1
|
Rachamalla M, da Silva Junior FC, Hecker M, Niyogi S. Transgenerational Inheritance of Cognitive Deficits Induced by Ancestral Arsenic Exposure in Zebrafish ( Danio rerio) via Maternal and Paternal Lineages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9930-9942. [PMID: 40358985 DOI: 10.1021/acs.est.5c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Exposure to arsenic is known to impair learning and memory functions in animal models and humans. However, the transgenerational inheritance of these cognitive deficits and the underlying epigenetic mechanisms remain poorly understood. The present study investigated the inter- and transgenerational effects of ancestral arsenic exposure on the cognitive performance (latent learning) of zebrafish via maternal and paternal lineages and the underlying biochemical and molecular alterations in the brain, including the DNA methylation patterns of cognition-related genes. Adult male zebrafish exposed to dietary arsenic [30, 60, or 100 μg/g as arsenite for 90 days; F0 generation] were crossed with unexposed (control) females and vice versa to generate F1 progeny of maternal and paternal arsenic exposure, respectively. Subsequently, F1 males and females of the same treatments were crossed to generate the F2 progeny of the respective maternal and paternal lineages of ancestral arsenic exposure. It was found that ancestral arsenic exposure induced cognitive dysfunction in F1 and F2 generations of both maternal and paternal lineages. However, the effects occurred at relatively lower levels of ancestral arsenic exposure (30 and 60 μg/g) in the former treatment relative to those (100 μg/g) in the latter. Inter (F1) and transgenerational (F2) cognitive effects of arsenic were associated with concomitant elevated oxidative stress and dopaminergic dysregulation, including repressed expression of cognition-related genes such as genes involved in dopamine signaling and metabolism (Drd1 and MAO) and the brain-derived neurotrophic factor (BDNF). Furthermore, DNA methylation analyses revealed that the downregulation of these genes across three generations (F0 to F2) resulted from the hypermethylation in their promotor regions (Drd1, MAO, BDNF). Collectively, these observations provide novel insights into the epigenetic mechanisms of the transgenerational inheritance of arsenic neurotoxicity.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
2
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
3
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Zhang C, Guo Y, Liu Y, Liu K, Hu W, Wang H. Sperm miR-142-3p Reprogramming Mediates Paternal Pre-Pregnancy Caffeine Exposure-Induced Non-Alcoholic Steatohepatitis in Male Offspring Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405592. [PMID: 39291441 PMCID: PMC11558112 DOI: 10.1002/advs.202405592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Indexed: 09/19/2024]
Abstract
Numerous studies have suggested a strong association between paternal adverse environmental exposure and increased disease susceptibility in offspring. However, the impact of paternal pre-pregnant caffeine exposure (PPCE) on offspring health remains unexplored. This study elucidates the sperm reprogramming mechanism and potential intervention targets for PPCE-induced non-alcoholic steatohepatitis (NASH) in offspring. Here, male rats are administrated caffeine (15-60 mg kg-1/d) by gavage for 8 weeks and then mated with females to produce offspring. This study finds that NASH with transgenerational inheritance occurred in PPCE adult offspring. Mechanistically, a reduction of miR-142-3p is implicated in the occurrence of NASH, characterized by hepatic lipid metabolism dysfunction and chronic inflammation through an increase in ACSL4. Conversely, overexpression of miR-142-3p mitigated these manifestations. The origin of reduced miR-142-3p levels is traced to hypermethylation in the miR-142-3p promoter region of parental sperm, induced by elevated corticosterone levels rather than by caffeine per se. Similar outcomes are confirmed in offspring conceived via in vitro fertilization using miR-142-3pKO sperm. Overall, this study provides the first evidence of transgenerational inheritance of NASH in PPCE offspring and identifies miR-142-3p as a potential therapeutic target for NASH induced by paternal environmental adversities.
Collapse
Affiliation(s)
- Cong Zhang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Yu Guo
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yi Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Kexin Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430072China
| | - Hui Wang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
5
|
Gan Y, Zhang X, Cai P, Zhao L, Liu K, Wang H, Xu D. The Role of Oxidative Stress and DNA Hydroxymethylation in the Pathogenesis of Benzo[a]pyrene-Impaired Reproductive Function in Male Mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:5039-5047. [PMID: 39037180 DOI: 10.1002/tox.24384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is known to cause teratogenesis. Environmental exposure of BaP has led to wide public concerns due to their potential risk of reproductive toxicity. However, the exact mechanism is still not clear. We aimed to explore the alterations of oxidative stress and DNA hydroxymethylation during BaP-impaired reproductive function. BALB/c mice were intragastrically administered with different doses of BaP (0.01, 0.1, and 1 mg/kg/day, once a day), while control mice were administered with corn coil. Then, the reproductive function, alterations of oxidative stress, DNA methylation, and DNA hydroxymethylation of testis tissues were evaluated. We found that BaP caused obvious histopathological damages of testis tissues. As for sperm parameters after BaP administration, testis weight and the rate of teratosperm were increased, as well as sperm count and motility were decreased. In mechanism, BaP upregulated HO-1 and MDA levels and downregulated SOD and CAT activity and GSH content in testis tissues, indicating that oxidative stress was induced by BaP. Furthermore, a significant induction of hydroxymethylation and inhibition of methylation were observed in testis tissues after BaP exposure. Collectively, BaP-induced oxidative stress and hydroxymethylation were involved in impairing reproductive function, which may be the mechanism of the male infertility.
