1
|
Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG, Sunday Okeke E. Scientometric trends and knowledge maps of global polychlorinated naphthalenes research over the past four decades. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124407. [PMID: 38908679 DOI: 10.1016/j.envpol.2024.124407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Polychlorinated naphthalenes (PCNs) were included in the banned list of the Stockholm Convention due to their potential to provoke a wide range of adverse effects on living organisms and the environment. Many reviews have been written to clarify the state of knowledge and identify the research needs of this pollutant class. However, studies have yet to analyse the scientometric complexities of PCN literature. In this study, we used bibliometric R and vosviewer programs as a scientometric tool to fill this gap by focusing on articles indexed on Web of Science and Scopus databases and those published between 1973 and 2022. A total of 707 articles were published within this period with a publication/author, author/publication, and co-authors/publication ratios of 0.45, 2.19, and 4.86, respectively. Developed countries dominated most scientometric indices (number of publications, citations, and collaboration networks) in the survey period. Lotka's inverse square rule of author productivity showed that Lotka's laws do not fit PCN literature. An annual percentage growth rate of 7.46% and a Kolmogorov-Smirnoff goodness-of-fit of 0.88 suggests that more output on PCNs is likely in years to come. More research is needed from scholars from developing countries to measure the supremacy of the developed nations and to effectively comply with the Stockholm Convention agreement.
Collapse
Affiliation(s)
- Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic.
| | - Alhadji Malloum
- Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon; Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Potsdam Site, East London, 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
2
|
Kotta-Loizou I, Pritsa A, Antasouras G, Vasilopoulos SN, Voulgaridou G, Papadopoulou SK, Coutts RHA, Lechouritis E, Giaginis C. Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases 2024; 12:114. [PMID: 38920546 PMCID: PMC11202568 DOI: 10.3390/diseases12060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece;
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Eleftherios Lechouritis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Falandysz J, Hart A, Rose M, Anastassiadou M, Eskes C, Gergelova P, Innocenti M, Rovesti E, Whitty B, Nielsen E. Risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. EFSA J 2024; 22:e8640. [PMID: 38476320 PMCID: PMC10928787 DOI: 10.2903/j.efsa.2024.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.
Collapse
|
4
|
Fernandes AR, Kilanowicz A, Stragierowicz J, Klimczak M, Falandysz J. The toxicological profile of polychlorinated naphthalenes (PCNs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155764. [PMID: 35545163 DOI: 10.1016/j.scitotenv.2022.155764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| |
Collapse
|
5
|
Zacs D, Perkons I, Pasecnaja E, Bartkevics V. Polychlorinated naphthalenes (PCNs) in food products in Latvia: Congener-specific analysis, occurrence, and dietary exposure of the general population. CHEMOSPHERE 2021; 264:128460. [PMID: 33035953 DOI: 10.1016/j.chemosphere.2020.128460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
A study was performed to evaluate the dietary exposure of the Latvian population to polychlorinated naphthalenes (PCNs). Based on the toxicological characteristics, provisional levels of occurrence, congener patterns, and the availability of analytical standards, twenty-six congeners were included in the analysis. Considering the planar structure of PCNs, an analytical protocol on the basis of destructive clean-up and isolation of analytes on carbon was applied, while GC-HRMS and isotope dilution were used for the detection and quantification of analytes. Commonly consumed foods were analyzed for the content of PCNs, followed by per capita intake calculations. By applying the available in vitro relative potency (REP) factors, putative toxic equivalents (TEQ) were determined, in order to assess the "dioxin-like" effect arising from the presence of PCNs in food. The daily intake (EDI) for total PCNs (∑PCN) and PCN-TEQ for the general population were calculated to be 116 pg kg-1 body weight (b.w.) and 0.036 pg TEQ kg-1 b.w., respectively. Fish and fish products were found to provide the main contribution to the dietary "dioxin-like" burden of PCNs, constituting ∼60% of the total PCN-TEQ intake. For some fish samples, PCN-TEQ could additionally contribute up to ∼3% to the regulated PCDD/F-PCB-TEQ, while for other matrices this contribution could be lower by an order of magnitude. The obtained data indicated that the estimated dietary exposure to PCNs is likely to be of low concern, although PCN-TEQ could be recognized as a contributor to the overall "dioxin-like" TEQ loading that results from the exposure to halogenated aromatics.
