1
|
Mohamed E, Ren J, Tao L, Mala A. Assessment the impact of palygorskite modified by chlorides on speciation and environmental risk of heavy metals in soil contaminated. Sci Rep 2025; 15:12505. [PMID: 40216799 PMCID: PMC11992066 DOI: 10.1038/s41598-024-75359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 04/14/2025] Open
Abstract
This study aims to evaluate the effectiveness of palygorskite (PAL) modified with various chlorides (PMNaCl), (PMCaCl2), (PMMgCl2), (PMFeCl3) and (PMAlCl3) in stabilizing Cu and Ni in contaminated soils. Characterization methods involving Scanning Electron Microscopy (SEM), X-ray deflection (XRD and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterize the effects of palygorskite on the chemical functional groups of chloride stick and the construction of stabilizers. The Diethylene Triamine Pentaacetic Acid ("DTPA extraction") and Toxicity Characteristic Leaching Procedure (TCLP) were conducted to assess the bioavailability and mobility of Cu and Ni in soil with PAL-modified chlorides. The germinated index (GI) was employed to examine and analyze the microstructure and physico-chemical properties of the contaminated soil. The residue speciation concentration enhanced substantially, illustrating that the heavy metal speciation had stabilized after being with PAL-modified chloride. After the amendment of the PAL-modified chlorides the soil pH was enhanced by 1.33 units, whereas Electrical Conductivity (EC) increased significantly (P < 0.05) from 2.61 to 4.95 µS cm-1, Cation Exchange Capacity (CEC) increased significantly (P < 0.05) from 11.50 to 13.00 cmol/kg, while the available potassium (K) was significantly (P < 0.05) increased from 51.67 to 69.30, and the available phosphate (P) was significantly (P < 0.05) increased from 0.38 to 0.63. The most significant Sequential Extraction Procedure (BCR) in residual fraction for Cu and Ni in soil treated by PMFC and PMMC were significantly (P < 0.05) increased by 37.37% and 39.33%, respectively. Our findings indicate that PAL-modified chlorides significantly stabilize heavy metals in soil, making them promising candidates for soil remediation.
Collapse
Affiliation(s)
- Elnour Mohamed
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Jun Ren
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China.
| | - Ling Tao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China
| | - Azizza Mala
- Center for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
2
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Shen Q, Xu X, Liang X, Tang C, Bai X, Shao S, Liang Q, Dong S. Surfactant-modified zein nanoparticles adsorbents for ultrafast and efficient removal of Cr(VI). ENVIRONMENTAL RESEARCH 2025; 264:120284. [PMID: 39491604 DOI: 10.1016/j.envres.2024.120284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The adsorption and removal of heavy metal ions Cr(VI) is of great significance for human health and ecological environment. Here, an ultrafast and high efficient adsorbent for Cr(VI) was developed based on cetyltrimethylammonium bromide (CTAB)-modified zein nanoparticles (C-ZNPs). In comparison to pristine zein nanoparticles (ZNPs) (11.199 m2 g-1), the surfactant-modified C-ZNPs exhibited larger specific surface area (17.002 m2 g-1). Moreover, C-ZNPs had superior dispersion and more positive charge distribution, which contributed to the improvement for adsorption performance. The results showed that the saturated adsorption of Cr(VI) was reached up to 192.27 mg/g using the C-ZNPs nanosorbent at T = 298 K, pH = 4, t = 10s, and C0 = 125 mg/L. The removal rate was significantly faster than that reported natural polymer-based adsorbents. The experimental values were followed Freundich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, with a strong emphasis on chemisorption. Mechanistic investigations further revealed that the adsorption of Cr(VI) onto C-ZNPs was mediated by various interactions, including electrostatic attraction, complexation, and ion exchange. These findings provide insights into the efficient removal of Cr(VI) by C-ZNPs and suggest potential applications in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Qing Shen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaomeng Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Cong Tang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoping Bai
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shijun Shao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Qing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Dai X, Luo Y, Deng J, Wen J, He Y, Yuan Y, Wang Y. Ultra-efficient removal of aqueous hexavalent chromium by activated biochar nanoparticles derived from squid ink. ENVIRONMENTAL RESEARCH 2024; 263:120185. [PMID: 39426456 DOI: 10.1016/j.envres.2024.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Biochar have been recognized as efficient and renewable carbon sorbents, which attracted much attention on Cr contamination remediation in wastewater. In this study, we propose a cost-effective one-step strategy to synthesize activated biochar nanoparticles derived from squid ink (AS-BC) for aqueous Cr(VI) removal. The results demonstrated that AS-BC achieved a removal rate of 24.29 h-1 at 700 °C (400-times higher than the unmodified one). This was also a state-of-the-art removal performance for aqueous Cr(VI) compared to other reported materials. AS-BC possessed an enormous specific surface (2408 m2/g at 700 °C) with abundant O- and N-containing groups, condensed aromatic structures, and high electron transfer capacity (3.64 and 2.13 mmol e-/g for EAC and EDC at 700 °C), contributing to the ultra-efficient removal of Cr(VI) by synergistic adsorption and reduction. AS-BC absorbed Cr(VI) in the form of HCrO4- by electrostatic attraction with protonated amine-N and hydroxy (-NH3+ and -OH2+) groups and Cr(III) in the form of Cr3+ by complexation with amine-N and hydroxy groups. With a hydroxy-quinone and conjugated π-electron system, AS-BC served as mediator and shuttle to accelerate electron transfer in Cr(VI) reduction with an electron donor. Therefore, our findings highlight the immense potential of AS-BC biochar nanoparticles represent a potential alternative for high-performance Cr(VI) remediation in wastewater.
Collapse
Affiliation(s)
- Xiang Dai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingqi Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jinhuan Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Feng F, Zhang Y, Zhang X, Mu B, An Q, Wang P. The mechanism of intrinsic peroxidase (POD)-like activity of attapulgite. Anal Bioanal Chem 2024; 416:6033-6044. [PMID: 38602542 DOI: 10.1007/s00216-024-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Natural attapulgite (ATP) is a promising substitute for existing artificial nanozymes due to its intrinsic enzymatic activity. However, the active center of ATP's inherent enzymatic activity has not yet been revealed, which limits its further design and activity optimization. Studying the active center of mineral materials can be extremely challenging due to their complexity. Here, we demonstrated that Fe is the primary element in ATP responsible for peroxidase (POD)-like activity through theoretical speculation and experimental verification. More importantly, we found that the ratio of Fe2+/Fe3+ is responsible for the district POD-like activity of ATP from different regions with the same Fe content. Additionally, three facile strategies, including grinding, heat treatment, and acid treatment, were demonstrated to increase the relative Fe content and thus optimize the POD-like activity of ATP. Finally, ATP was used to detect the concentration of H2O2, enabling the detection of low concentrations (0.11-1.76 mM) of H2O2. This study serves as a novel reference for the future design and performance optimization of nanozymes that are based on ATP and clay minerals.
Collapse
Affiliation(s)
- Feng Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Xiao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Peixia Wang
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China.