Collapse
Affiliation(s)
- Yu Gan
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Panyuan Cai
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Long Zhao
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Kaiyong Liu
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
9
|
Liu L, Zhang X, Geng HR, Qiao YN, Gui YH, Zhao JY. High paternal homocysteine causes ventricular septal defects in mouse offspring. iScience 2024; 27:109447. [PMID: 38523790 PMCID: PMC10960133 DOI: 10.1016/j.isci.2024.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Maternal hyperhomocysteinemia is widely considered as an independent risk of congenital heart disease (CHD). However, whether high paternal homocysteine causes CHD remains unknown. Here, we showed that increased homocysteine levels of male mice caused decreased sperm count, sperm motility defect and ventricular septal defect of the offspring. Moreover, high levels of paternal homocysteine decrease sperm DNMT3A/3B, accompanied with changes in DNA methylation levels in the promoter regions of CHD-related genes. Folic acid supplement could decrease the occurrence of VSD in high homocysteine male mice. This study reveals that increased paternal homocysteine level increases VSD risk in the offspring, indicating that decreasing paternal homocysteine may be an intervening target of CHD.
Collapse
Affiliation(s)
- Lian Liu
- Children’s Hospital of Fudan University and Shanghai Genitourinary Cancer Institute Fudan University, Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 201102, China
| | - Xuan Zhang
- Children’s Hospital of Fudan University and Shanghai Genitourinary Cancer Institute Fudan University, Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 201102, China
| | - Hao-Ran Geng
- School of Life Sciences, Fudan University, Shanghai 200438, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ya-Nan Qiao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yong-Hao Gui
- Children’s Hospital of Fudan University and Shanghai Genitourinary Cancer Institute Fudan University, Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 201102, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Cheng Y, Feng J, Wang J, Zhou Y, Bai S, Tang Q, Li J, Pan F, Xu Q, Lu C, Wu W, Xia Y. Alterations in sperm DNA methylation may as a mediator of paternal air pollution exposure and offspring birth outcomes: Insight from a birth cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117941. [PMID: 38103775 DOI: 10.1016/j.envres.2023.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Paternal exposure to environmental risk factors influences the offspring health. This study aimed to evaluate the association between paternal air pollution exposure mediated by sperm DNA methylation and adverse birth outcomes in offspring. We recruited 1607 fertile men and their partners from 2014 to 2016 and collected semen samples to detect sperm DNA methylation. Multivariate linear regression and weighted quantile sum regression models were used to assess the associations between paternal air pollution exposure and offspring birth outcomes. A critical exposure window was identified. Reduced representation bisulfite sequencing was used to detect sperm DNA methylation. The results demonstrated that high paternal exposure to PM2.5 (β = -211.31, 95% CI: (-386.37, -36.24)), PM10 (β = -178.20, 95% CI: (-277.13, -79.27)), and NO2 (β = -84.22, 95% CI: (-165.86, -2.57)) was negatively associated with offspring's birthweight, especially in boys. Additionally, an early exposure window of 15-69 days before fertilization was recognized to be the key exposure window, which increased the risk of low birth weight and small for gestational age. Furthermore, paternal co-exposure to six air pollutants contributed to lower birthweight (β = -51.91, 95% CI: (-92.72, -11.10)) and shorter gestational age (β = -1.72, 95% CI: (-3.26, -0.17)) and PM2.5 was the most weighted pollutant. Paternal air pollution exposure resulted in 10,328 differentially methylated regions and the IGF2R gene was the key gene involved in the epigenetic process. These differentially methylated genes were predominantly associated with protein binding, transcriptional regulation, and DNA templating. These findings indicate that spermatogenesis is a susceptible window during which paternal exposure to air pollution affects sperm DNA methylation and the birth outcomes of offspring.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialin Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford Medical Center, Stanford, CA, USA
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Feinberg JI, Schrott R, Ladd-Acosta C, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Daniele Fallin M, Feinberg AP, Volk HE. Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Mol Psychiatry 2024; 29:43-53. [PMID: 37100868 DOI: 10.1038/s41380-023-02046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
12
|
Chauhan R, Archibong AE, Ramesh A. Imprinting and Reproductive Health: A Toxicological Perspective. Int J Mol Sci 2023; 24:16559. [PMID: 38068882 PMCID: PMC10706004 DOI: 10.3390/ijms242316559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Anthony E. Archibong