Collapse
Affiliation(s)
- D Zacs
- Institute of Food Safety, Animal Health and Environment"BIOR", Lejupes Iela 3, Riga, LV, 1076, Latvia.
| | - I Perkons
- Institute of Food Safety, Animal Health and Environment"BIOR", Lejupes Iela 3, Riga, LV, 1076, Latvia
| | - E Pasecnaja
- Institute of Food Safety, Animal Health and Environment"BIOR", Lejupes Iela 3, Riga, LV, 1076, Latvia
| | - V Bartkevics
- Institute of Food Safety, Animal Health and Environment"BIOR", Lejupes Iela 3, Riga, LV, 1076, Latvia
| |
Collapse
|
6
|
Stragierowicz J, Stypuła-Trębas S, Radko L, Posyniak A, Nasiadek M, Klimczak M, Kilanowicz A. An assessment of the estrogenic and androgenic properties of tetra- and hexachloronaphthalene by YES/YAS in vitro assays. CHEMOSPHERE 2021; 263:128006. [PMID: 33297039 DOI: 10.1016/j.chemosphere.2020.128006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Many persistent organic pollutants (POPs) exhibit endocrine disrupting activity but studies on some POPs, e.g., polychlorinated naphthalenes (PCNs), are very scarce. The present study investigates the (anti)estrogenic and (anti)androgenic activities of 1,2,3,5,6,7-hexachloronaphthalane (PCN67) and 1,3,5,8-tetrachloronaphthalene (PCN43) using the yeast estrogen and androgen reporter bioassays. Among the tested substances, antiestrogenic response was only shown by PCN67. The strongest inhibition of estrogenic activity (up to 17.4%) was observed in the low concentration ranges (5 pM - 0.5 nM) in the presence of 1.5 nM 17β-estradiol. Both tested compounds showed partial estrogenic activity with a hormetic-type response. However, both studied chemicals showed strong antiandrogenic effects: their potency in the presence of 100 nM 17β-testosterone for PCN43 (IC50 = 2.59 μM) and PCN67 (IC50 = 3.14 μM) was approximately twice that of the reference antiandrogen flutamide (IC50 = 6.14 μM). It cannot be excluded that exposure to PCNs, together with other endocrine disrupting chemicals (EDCs), may contribute to the deregulation of sex steroid hormone signaling.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Sylwia Stypuła-Trębas
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
7
|
Ayala-Cabrera JF, Lipok C, Moyano E, Schmitz OJ, Santos FJ. Atmospheric pressure ionization for gas chromatography-high resolution mass spectrometry determination of polychlorinated naphthalenes in marine sediments. CHEMOSPHERE 2021; 263:127963. [PMID: 33297024 DOI: 10.1016/j.chemosphere.2020.127963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
In this work, the performance of the atmospheric pressure chemical ionization (APCI) and photoionization (APPI) was assessed to develop a new selective and sensitive gas chromatography-high resolution mass spectrometry (GC-HRMS) method for the determination of polychlorinated naphthalenes (PCNs) in sediment samples. The capability of both APCI and APPI sources for the ionization of PCNs was investigated, showing the formation of the molecular ion and the [M‒Cl+O]‒ ion in positive and negative ion modes, respectively. Positive ion APCI provided high responses using high corona ion current, while the use of high vapour pressure dopant-solvents, such as toluene in positive mode and diethyl ether in the negative mode, was required to achieve high ionization efficiencies in APPI. The performance of the two API sources in the PCN determination by GC-HRMS were compared and the best results were achieved using the GC-APPI(+)-HRMS (Orbitrap) system. The GC-APPI(+)-HRMS (Orbitrap) method was applied to the characterization of Halowax mixtures and the analysis of marine sediments collected near to the coastal area of Barcelona (NE, Spain), demonstrating a great detection capability with low method limits of detection (0.2-1.6 pg g-1 dry weight), good precision (RSD <15%) and trueness (relative error <13%). Total PCN concentrations ranged from 0.35 to 5.0 ng g-1 dry weight and the presence of related compounds, such as polychlorinated biphenyls (PCBs), was also detected by combining positive and negative ion modes, providing complementary information to better monitor of all PCN congener groups. The results presented here show the feasibility of the GC-APPI-HRMS method for the suitable determination of PCNs.