- Beijing Narcotics Control Technology Center, Beijing, 100164, China.
| |
Collapse
|
7
|
Xu H, Zhang H, Qin C, Li X, Xu D, Zhao Y. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. CHEMOSPHERE 2024; 360:142395. [PMID: 38797207 DOI: 10.1016/j.chemosphere.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Hexavalent chromium (Cr(VI)) contamination of groundwater has traditionally been an environmental issue of great concern due to its bioaccumulative and highly toxic nature. This paper presents a review and bibliometric analysis of the literature on the interest area "Cr(VI) in groundwater" published in the Web of Science Core Collection from 1999 to 2022. First, information on 203 actual Cr(VI)-contaminated groundwater sites around the world was summarized, and the basic characteristics of the sources and concentrations of contamination were derived. 68.95% of the sites were due to human causes and 56.43% of these sites had Cr(VI) concentrations in the range of 0-10 mg/L. At groundwater sites with high Cr(VI) contamination due to natural causes, 75.00% of the sites had Cr(VI) concentrations less than 0.2 mg/L. A total of 936 papers on "Cr(VI) in groundwater" were retrieved for bibliometric analysis: interest in research on Cr(VI) in groundwater has grown rapidly in recent years; 59.4% of the papers were published in the field of environmental sciences. A systematic review of the progress of studies on the Cr(VI) removal/remediation based on reduction, adsorption and biological processes is presented. Out of 666 papers on Cr(VI) removal/remediation, 512, 274, and 75 papers dealt with the topics of reduction, adsorption, and bioremediation, respectively. In addition, several studies have demonstrated the potential applicability of natural attenuation in the remediation of Cr(VI)-contaminated groundwater. This paper will help researchers to understand and investigate methodological strategies to remove Cr(VI) from groundwater in a more targeted and effective manner.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Dan Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Feng F, Zhang Y, Zhang X, Mu B, Qu W, Wang P. Natural Nano-Minerals (NNMs): Conception, Classification and Their Biomedical Composites. ACS OMEGA 2024; 9:17760-17783. [PMID: 38680370 PMCID: PMC11044256 DOI: 10.1021/acsomega.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Natural nano-minerals (NNMs) are minerals that are derived from nature with a size of less than 100 nm in at least one dimension in size. NNMs have a number of excellent properties due to their unique nanostructure and have been applied in various fields in recent years. They are rising stars in various disciplines, such as materials, biomedicine, and chemistry, taking advantage of their huge surface area, multiple active sites, excellent adsorption capacity, large quantity, low cost, and nontoxicity, etc. To provide a more comprehensive overview of NNMs and the biomedical applications of NNMs-based nanocomposites, this review classifies NNMs into three types by dimension, lists the structure and properties of typical NNMs, and illustrates their biomedical applications. Furthermore, a novel concept of natural nanomineral medical materials (NNMMs) is proposed, focusing on the medical value of NNMs. In addition, this review attempts to address the current challenges and delineate future directions for the advancement of NNMs. With the deepening of biomedical applications, it is believed that NNMMMs will inevitably play an important role in the field of human health and contribute to its promotion.
Collapse
Affiliation(s)
- Feng Feng
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Yihe Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Xiao Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Bin Mu
- Key
Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjie Qu
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Peixia Wang
- National
Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- Beijing
Narcotics Control Technology Center, Beijing, 100164, China
| |
Collapse
|
9
|
Yuan Z, Peng A, Chu Z, Zhang X, Huang H, Mi Y, Xia D, Wu X, Ye Z, Tao Y, Yan X. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171107. [PMID: 38387560 DOI: 10.1016/j.scitotenv.2024.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Zhe Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Aifang Peng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhaopeng Chu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xinyi Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - He Huang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Yuanzhu Mi
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Dongsheng Xia
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan 430200, China
| | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434103, PR China
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| | - Yufang Tao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| | - Xuemin Yan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
10
|
Chen W, Li B, Yin W, Zeng W, Li P, Wu J. Promoted iron corrosion and subsequent hexavalent chromium removal in zero-valent iron systems by oxidant activation. CHEMOSPHERE 2024; 352:141391. [PMID: 38325615 DOI: 10.1016/j.chemosphere.2024.141391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Zero-valent iron (ZVI), as an effective medium, is widely used to eliminate heavy metal ions in filter tanks. However, it will react with Cr(VI) to generate Fe-Cr precipitates with low conductivity on its surface, resulting in slow iron corrosion and low Cr(VI) removal efficiency. In this study, three oxidants (KMnO4, NaClO, and Na2S2O8) were employed to promote iron corrosion in ZVI systems for enhanced Cr(VI) removal at a concentration of 5 mg/L through batch tests and column experiments. The ZVI/KMnO4, ZVI/NaClO, and ZVI/Na2S2O8 systems achieved significantly higher Cr(VI) removal rates of 31.5%, 52.8%, and 65.9% than the ZVI system (9.8%). Solid phase characterization confirmed that these improvements were attributed to promoted iron corrosion and secondary mineral formation (e.g., lepidocrocite, ferrihydrite, and magnetite) by oxidants. Those minerals offered more reaction sites for Cr(VI) reduction, adsorption, and sequestration. Cycle experiments indicated that ZVI/oxidant systems could stably remove Cr(VI). In long-term column experiment, the ZVI/NaClO column showed a much longer life-span and exhibited a 34.8 times higher Cr(VI) removal capacity than that of the ZVI column. These findings demonstrated that ZVI in combination with a reasonable amount of oxidants was a promising method for removing Cr(VI) in practical filter tanks and provided a new insight to enhance Cr(VI) removal.
Collapse
Affiliation(s)
- Weiting Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Weilong Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Zhang X, Wang Y, Li T, Wang H. Tannic acid modified microscale zero valent iron (TA-mZVI) with enhanced anti-passivation capability for Cr(VI) removal. CHEMOSPHERE 2024; 350:141034. [PMID: 38147926 DOI: 10.1016/j.chemosphere.2023.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The removal of Cr(VI) from aqueous solutions using microscale zerovalent iron (mZVI) shows promising potential. However, the surface passivation of mZVI particles hinders its widespread application. In this study, we prepared tannic acid (TA) modified mZVI composite (TA-mZVI) by a simple sonication method. The introduction of TA allowing TA-mZVI composite to adsorb Cr(VI) rapidly under electrostatic forces attraction, guarantying TA-mZVI exhibited remarkable Cr(VI) removal capacity with a maximum adsorption capacity of 106.1 mg⋅g-1. At an initial pH of 3, it achieved a rapid removal efficiency of 96.2% within just 5 min, which was 7.7 times higher than that of mZVI. Various characterizations, including XPS and CV analysis, indicated that the formation of TA-Fe complexes accelerates electron transfer. In addition, TA endows functional groups to TA-mZVI, raising the dispersion and stability and serves as a protective layer hindering passivation. Further mechanistic analysis revealed that Cr(VI) removal by TA-mZVI followed an adsorption-reduction-precipitation mechanism, with TA mitigating the surface passivation of mZVI and facilitating the reduction of most Cr(VI) to Cr(III). Batch cyclic experiments revealed that TA-mZVI exhibited satisfactory performance, maintaining over 85% Cr(VI) removal even after five cycles and minimally affected by various coexisting ions. With notable advantages in cost-effectiveness, ease-synthesis and recovery, this work provides a great promise for developing efficient reactive adsorbent for addressing Cr(VI) contamination in aqueous solutions.