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
13
|
Jorge BC, Stein J, Reis ACC, de Matos Manoel B, Nagaoka LT, Arena AC. Insights from the maternal lineage of the F2 generation after exposure to an environmentally relevant dose of benzo(a)pyrene in the male rats of F0 generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110363-110376. [PMID: 37783996 DOI: 10.1007/s11356-023-30089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Benzo(a)pyrene (BaP) is a substance with the potential to induce endocrine disruption in the F0 generation and cause adverse multigenerational effects (F1 generation) for reproductive parameters in rats. The objective of this study was to investigate the occurrence of transgenerational inheritance in the reproductive aspects of male and female rats belonging to the F2 generation (MF2). This investigation was conducted following the exposure of male rats from the F0 generation to BaP to assess potential effects on subsequent generation from the maternal lineage (F1). For that, juvenile male Wistar rats (F0) were orally exposed to BaP (0.1 µg/kg/day) for 31 consecutive days. In adulthood, they were mated with untreated females to obtain female offspring (F1), which later produced the MF2. In the MF2 generation, both males and females exhibited increased body weight on postnatal day (PND) 1. In MF2 males, we observed delayed preputial separation, altered pup weight, reduced levels of follicle-stimulating hormone (FSH), increased intratesticular testosterone levels, decreased type A sperm, epididymal disturbances, reduced 5 α-reductase activity, increased testicular proliferation, and alterations in testicular antioxidant enzymes. In MF2 females, we noted morphological uterine enlargement, reduced sexual activity, and decreased progesterone levels. The findings suggest that the alterations observed in both MF2 males and females can be attributed to modifications in the sperm from F0 generation, which were subsequently transmitted to F1 females and MF2 generation due to BaP exposure.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil.
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Lívia Trippe Nagaoka
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
- Information and Toxicological Assistance Center (CIATOX), Institute of Biosciences of Botucatu, São Paulo State University (Unesp), São Paulo, Brazil
| |
Collapse
|
14
|
Zhang J, Xiong YW, Tan LL, Zheng XM, Zhang YF, Ling Q, Zhang C, Zhu HL, Chang W, Wang H. Sperm Rhoa m6A modification mediates intergenerational transmission of paternally acquired hippocampal neuronal senescence and cognitive deficits after combined exposure to environmental cadmium and high-fat diet in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131891. [PMID: 37354721 DOI: 10.1016/j.jhazmat.2023.131891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Little is currently known about the effect and mechanism of combined paternal environmental cadmium (Cd) and high-fat diet (HFD) on offspring cognitive ability. Here, using in vivo model, we found that combined paternal environmental Cd and HFD caused hippocampal neuronal senescence and cognitive deficits in offspring. MeRIP-seq revealed m6A level of Rhoa, a regulatory gene of cellular senescence, was significantly increased in combined environmental Cd and HFD-treated paternal sperm. Interestingly, combined paternal environmental Cd and HFD markedly enhanced Rhoa mRNA, its m6A and reader protein IGF2BP1 in offspring hippocampus. STM2457, the inhibitor of m6A modification, markedly mitigated paternal exposure-caused the elevation of hippocampal Rhoa m6A, neuronal senescence and cognitive deficits in offspring. In vitro experiments, Rhoa siR significantly reversed mouse hippocampal neuronal senescence. Igf2bp1 siR obviously reduced the level and stability of Rhoa in aging mouse hippocampal neuronal cells. In conclusion, combined paternal environmental Cd and HFD induce offspring hippocampal neuronal senescence and cognitive deficits by promoting IGF2BP1-mediated Rhoa stabilization in offspring hippocampus via elevating Rhoa m6A in paternal sperm.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
15
|
Jorge BC, Stein J, Reis ACC, Bueno JN, Paschoalini BR, da Silva Moreira S, de Matos Manoel B, Arena AC. Paternal low-dose benzo(a)pyrene exposure in rats impairs sexual development and fertility of the paternal lineage in F2 generation: A transgenerational study. Toxicology 2023:153585. [PMID: 37369342 DOI: 10.1016/j.tox.2023.153585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
