical anaerobic digestion reactors (BEAD) were monitored at each organic loading rate (OLR) to investigate the effect of voltage supply on bacterial species change in bulk solution. Chemical oxygen demand (COD) degradation and methane production from AD and BEAD reactors were also analyzed by gradually increasing food waste OLR. The BEAD reactor maintained stable COD removal and methane production at 6.0 kg/m3·d. The maximum OLR of AD reactor for optimal operation was 4.0 kg/m3·d. pH and alkalinity decline and volatile fatty acid (VFA) accumulation, which are the problem in high load anaerobic digestion of readily decomposable food wastes, were again the major factors destroying the optimal operation condition of the AD reactor at 6.0 kg/m3·d. Contrarily, the electrochemically activated dense communities of exoelectrogenic bacteria and VFA-oxidizing bacteria prevented VFAs from accumulating inside the BEAD reactor. This maintained stable pH and alkalinity conditions, ultimately contributing to stable methane production.
Collapse
|
11
|
Wang Z, Liu Z, Noor RS, Cheng Q, Chu X, Qu B, Zhen F, Sun Y. Furfural wastewater pretreatment of corn stalk for whole slurry anaerobic co-digestion to improve methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:49-57. [PMID: 31003087 DOI: 10.1016/j.scitotenv.2019.04.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Previous studies showed that excellent anaerobic digestion performance could be achieved using acid pretreatment, whereas the development of acid pretreatment was limited by high cost of acid consumption and severe operation. The aim of this study consisted in expanding the possibilities of low-cost acid pretreatment method for anaerobic digestion. For this, the feasibility of substituting conventional acid pretreatment with furfural wastewater was verified, and the whole slurry anaerobic digestion was performed to improve the production of methane. The furfural wastewater was used to pretreat crop stalk at different ambient temperatures (20, 35, 50°C) for different time periods (0, 3, 6, 9days). Subsequently, all treated and untreated crop stalk were digested at 35°C for 25days. According to experimental data showed that the dissimilar degradability of compositions for crop stalk was due to furfural wastewater pretreatment, and the reducing sugar content, volatile fatty acid content, pH during pretreatment phase, and their initial maximum & minimum values in anaerobic digestion phase were changed, which made a significant difference in methane production. The highest total methane production of anaerobic digestion (196.68mL/g VS) was achieved by the treatment at 35°C for 6days, which was 59.28% higher than untreated crop stalk (123.48mL/g VS). On the whole, the results showed that furfural wastewater pretreatment followed by the whole slurry anaerobic co-digestion was feasible and could contribute to application value for anaerobic digestion industry while providing an effective way for the treatment of furfural wastewater.
Collapse
Affiliation(s)
- Zhi Wang
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Zhiyuan Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Rana Shahzad Noor
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Qiushuang Cheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Xiaodong Chu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Bin Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China
| | - Yong Sun
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|