Collapse
Affiliation(s)
- Xueyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yue Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tielong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haitao Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Yang Z, Ding G, Yan L, Wang R, Zhang W, Wang X, Rao P. Ball-milled sulfide iron-copper bimetals based composite permeable materials for Cr (VI) removal: Effects of preparation parameters and kinetics study. CHEMOSPHERE 2023; 338:139388. [PMID: 37423409 DOI: 10.1016/j.chemosphere.2023.139388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Zero-valent iron (ZVI) and modified ZVI have been investigated extensively for groundwater remediation. However, ZVI based powder was difficult to be applied directly as permeable reactive barrier (PRB) materials due to their low water permeability and usage rate. In this study, sulfide iron-copper bimetal was prepared by ball milling, which is environment-friendly without second contamination. The optimal preparation parameters of sulfide iron-copper bimetal for Cr(VI) removal were determined (Cu/Fe ratio (w/w), 0.018; FeS/Fe ratio (w/w), 0.1213; ball milling speed, 450 rpm; ball milling time, 5 h). A composite permeable material was prepared by sintering a mixture of sulfide iron-copper bimetal, sludge, and kaolin. The parameters for composite permeable material preparation including sludge content and particle size, and sintering time were optimized, which were 60%, 60-75 mesh, and 4 h, respectively. The optimal composite permeable material was characterized by SEM-EDS, XRD, and FTIR. The results demonstrated preparation parameters can affect the hydraulic conductivity and hardness of composite permeable material. High sludge content, small particles size, and moderate sintering time resulted in high permeability of composite permeable material and were beneficial for Cr(VI) removal. The dominant Cr(VI) removal mechanism was reduction, and the reaction followed pseudo-first order kinetics. Conversely, low sludge content and large particle size, and long sintering time lead to low permeability of composite permeable material. Chromate removal was mainly by chemisorption following pseudo-second order kinetics. The hydraulic conductivity and hardness of the optimal composite permeable material achieved 1.732 cm/s and 50, respectively. The results of column experiments indicated that its Cr(VI) removal capacity was 0.54 mg/g, 0.39 mg/g and 0.29 mg/g at pH 5, 7 and 9, respectively. The ratio of Cr(VI) to Cr(III) on composite permeable material surface was similar under acidic and alkaline conditions. This study will provide an effective reactive material of PRB for field application.
Collapse
Affiliation(s)
- Zhenghan Yang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Guoyu Ding
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 10044, China
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Wenqi Zhang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| |
Collapse
|
13
|
He C, Ding Y, Li C, Yan W, Mao A, Wei S, Li M. Cost-effective core@shell structured zero-valent iron nanoparticles @ magnetic (nZVI@Fe 3O 4) for Cr(vi) removal from aqueous solutions: preparation by disproportionation of Fe(ii). RSC Adv 2023; 13:26983-26994. [PMID: 37692341 PMCID: PMC10485737 DOI: 10.1039/d3ra03133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Nanoscale zero-valent iron (nZVI) and its composites are known for their excellent ability to remove Cr(vi), but their preparation can be expensive due to the reduction processes. This study presents a cost-effective method to prepare core@shell structured nZVI@Fe3O4 nanocomposites using a novel Fe(ii) disproportionation reaction. The nZVI@Fe3O4 was thoroughly characterized using various techniques, including FESEM, HRTEM, EDS, XPS, XRD, FTIR, and VSM. Batch experiments were performed to evaluate the removal efficiency of nZVI@Fe3O4 in eliminating Cr(vi) ions from aqueous solutions, while classical models were employed to investigate the influencing factors associated with the removal process. The results showed that a 0.7 mg per ml NaOH solution reacted with Fe(ii) at 150 °C for 0.5 h could be used to prepare nZVI@Fe3O4 composites efficiently and inexpensively. nZVI@Fe3O4 was able to remove more than 99% of Cr(vi) from both simulated Cr(vi) solutions and real electroplating wastewater, and the recovery and preparation could be easily performed using external magnets to separate it from the solution. At pH 6.0, the maximum adsorption capacity (qmax) for Cr(vi) reached 58.67 mg g-1. The reaction mechanism was discussed from the perspective of electron transfer. Overall, the results suggest that nZVI@Fe3O4, an efficient adsorbent prepared using an environmentally friendly and inexpensive Fe(ii) disproportionation reaction, is a promising option for the treatment of Cr(vi) from industrial wastewater and other contaminated water sources.
Collapse
Affiliation(s)
- Chuan He
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Yarong Ding
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Canhua Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Xuancheng Industrial Technology Research Institute, Anhui University of Technology Xuancheng 242002 China
| | - Wang Yan
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Aiqin Mao
- School of Materials Science and Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Shuxian Wei
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Minghui Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| |
Collapse
|
14
|
Xu Y, Shen W. Flocculation synergistic with nano zero-valent iron augmented attapulgite @ chitosan as Fenton-like catalyst for the treatment of landfill leachate. ENVIRONMENTAL TECHNOLOGY 2023; 44:3605-3613. [PMID: 35440289 DOI: 10.1080/09593330.2022.2068377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, nano-zero-valent iron (NZVI) was added to attapulgite/chitosan and used as a catalyst in the heterogeneous Fenton process to degrade stabilized landfill leachate. Landfill leachate has serious environmental impacts due to the complexity and diversity of its pollutants. A magnetic catalyst (NZVI@PATP/CS) was prepared by a liquid-phase reduction method. The NZVI@PATP/CS were characterized by XRD, FTIR and SEM. The pH of leachate and the dosage of catalyst and H2O2 were changed to determine the best-operating conditions for the effective removal of chemical oxygen demand (COD) and total phosphorus(TP). To understand the adsorption degradation mechanism, the quenching experiments of free radicals were carried out. The results showed that the degradation rates of COD and TP were 66% and 92%, respectively, under the optimum pH value of 8, the dosage of H2O2 of 5 mL, and the dosage of the catalyst of 0.25 g for 60 min.
Collapse
Affiliation(s)
- Yongyao Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Wangqing Shen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Li C, Zhen W. Preparation, performance and structure-properties relationship of polyphenylene sulfide/ATP-PS/co-deposition of tannic acid nanocomposites membrane. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Removal of Nitrate Nitrogen in Groundwater by Attapulgite Loaded with Nano-Zero-Valent Iron. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/5594717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Nano-zero-valent iron (nZVI) can be used to remove nitrate nitrogen (NO3-N) from groundwater. However, it has low reduction efficiency owing to its oxidation and aggregation characteristics. Thus, nZVI-loaded material is used to alleviate these drawbacks. In this study, nZVI-coated attapulgite (ATP) was prepared for the removal of NO3-N from groundwater. ATP-nZVI was prepared using the chemical liquid deposition-coreduction method. The prepared materials were characterized by SEM, XRD, and XPS analyses, which confirmed that the aluminum silicate particles in the ATP structure are effective carriers of nZVI and effectively inhibit self-consumption caused by the oxidation and aggregation of nZVI. The batch experiments examined experimental samples containing 30 mg/L nitrate and analyzed the effects of various parameters, including the material, mass ratio, initial pH, initial temperature, and coexisting anions on the NO3-N removal efficiency. The results showed that the optimal removal rate of the composite was 78.61%, which is higher than that using the same amount of ATP, iron powder, and nZVI. When the mass ratio of ATP to nZVI was 1 : 1, the NO3-N removal efficiency was the highest. When the pH value increased from 3 to 9, the NO3-N removal rate decreased, while an increase in the reaction temperature promoted NO3-N removal. The order of the inhibitory effect of coexisting anions on NO3-N removal by various nanoions was PO43–>CO32–>SO42–>Cl–. The adsorption kinetic model fitting results indicated that the chemisorption of electron exchange between ATP and nZVI in NO3-N removal was the main rate-limiting step in the reaction. This study demonstrates the potential of the prepared ATP-nZVI composite for NO3-N removal from groundwater.