Collapse
Affiliation(s)
- J F Ayala-Cabrera
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona Av. Diagonal 645, E‒08028, Barcelona, Spain
| | - C Lipok
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, D‒45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, D‒45141, Essen, Germany
| | - E Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona Av. Diagonal 645, E‒08028, Barcelona, Spain
| | - O J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, D‒45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, D‒45141, Essen, Germany
| | - F J Santos
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona Av. Diagonal 645, E‒08028, Barcelona, Spain.
| |
Collapse
|
8
|
Hexachloronaphthalene Induces Mitochondrial-Dependent Neurotoxicity via a Mechanism of Enhanced Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2479234. [PMID: 32685088 PMCID: PMC7335409 DOI: 10.1155/2020/2479234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.
Collapse
|
9
|
Falandysz J, Fernandes AR. Compositional profiles, persistency and toxicity of polychlorinated naphthalene (PCN) congeners in edible cod liver products from 1972 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114035. [PMID: 32041023 DOI: 10.1016/j.envpol.2020.114035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Edible cod liver products including cod liver oil and canned cod liver, sampled over the last five decades from the North Atlantic region, including the Baltic Sea were analysed for a set of persistent and toxicologically significant polychlorinated naphthalene (PCN) congeners with some of the highest relative potencies (dioxin-like toxicity) among PCNs. The targeted congeners showed a near-universality of occurrence in all samples apart from the most recent sample of cod liver oil which was assumed to be highly purified, as cod livers from the same period and location showed appreciable amounts of PCNs. The majority of dominant congeners in legacy technical PCN mixtures were absent or occurred in low concentrations, raising the possibility that congeners arising from combustion related sources may be acquiring a greater significance following the decline and elimination of PCN production. The apparent appreciation in the relative amounts of PCN#70 in the last three to four decades may provide support for this view. The PCN contribution to dioxin-like toxic equivalence (TEQ) that was estimated for these samples (range 1.2-15.9 pg TEQ g-1) was significant in comparison to the EU regulated value of 1.75 pg TEQ g-1 for dioxins in fish oils. Most of the TEQ was associated with PCNs 66/67, 64/68, 69 and 73. Although metabolic processes are likely to influence this distribution, the profile is a little different to that observed in the tissues of higher order animals where PCNs #66/67 and #73 may contribute approximately 90% to the summed TEQ.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia(1).
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Kilanowicz A, Markowicz-Piasecka M, Klimczak M, Stragierowicz J, Sikora J. Hexachloronaphthalene as a hemostasis disturbing factor in female Wistar rats - A pilot study. CHEMOSPHERE 2019; 228:577-585. [PMID: 31075638 DOI: 10.1016/j.chemosphere.2019.04.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Although Persistent Organic Pollutants (POPs) are some of the most dangerous environmental toxicants, data on their impact on hemostasis are virtually limited. 1,2,3,5,6,7-hexachloronaphthalene (PCN67) seems to be one of the most toxic congeners of polychlorinated naphthalenes (PCNs), which have recently been listed as POPs. The toxic effects of PCNs are similar to other chlorinated aromatics, e.g. polychlorinated dibenzo-p-dioxins (PCDDs), so an impact on hemostasis could not be excluded. Therefore, this study examines, for the first time, if short-term (two and four weeks) exposure of a mixture of hexachloronaphthalene congeners with a PCN67 as a predominant component to female Wistar rats may have an impact on selected hemostasis parameters, such as overall potential and kinetic parameters of clot formation and fibrinolysis; hematology and basic coagulology parameters. It also examines the influence of PCN67 on the stability of erythrocyte membranes. Obtained results indicate that PCN67 may be an important disturbing factor regarding both coagulation and fibrinolysis processes, as well as platelet count. Exposure to PCN67 significantly affected clot formation and lysis processes and diminished fibrinogen concentration after both administration periods. After two weeks of administration, an increased activated partial thromboplastin time (APTT) was noted; after four weeks - decreased platelet count with concomitant increased in mean platelet volume. Moreover, PCN67 may exert adverse effects on the red blood cells membrane stability, which were manifested by a statistically significant increase of red blood cells lysis.
Collapse
Affiliation(s)
- Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|