Collapse
|
18
|
Yang W, Li Q, He Y, Xi D, Arinzechi C, Zhang X, Liao Q, Yang Z, Si M. Synergistic Cr(VI) reduction and adsorption of Cu(II), Co(II) and Ni(II) by zerovalent iron-loaded hydroxyapatite. CHEMOSPHERE 2023; 313:137428. [PMID: 36460147 DOI: 10.1016/j.chemosphere.2022.137428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Multi-metal contaminated soil, such as Cr(VI), Cu(II), and Co(II), still challenge the environmental remediation. In this work, zerovalent iron-loaded hydroxyapatite (ZVI/HAP) was first applied to simultaneously adsorb multi-metal in contaminated soil. During the remediation, the co-existing Cu(II), Ni(II), and Co(II) were adsorbed and precipitated onto ZVI/HAP. This "spontaneous deposition" simultaneously achieved the adsorption of the cationic metals and improved the isoelectric point of ZVI/HAP to 4.83 from 1.59, thus significantly alleviating the electronegativity to enhance the capture and reduction efficiency of Cr(VI). The application of ZVI/HAP resulted in the reduction of more than 99% of total Cr(VI) in contaminated soil, and the almost complete adsorption of water-soluble and DTPA-extractable Cu, Ni and Co within 20 d. Based on the sequential extraction and risk reduction assessment, soil Cr, Cu, Ni, and Co speciation was transformed from an unstable state (exchangeable and carbonate-bound fractions) to a relatively stable state, reducing the risk of heavy metals in contaminated soil significantly. This study developed an efficient strategy for the remediation of multi-metal contaminated soil.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yuhong He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
19
|
Yi Y, Wang X, Zhang Y, Yang K, Ma J, Ning P. Formation and mechanism of nanoscale zerovalent iron supported by phosphoric acid modified biochar for highly efficient removal of Cr(VI). ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes. Sci Rep 2023; 13:135. [PMID: 36599914 DOI: 10.1038/s41598-023-27414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
A new adsorbent with chromium removal function was synthesized by carbon thermal method using iron-containing waste Fenton sludge and carbon-containing solid waste fly ash to treat high pH scoring wastewater generated from industrial processes. The results showed that the adsorbent used T = 273.15 K, pH = 10, t = 1200 min, C0 = 100 mg/L, had a removal rate of Cr(VI) of more than 80%, and the adsorption capacity could reach 393.79 mg/g. The characterization results show that the synthesized mesoporous nitrogen-doped composite material has a large specific surface area and mesoporous structure, and the surface of the material is rich in oxygen-containing functional groups and active sites. Compared with other studies, the adsorption capacity of the material is larger, which indicates that the removal effect of Cr(VI) in this study is better. The adsorption kinetic results show that the adsorption follows a pseudo second kinetic model, and the adsorption process is a chemisorption involving electron sharing or electron exchange. This experiment designed a simple method to synthesize mesoporous nitrogen-doped composites using industrial solid waste, with raw materials from cheap and easily available industrial solid waste, and solved the dual problems of heavy metals in wastewater and solid waste, providing a new idea for the resource utilization of Fenton sludge while not producing secondary pollution.
Collapse
|
21
|
Kuang Q, Liu K, Wang Q, Chang Q. Three-dimensional hierarchical pore biochar prepared from soybean protein and its excellent Cr(VI) adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Liu Y, Xu L, Wang Q, Zou T, Cao C, Fang Q, Zhang N, Wang Y. Zirconium-modified attapulgite was used for removing of Cr(vi) in aqueous solution. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
This work fabricated the zirconium-modified attapulgite (Zr@ATP) for removing Cr(vi) ions in aqueous solutions. According to X-ray diffraction, scanning electron microscopy, TEM, Fourier transform infrared, and X-ray photoelectron spectroscopy analyses, Zr was successfully grafted onto the attapulgite rod surface. Cr(vi) adsorption onto Zr@ATP surface fitted well with the Langmuir isotherm and pseudo-second-order kinetic models, which suggested that the adsorption is primarily chemisorption. When the pH of the aqueous solution is 3, Zr@ATP achieved the highest Cr(vi) absorption, of about 32.84 mg/g. Density functional theory studies revealed that the hydroxyl functional group introduced through the modification process supplies more active sites to form the hydrogen bond with
CrO
4
2
−
{\text{CrO}}_{4}^{2-}
and
HCrO
4
−
{\text{HCrO}}_{4}^{-}
.
Collapse
Affiliation(s)
- Yani Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| | - Lei Xu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| | - Qingyun Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University , Zhangye , 734000 , P.R. China
| | - Tong Zou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| | - Cheng Cao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University , Zhangye , 734000 , P.R. China
| | - Qiqi Fang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| | - Nan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| | - Yongcheng Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University , Lanzhou , 730070 , P.R. China
| |
Collapse
|
23
|
Chen Y, Ma R, Pu X, Fu X, Ju X, Arif M, Yan X, Qian J, Liu Y. The characterization of a novel magnetic biochar derived from sulfate-reducing sludge and its application for aqueous Cr(Ⅵ) removal through synergistic effects of adsorption and chemical reduction. CHEMOSPHERE 2022; 308:136258. [PMID: 36057356 DOI: 10.1016/j.chemosphere.2022.136258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 05/22/2023]
Abstract
Removal of heavy metals from the aqueous environment via physiochemical adsorption always remains a great challenge owing to the slow kinetics and low removal capacity for the conventional adsorbent. In this study, the sulfate-reducing bacteria (SRB)-rich anaerobic sludge was pyrolyzed for the preparation of magnetic biochar, i.e. SBC-20-500 (SBC: sulfate-reducing sludge-based biochar; 20 denotes the biochar dosage, namely 8 g dried sludge in 400 mL iron solution which is equal to 20 g/L; 500 represents the pyrolysis temperature, i.e. at 500 °C) with tunable pore structure and surface properties towards efficient removal of chromium (Cr (Ⅵ)). The characterization revealed that magnetic biochar SBC-20-500 exhibited higher surface area and larger pore volume compared to non-magnetic SBC-500. Batch experiments on Cr (Ⅵ) removal were performed under different biochar dosages, pH values, initial Cr (Ⅵ) concentrations and temperatures. The results illustrated that magnetic biochar demonstrated much larger Cr (Ⅵ) adsorption capacity with qe of 5.3585 mg/g as compared to non-modified one (qe = 0.7206 mg/g). The maximum Cr (Ⅵ) removal efficiency of SBC-20-500 reached approximately 93.7% within 24 h under the conditions of pH = 3.0, biochar dosage = 0.8 g and initial Cr (Ⅵ) concentration = 50 mg/L. The kinetic and isotherm fitting results suggested that the pseudo-second-order kinetic and Langmuir isotherm model were more suitable for describing the adsorption behavior of Cr (Ⅵ) by SBC-20-500. The XPS and FTIR results confirmed that chemical reduction of Cr (Ⅵ) to Cr (Ⅲ) also played a role in Cr (Ⅵ) removal in the presence of SBC-20-500. Moreover, the Cr (Ⅵ) removal capacity could still achieve 3.50 mg/g even after five adsorption-desorption cycles, indicating the satisfactory reusability of the as-prepared biochar. The results of this study may provide a win-win approach for simultaneous resource recovery from the wasted sulfate-reducing sludge (SRS) and highly-efficient remediation of Cr (Ⅵ)-contaminated environment.
Collapse
Affiliation(s)
- Yongjun Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoying Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoyu Ju
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Muhammad Arif
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xueqian Yan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| |
Collapse
|
24
|
Lin Z, Liu F, Zheng C, Zhu A, Li H, Wang Z, He C. Highly efficient removal of Cd(II) in aqueous solution by attapulgite-loaded amorphous zero-valent Iron. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Shamshirgaran R, Malakooti R, Akbarpoor A, Moghaddam AZ. Fabrication of Polyvinylpyrrolidone‐Stabilized Nano Zero‐Valent Iron Supported by Hydrophilic Biochar for Efficient Cr (VI) Removal from Groundwater. ChemistrySelect 2022. [DOI: 10.1002/slct.202202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Chen H, Ai Y, Jia Y, Li J, Gu M, Chen M. Effective and simultaneous removal of heavy metals and neutralization of acid mine drainage using an attapulgite-soda residue based adsorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157120. [PMID: 35787898 DOI: 10.1016/j.scitotenv.2022.157120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Implementing an economical and effective measure for treating acid mine drainage (AMD) from abandoned mines using low-cost restoration reagents present a significant challenge. In this study, natural attapulgite (AT) and soda residue (SR) composite particles (AT-SR) were firstly prepared and utilized in AMD treatment. The efficiencies and mechanisms of AT-SR composites for regulating acidity and removing metals in AMD, the critical factors influencing the treatment efficiencies, and the regeneration performance and environmental risk were investigated. It is illustrated that AT and SR quality ratio of 5:5, dosage of 0.5 g L-1, particle size < 1.5 mm, concentrations of 150 mg L-1 for Fe, 75 mg L-1 for Mn and 100 mg L-1 for Cu, Zn, Cd and Pb, and adsorption time of 120 min were the optimized conditions. The maximum adsorption capacities of Fe, Mn, Cu, Zn, Cd and Pb under single metal scenarios were 51.61, 22.30, 37.05, 40.21, 37.39 and 49.53 mg g-1, respectively. Under the mixed metal scenarios, competitive adsorption was predominated with the rate constants in the reducing order of 3.169 for Fe > 0.841 for Cu > 0.657 for Pb > 0.083 for Zn > 0.024 for Cd > 0.006 for Mn. The experimental data was fitted well with the pseudo-second-order and the Freundlich isotherm models. AT-SR is an outstanding neutralizer for AMD due to its richness in calcium and magnesium oxides and the spent AT-SR composites could be easily regenerated while maintaining high metal removal efficiencies under the subsequent usages. It is determined under the aqua regia digestion and Toxicity Characteristic Leaching Procedure (TCLP) tests that AT-SR can be used safely without posing environmental risks, thus promoting the resource recovery and utilization of soda residue and providing a green and effective method for treating AMD.
Collapse
Affiliation(s)
- Hongping Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yulu Ai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufei Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, Nanjing 210034, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
27
|
Wang Y, Zou Y, Yang K, Lin D. Reciprocal interferences of heavy metal and dissolved organic matter on their immobilizations by modulating the interfacial interactions with nanoscale zero-valent iron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Kinetics and Mechanisms of Cr(VI) Removal by nZVI: Influencing Parameters and Modification. Catalysts 2022. [DOI: 10.3390/catal12090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, single-spherical nanoscale zero valent iron (nZVI) particles with large specific sur-face area were successfully synthesized by a simple and rapid chemical reduction method. The XRD spectra and SEM–EDS images showed that the synthesized nZVI had excellent crystal struc-ture, but oxidation products, such as γ-Fe2O3 and Fe3O4, were formed on the surface of the parti-cles. The effect of different factors on the removal of Cr(VI) by nZVI were studied, and the opti-mum experimental conditions were found. Kinetic and thermodynamic equations at different temperatures showed that the removal of Cr(VI) by nZVI was a single-layer chemical adsorption, conforming to pseudo-second-order kinetics. By applying the intraparticle diffusion model, the ad-sorption process was composed of three stages, namely rapid diffusion, chemical reduction, and in-ternal saturation. Mechanism analysis demonstrated that the removal of Cr(VI) by nZVI in-volved adsorption, reduction, precipitation and coprecipitation. Meanwhile, Cr(VI) was reduced to Cr(III) by nZVI, while FeCr2O4, CrxFe1−xOOH, and CrxFe1−x(OH)3 were formed as end products. In addition, the study found that ascorbic acid, starch, and Cu modified nZVI can promote the removal efficiency of Cr(VI) in varying degrees due to the enhanced mobility of the particles. These results can provide new insights into the removal mechanisms of Cr(VI) by nZVI.
Collapse
|
29
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
30
|
Xing X, Ren X, Alharbi NS, Chen C. Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Yang L, Shen J, Zhang W, Wu W, Wei Z, Chen M, Yan J, Qian L, Han L, Li J, Gu M. Hydrothermally assisted synthesis of nano zero-valent iron encapsulated in biomass-derived carbon for peroxymonosulfate activation: The performance and mechanisms for efficient degradation of monochlorobenzene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154645. [PMID: 35306062 DOI: 10.1016/j.scitotenv.2022.154645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
A facile, green and easily-scalable method of synthesizing stable and effective nano zero-valent iron (nZVI)‑carbon composites for peroxymonosulfate (PMS) activation was highly desirable for in-situ groundwater remediation. This study developed a two-step hydrothermally assisted carbothermal reduction method to prepare nZVI-encapsulated carbon composite (Fe@C) using rice straw and ferric nitrate as precursors. The hydrothermal reactions were conducive to iron loading, and carbothermal temperature was crucial for the aromatization and graphitization of hydrothermal carbonaceous products, the reductive transformation of iron oxides into nZVI and the development of porous structure in composites. At carbothermal temperature of 800 °C following hydrothermal reactions, the stable Fe@C800 with nZVI encapsulated in the spherical carbon shell was obtained and exhibited the best catalytic performance for PMS activation and the degradation of monochlorobenzene (MCB) in a wide range of pH values (3-11) with removal efficiency after 120 min reaction and first-order kinetic rate constant (k1) of 98.7% and 0.087 min-1 respectively under the optimum conditions of 10 mM PMS and 0.2 g·L-1 Fe@C800. The inhibiting effects of common co-existed anions (i.e., Cl-, HCO3- and H2PO4-) and humic acid in groundwater on the removal of MCB in Fe@C800/PMS system was also investigated. Both OH-dominated radical processes and nonradical pathways involving 1O2 and surface electron transfers were accounted for PMS activation and MCB removal. The inner nZVI was protected by the carbon shell, endowing Fe@C800 with high reactivity and good reusability. Additionally, 81.2% and 73.5% of MCB removal rates were achieved in tap water and actual contaminated groundwater respectively. This study not only provided a novel strategy to synthesize highly effective and stable nZVI‑carbon composites using the agricultural biomass waste for PMS induced oxidation of organic contaminants in groundwater, but also enhanced the understanding on the activation mechanism of iron‑carbon based catalysts towards PMS.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianing Shen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenpei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zifei Wei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, Nanjing 210034, China
| |
Collapse
|
32
|
The behavior and mechanism of toxic Pb(II) removal by nanoscale zero-valent iron-carbon materials based on the oil refining byproducts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Başkan G, Açıkel Ü, Levent M. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Hou J, Li Y, Ci H, Miao L, You G, Wu J, Xu Y. Influence of aggregation and sedimentation behavior of bare and modified zero-valent-iron nanoparticles on the Cr(VI) removal under various groundwater chemistry conditions. CHEMOSPHERE 2022; 296:133905. [PMID: 35149009 DOI: 10.1016/j.chemosphere.2022.133905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Aggregation behaviors of bare, and sodium polyacrylate (PAA) and starch modified zero-valent-iron nanoparticles (nZVI), as well as their effects on the Cr (VI) removal were investigated by simulating the groundwater. Results showed that increased concentration of PAA (1-6 wt%) and starch (0.1-0.6 wt%) alleviated the aggregation of modified nZVI (abbreviated as P-nZVI and S-nZVI), while there was an optimum dosage of 4 wt% PAA and 0.3 wt% starch for the Cr (VI) removal, respectively. Moreover, as one of the fundamental water chemistry parameters, Ca2+ (0, 5, and 10 mg L-1) greatly promoted the aggregation of modified nZVI, and decreased the Cr (VI) removal efficiency by them via forming bidentate bridging structure (between Ca2+ and PAA) or complexes (between Ca2+ and starch). Additionally, fulvic acid (FA) (0, 2, 5, and 10 mg L-1) decreased the Cr (VI) removal by P-nZVI because of the significantly improved electronic repulsion. However, FA enhanced the aggregation of S-nZVI, but diminished its performance on Cr (VI) removal due to the bridging effect between FA and starch. The present study was of great importance in predicting the migration of nZVI and contaminants removal under complex geological conditions in groundwater.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hanlin Ci
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
35
|
Chen M, Xu H, Zhang Y, Zhao X, Chen Y, Kong X. Effective removal of heavy metal ions by attapulgite supported sulfidized nanoscale zerovalent iron from aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Ma B, Yao J, Knudsen TŠ, Chen Z, Liu B, Zhao C, Zhu X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126698. [PMID: 34315632 DOI: 10.1016/j.jhazmat.2021.126698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The heavy metal and organic pollution caused by mining activities keep attracting attention, thus an economic and efficient treatment for combined pollution is pressing. In this study, the simultaneous removal performance of typical organic flotation reagent 8-hydroxyquinoline (8-HQ) and Cr(VI) was investigated via heterogeneous Fenton process induced by a novel polydopamine (PDA) functionalized attapulgite supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI). Batch experiments showed that PDA/ATP-nZVI had better catalytic reactivity and reduction ability than both ATP-nZVI and nZVI. Under acidic condition, 96.0% of 8-HQ was degraded accompanied with the 42.5% of total organic carbon (TOC) decrease, while 95.8% of Cr(VI) removal efficiency was accomplished by PDA/ATP-nZVI. PDA not only served as redox mediator in expediting electron transfer, but also acted as electron donor that accelerated transformation from Fe(III) to both dissolved Fe(II) and surface Fe(II), which resulted in the increased degradation of 8-HQ. The synergic removal behavior between 8-HQ and Cr(VI) was discussed and the reaction mechanism in the persulfate (PS)-PDA/ATP-nZVI system was also explored. This study developed a highly efficient heterogeneous catalyst, and demonstrated that the PS-PDA/ATP-nZVI system had a potential for remediation of mine environment polluted by both heavy metals and organic flotation reagents.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Zhihui Chen
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
37
|
Li D, Li G, He Y, Zhao Y, Miao Q, Zhang H, Yuan Y, Zhang D. Key Cr species controlling Cr stability in contaminated soils before and chemical stabilization at a remediation engineering site. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127532. [PMID: 34879522 DOI: 10.1016/j.jhazmat.2021.127532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Linking chromium (Cr) speciation with its stability in soils is vital because insoluble Cr(VI) and chemically adsorbed Cr(VI) could hinder the remediation efficiency and release Cr(VI) for a prolonged period of time. In this study, we investigated key Cr species to probe the mechanisms controlling the release of insoluble Cr(VI) at Cr-contaminated sites using synchrotron-based X-ray absorption near-edge structure (XANES) for the first time. Chromite, stichtite and Cr-silicate were predominant forms of Cr(III). Insoluble Cr(VI) was hosted by layered double hydroxides (LDHs) such as brownmilerite and hydrotalcite. Anion competition tests documented a substitution of absorbed Cr(VI) by SO42- and NO3-. Acid extraction released 6.7-25.7% more Cr(VI) than anion extraction, possibly attributing to the erosion of LDH and CaCrO4 in calcite rather than Cr-bearing minerals. Brown and red soils released maximally 62% and 44% of total Cr(VI) by 10 mol/(kg soil) and 2 mol/(kg soil) of H+, respectively. SO42-, H2O and H+ contributed to more release of total Cr(VI) in brown soils (22%, 33% and 7%) than red soils (25%, 17% and 2%). More crystalline Cr structures were found after chemical stabilization, indicating a higher Cr stability in chemically stabilized soils. Cr and Mn exhibited an overlapped distribution pattern in both contaminated and chemically stabilized soils, hinting at the re-oxidation of Cr(III). Insoluble Cr(VI) could be released by acidic rainfalls and soil organic matters, posing potential threats to Cr long-term stability in field-scale remediation.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Yuning He
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China
| | - Yingshuang Zhao
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuci Miao
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hao Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ying Yuan
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| |
Collapse
|
38
|
Experimental Identification of the Roles of Fe, Ni and Attapulgite in Nitroreduction and Dechlorination of p-Chloronitrobenzene by Attapulgite-Supported Fe/Ni Nanoparticles. MATERIALS 2022; 15:ma15031254. [PMID: 35161200 PMCID: PMC8840558 DOI: 10.3390/ma15031254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023]
Abstract
The porous-material loading and noble-metal doping of nanoscale zero-valent iron (nFe) have been widely used as countermeasures to overcome its limitations. However, few studies focused on the experimental identification of the roles of Fe, the carrier and the doped metal in the application of nFe. In this study, the nitroreduction and dechlorination of p-chloronitrobenzene (p-CNB) by attapulgite-supported Fe/Ni nanoparticles (ATP-nFe/Ni) were investigated and the roles of Fe, Ni and attapulgite were examined. The contributions of Ni are alleviating the oxidization of Fe, acting as a catalyst to trigger the conversion of H2 to H*(active hydrogen atom) and promoting electron transfer of Fe. The action mechanisms of Fe in reduction of -NO2 to -NH2 were confirmed to be electron transfer and to produce H2 via corrosion. When H2 is catalyzed to H* by Ni, the production H* leads to the nitroreduction. In additon, H* is also responsible for the dechlorination of p-CNB and its nitro-reduced product, p-chloroaniline. Another corrosion product of Fe, Fe2+, is incapable of acting in the nitroreduction and dechlorination of p-CNB. The roles of attapulgite includes providing an anoxic environment for nFe, decreasing nFe agglomeration and increasing reaction sites. The results indicate that the roles of Fe, Ni and attapulgite in nitroreduction and dechlorination of p-CNB by ATP-nFe/Ni are crucial to the application of iron-based technology.
Collapse
|
39
|
Cellulose hydrogel coated nanometer zero-valent iron intercalated montmorillonite (CH-MMT-nFe0) for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118355] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Xie Y, Lu G, Tao X, Wen Z, Dang Z. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126952. [PMID: 34449341 DOI: 10.1016/j.jhazmat.2021.126952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
A novel collaborative strategy for enhanced removal of Cr(VI) using nano zero valent iron (nZVI) assisted by schwertmannite (Sch) with two synthesis methods was designed. Batch experiments demonstrated that nZVI/Sch-AP (synthesized by abiotic precipitation of Fe3+ species) exhibited excellent removal performance for Cr(VI) than nZVI/Sch-CO (synthesized by chemical oxidation of Fe2+ species). The results indicated that the removal efficiencies of Cr(VI) by nZVI/Sch-AP and nZVI/Sch-CO were highly pH-dependent and achieved to be 99.99% and 98.01% under the optimal conditions of 10 mg L-1 Cr(VI) concentration, a pH of 6.3 and a Fe(0)/Cr(VI) molar ratio of 12. But nZVI/Sch-AP emerged greater k of 0.1097 min-1 than that of nZVI/Sch-CO (0.0485 min-1). Humic acid exhibited promotion effect on the Cr(VI) removal in low concentration of 1 mg L-1. Results of XRD and XPS demonstrated that α-FeOOH was the dominant products in both incubations of nZVI/Sch-AP and nZVI/Sch-CO, accompanied with FeCr2O4 and CrFe mixed (oxy)hydroxides, and γ-FeOOH was found alone in the incubations of nZVI/Sch-CO. We proposed a consecutive and simultaneous process involving surface absorption-reduction and co-precipitation/immobilization for the removal. This study provides new insights into the elimination of Cr(VI) from wastewater by nZVI/Sch, especially in acid mine drainage.
Collapse
Affiliation(s)
- Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Guining Lu
- The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Dang
- The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Ma B, Yao J, Chen Z, Liu B, Kim J, Zhao C, Zhu X, Mihucz VG, Minkina T, Knudsen TŠ. Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. CHEMOSPHERE 2022; 287:131970. [PMID: 34450370 DOI: 10.1016/j.chemosphere.2021.131970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, a polydopamine (PDA) modified attapulgite (ATP) supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI) was rapidly synthesized under acidic conditions, and employed to alleviate Cr(VI) toxicity from an aqueous solution. Kinetic studies revealed that Cr(VI) adsorption process followed the pseudo-second order model, suggesting chemisorption was the dominant adsorption mechanism. Liu isotherm adsorption model was able to better describe the Cr(VI) adsorption isotherm with the maximum adsorption capacity of 134.05 mg/g. The thermodynamic study demonstrated that the adsorption process occurred spontaneously, accompanied by the increase in entropy and endothermic reaction. Low concentrations of coexisting ions had negligible effects on the removal of Cr(VI), while high concentrations of interfering ions were able to facilitate the removal of Cr(VI). Reactive species test revealed that Fe2+ played a key role in Cr(VI) reduction by PDA/ATP-nZVI. PDA enhanced the elimination of Cr(VI) via donation of electrons to Cr(VI) and acceleration of Fe3+ transformation to Fe2+. Furthermore, PDA was able to effectively inhibit the leaching of iron species and generation of ferric hydroxide sludge. Mechanistic study revealed that 72% of Cr(VI) elimination was attributed to reduction/precipitation, while 28% of Cr(VI) elimination was due to the surface adsorption.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Zhihui Chen
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jonghyok Kim
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Energy Science, Kim Il Sung University, Pyongyang, 950003, Democratic People's Republic of Korea
| | - Chenchen Zhao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| |
Collapse
|
42
|
Cai M, Zeng J, Chen Y, He P, Chen F, Wang X, Liang J, Gu C, Huang D, Zhang K, Gan M, Zhu J. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove. CHEMOSPHERE 2021; 285:131539. [PMID: 34329142 DOI: 10.1016/j.chemosphere.2021.131539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel biochar-supported zero-valent iron (ZVI) composite was synthesised by a one-pot co-pyrolysis reduction method, and was used to remove Cu(II) and Cr(VI). The raw materials for the composite were derived from natural bagasse/straw and goethite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry (TG), and Brunauer-Emmett-Teller (BET) analysis were used to characterise the biochar and biochar-supported ZVI composites. Batch removal experiments on the effects of the initial pH and citric acid concentrations were performed as well as kinetic studies and isotherm experiments. The composite materials showed better Cu(II) and Cr(VI) removal performance than single biochar and mineral. The removal of Cu(II) and Cr(VI) is pH-dependent, and proceeds via heterogeneous multilayer chemisorption. Electrochemical analysis revealed that straw biochar-supported ZVI composite exhibited greater electrical conductivity and electron transfer rate than pure biochar and ZVI. FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS) elucidated the uptake mechanism, showing that Cu(II) and Cr(VI) were easily adsorbed onto the biochar surface and were then reduced by ZVI. These results indicate that biochar-supported ZVI composite is effective for heavy metal remediation, which is economical, environment-friendly, and suitable for mass production.
Collapse
Affiliation(s)
- Miao Cai
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jian Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yaozong Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Fang Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xu Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jinye Liang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Dongli Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
43
|
Removal of cadmium ions from aqueous solution by zero valent iron nanoparticles: Equilibrium and thermodynamic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Yang W, Xi D, Li C, Yang Z, Lin Z, Si M. "In-situ synthesized" iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126540. [PMID: 34252675 DOI: 10.1016/j.jhazmat.2021.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Anionic Cr(VI) and cationic heavy metals generally co-exist in industrial effluents and threaten the public health. Zero-valent iron (ZVI) particles tent to passivate rapidly, which results in a gradual drop in its reactivity. In this work, a strategy of "in-situ synthesized" iron-based bimetal was first developed to stimulate the self-activation of passivated ZVI. During this process, ZVI-loaded hydroxyapatite (ZVI/HAP) was prepared to enhance the affinity for co-existing Cu2+, which promoted the in-situ Cu0 deposition on ZVI/HAP to form a Fe-Cu bimetal. The deposited Cu0 significantly decreased the activation energy (Ea) of Cr(VI) reduction by 24.9%, and its corresponding Cr(VI) removal (96.53%) was much higher that of single Cr(VI) system (68.67%) within 9 h. More importantly, the removal of Cr(VI) and Cu2+ were synchronously achieved. Systematical electrochemical characterizations were first introduced to explore the galvanic behaviors of iron-based bimetal. The charge transfer resistance and the negative open circuit potential of ZVI/HAP significantly decreased with the Cu0 deposition, thereby accelerating the electron transfer from Fe0 to Cu2+. The enhanced electron transfer further facilitated the Fe(II) release to promote Cr(VI) reduction. This "in-situ synthesized" iron-based bimetal strategy provides a novel pattern for ZVI activation and exhibits practical application in remediation of combined contaminant.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chaofang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
45
|
Liu C, Chen X, Banwart SA, Du W, Yin Y, Guo H. A novel permeable reactive biobarrier for ortho-nitrochlorobenzene pollution control in groundwater: Experimental evaluation and kinetic modelling. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126563. [PMID: 34271441 DOI: 10.1016/j.jhazmat.2021.126563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Three novel permeable reactive barrier (PRB) materials composed of Cu/Fe with 0.24% and 0.43% (w/w) Cu loadings or Fe0 supported on wheat straw were prepared (termed materials E, F and G). These materials exhibited excellent pollutant removal efficiency and physical stability as well as the ongoing release of organic carbon and iron. Column experiments showed that materials E, F and G removed almost 100% of ortho-nitrochlorobenzene (o-NCB) from water. The rates of iron release from the E and F columns exceeded those from column G but this had no significant effect on o-NCB removal. The bacteria that degraded o-NCB in E and F were also different from those in G. The levels of these bacteria in the columns were higher than those in the initial materials, with the highest level in column E. The simultaneous reduction and microbial degradation of o-NCB was observed, with the latter being dominant. A kinetic model was established to simulate the dynamic interactions and accurately predicted the experimental results. Organic carbon from the wheat straw supported the majority of the biomass in each column, which was essential for the bioremediation process. The findings of this study suggest an economically viable approach to mitigating o-NCB pollution.
Collapse
Affiliation(s)
- Cuicui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Steven A Banwart
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Jia G, Tang X, Xu J. Synthesis of hydrochar supported zero-valent iron composites through hydrothermal carbonization of granatum and zero-valent iron: potential applications for Pb 2+ removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1873-1884. [PMID: 34695016 DOI: 10.2166/wst.2021.366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present investigation, a one-step synthesis of hydrochar (HC) supported zero-valent iron (ZVI) was performed through hydrothermal carbonization (HTC) of granatum and ZVI. According to XRD, XPS, and FTIR data, ZVI was evenly distributed on the surface of the hydrochar. In addition, the external ZVI oxide layer and the functional groups present in the hydrochar remained on the surface of the HC/ZVI composites after HTC treatment. The surface area of the HC/ZVI composites was between 31.11 and 44.16 m2/g. These numbers were higher than those obtained for hydrochar (20.36 m2/g) and ZVI (12.14 m2/g) separately. The Pb2+ adsorption capacity of hydrochar and ZVI was 28.64 and 192.44 mg/g, respectively (25 °C, pH = 6.05, Pb2+ concentration of 200 mg/L with 0.05 g HC and 0.01 g ZVI). In addition, the adsorption capacity of the composites was between 49.63 and 88.09 mg/g. The data obtained for Pb2+ removal by the samples used in this experiments fitted well the pseudo-second-order kinetics and Langmuir isotherm models. Therefore, hydrochar may represent a promising supporting material for the synthesis of ZVI composites.
Collapse
Affiliation(s)
- Guangyin Jia
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang 277160, China E-mail:
| | - Xiangchao Tang
- The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry, Beijing 100080, China
| | - Jie Xu
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang 277160, China E-mail:
| |
Collapse
|
47
|
Tang H, Cheng W, Yi Y, Ding C, Nie X. Nano zero valent iron encapsulated in graphene oxide for reducing uranium. CHEMOSPHERE 2021; 278:130229. [PMID: 33819879 DOI: 10.1016/j.chemosphere.2021.130229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Nano zero-valent iron (Fe0) has been widely used to remove Uranium (U(VI)). In order to enhance the performance of Fe0 toward U(VI) removal, the Fe0 was assembled into graphene oxide (GO) sheets via 3-aminopropyl triethoxysilane (APTES) as Fe0/APTES-GO composites. The Fe0/APTES-GO composites were triumphantly prepared, characterized and analyzed by means of Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) together with Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). SEM and TEM-EDS results manifested that Fe0 particles were encapsulated into rolled-up GO, which greatly improved the stability of Fe0. Batch experiment showed that only a small amount of Fe2+ was leached in the first two leaching cycles of Fe0/APTES-GO composites. The removal capacity of Fe0/APTES-GO composites was up to 1357.99 mg/g at pH = 4.1 and T = 50 °C, which was mainly attributed to the reducing activity of Fe0 and an abundance of functional groups (i.e., -COOH, C-OH and -OH) on the Fe0/APTES-GO composites. The electrostatic potential (ESP) from the calculation also supported that U(VI) tended to be reduced at the back side of the GO-Fe0 cluster.
Collapse
Affiliation(s)
- Huiping Tang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wencai Cheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yunpeng Yi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoqin Nie
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
48
|
Eltaweil AS, El-Monaem EMA, Mohy-Eldin MS, Omer AM. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Sci Rep 2021; 11:16598. [PMID: 34400760 PMCID: PMC8368087 DOI: 10.1038/s41598-021-96145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
49
|
Hou R, Wang L, Shen Z, Alessi DS, Hou D. Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125650. [PMID: 34088176 DOI: 10.1016/j.jhazmat.2021.125650] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Among the toxic metals, hexavalent chromium [Cr(VI)] has attracted much attention due to its high mobility and toxicity, rendering considerable challenges for long-term remediation. In this study, the soil was collected from a dichromate contaminated industrial site in Liaoning Province, a seasonally frozen area in northern China, and subjected to frequent freeze-thaw cycles. Three additives, including (i) ferrous sulfate; (ii) calcium polysulfide; and (iii) combined biochar and calcium polysulfide were applied to reduce and immobilize Cr(VI) in the soils. The samples underwent 28 days of incubation followed by 16 freeze-thaw cycles. The toxicity characteristic leaching procedure (TCLP) and simulated acid rain leaching were adopted to test the remediation performances. It was observed that all three treatments can significantly reduce and immobilize Cr(VI) after short-term incubation, while biochar with abundant functional groups could adsorb and reduce Cr(VI) effectively. Notably, the concentration of Cr(VI) in TCLP leachates after incubation in combined treatment decreased by 67.87% and 37.27%, respectively, compared with the application of ferrous sulfate or calcium polysulfide alone. Freeze-thaw cycles induced the disintegration of soil particles and increased the risk of contaminant mobilization. Conversely, biochar particles has become finer and even produced nanoparticles with ageing, accompanied by the increase in oxygen-containing surface functional groups. Additionally, the specific surface area increased with the pyrolysis of biochar, which further enhanced the retention of soil colloidal particles and suppressed the migration of contaminants. Therefore, the cumulative release of Cr(VI) in the combined treatment (i.e., 10.97 ~ 32.97 mg/kg) was much lower than that of the other two treatments after freeze-thaw ageing. Overall, the combination of biochar and calcium polysulfide displayed advantages in the reduction and immobilization of Cr(VI), and offered a long-term, effective strategy for the remediation of Cr(VI) contaminated soils in cold regions.
Collapse
Affiliation(s)
- Renjie Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhengtao Shen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Teng Y, Jiang Z, Yu A, Yu H, Huang Z, Zou L. Optimization of preparation parameters for environmentally friendly attapulgite functionalized by chitosan and its adsorption properties for Cd 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44064-44078. [PMID: 33843002 DOI: 10.1007/s11356-021-13788-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/30/2021] [Indexed: 05/28/2023]
Abstract
This work focused on using attapulgite and chitosan as raw materials to improve the adsorption capacity of Cd2+ from the aqueous phase by optimizing the preparation experimental parameters. The modification parameters (attapulgite-chitosan mass ratio, calcination temperature, and time) were specifically studied and optimized. The results indicated that the mass ratio of attapulgite to chitosan was 1:4, the calcination temperature was 300 °C, and the calcination time was 1 h. Both raw and functionalized attapulgite samples were characterized by nitrogen adsorption-desorption isotherms at 77 K, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and zeta potential analysis. A series of adsorption experiments showed that the pseudo-second-order kinetic model and Langmuir adsorption isotherm better corresponded with the adsorption characteristics of the newly prepared adsorbent, and the maximum adsorption amount of Cd2+ was 109.30 mg/g. Moreover, the effects of the pH value and coexisting cations on the Cd2+ adsorption in aqueous solution were investigated. Adsorption mechanism of Cd2+ on adsorbent might attribute to complexation, ion exchange reaction, and self-polarization.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Ziyang Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|