The field of Paternal Origins of Health and Disease (POHaD) is highly relevant but remains under-explored. The F2 generation from males indirectly exposed (F1 - via germ cells) to benzo(a)pyrene (BaP), named PF2, was investigated in this study under parameters of sexual development and reproductive performance of male and female rats. Male Wistar rats (F0) were exposed to BaP (0.1µg/kg/day) for 31 consecutive days (gavage) during prepuberty. The F0 rats were mated with untreated females to produce male offspring (F1), which were exposed to BaP via germ cells. The F1 males were later mated with untreated females to obtain the PF2 generation, which was the focus of our investigation. Our findings showed that PF2 males exhibited a decrease in anogenital distance, fertility potential, testosterone levels, and type A sperm. Meanwhile, PF2 females had an earlier vaginal opening, lower lordosis scores, and decreased fertility. Furthermore, changes in the histomorphology of the testis/epididymis and ovary/uterus were observed. The repercussions of the PF2 generation indicate that these animals showed losses in both sexual development and fertility potential, and we can conclude that this damage remained due to paternal transgenerational inheritance caused by a low dose of BaP.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Jéssica Nogueira Bueno
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Beatriz Rizzo Paschoalini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil; Information and Toxicological Assistance Center (CIATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| |
Collapse
|
16
|
Lu Z, Zhao C, Yang J, Ma Y, Qiang M. Paternal exposure to arsenic and sperm DNA methylation of imprinting gene Meg3 in reproductive-aged men. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3055-3068. [PMID: 36152128 DOI: 10.1007/s10653-022-01394-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Prenatal exposure to arsenic and mercury have been associated with adverse pregnancy outcomes that might be in part mediated by dynamic modification of imprinting gene that are emerging mechanism. OBJECTIVES The objective of this study was to examine the impacts of paternal exposure to arsenic and co-exposure to arsenic and mercury on human sperm DNA methylation status of imprinting genes, respectively. METHODS A total of 352 male subjects (23-52 years old) were recruited and demographic data were obtained through questionnaires. Urinary arsenic and mercury levels were measured using hydride generation-atomic fluorescence spectrometer. Multivariate regression model was employed to investigate the relationship between urinary arsenic levels and sperm DNA methylation status at H19, Meg3 and Peg3, measured by pyrosequencing, and evaluating the interaction with mercury. RESULTS After adjusting potential confounds factors by multivariate regression model, the results indicated a significantly positive relationship between urinary arsenic levels and the methylation status of Meg3 at both mean level (β = + 0.125, p < 0.001) and all individual CpGs, i.e., CpG1 (β = + 0.094, p < 0.001), CpG2 (β = + 0.132, p < 0.001), CpG3 (β = + 0.121, p < 0.001), CpG4 (β = + 0.142, p < 0.001), CpG5 (β = + 0.111, p < 0.001), CpG6 (β = + 0.120, p < 0.001), CpG7 (β = + 0.143, p < 0.001), CpG8 (β = + 0.139, p < 0.001) of Meg3 DMRs. The interaction effects analysis indicated the interaction effects of arsenic and mercury on Meg3 were not existing. CONCLUSIONS Paternal nonoccupational exposure to arsenic induces the altered DNA methylation status of Meg3 in human sperm DNA. In addition, the interaction effects of arsenic and mercury on Meg3 were not existing. These findings would implicate the sensibility of sperm epigenome for environmental pollutions.
Collapse
Affiliation(s)
- Zhaoxu Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Graduate School of Peking Union Medical College, Beijing, 100005, China.
| | - Chuo Zhao
- School of Public Health, Hebei University, Baoding, 071000, Hebei, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yufeng Ma
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
17
|
Sun Y, Zhang C, Luo L, Lin H, Liu C, Zhang W. Paternal genetic intergenerational and transgenerational effects of cadmium exposure on hormone synthesis disorders in progeny ovarian granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121175. [PMID: 36731734 DOI: 10.1016/j.envpol.2023.121175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To investigate the paternal genetic effects of cadmium (Cd) exposure on hormone synthesis disorders in the ovarian granulosa cells (GCs) of offspring. Here, male Sprague‒Dawley (SD) rats were gavaged with CdCl2 (0, 0.5, 2, 8 mg/kg) from postnatal day (PND) 28-56, followed by mating with newly purchased healthy adult females to produce F1, and F1 adult males (PND 56) were mated with newly purchased healthy adult females to produce F2. The serum levels of estradiol (E2) and progesterone (Pg) decreased in F1 but essentially returned to normal in F2. The levels of StAR, CYP11A1, CYP17A1, CYP19A1, and SF-1 showed different alterations in F1 and F2 ovarian GCs. The expression patterns of miRNAs and imprinted genes related to hormone synthesis in GCs of F1 and F2 differed, but methylation of hormone synthesis-related genes was not significantly altered (except for individual loci in F1). In addition, there were significant changes in the expression of imprinted genes and miRNAs in F0 and F1 sperm. We conclude that paternal Cd exposure causes intergenerational genetic effects (hormone synthesis disorders) and transgenerational effects (reparative changes in hormone synthesis function) in ovarian GCs. These genetic effects were related to the downregulation of StAR in F1 and the upregulation of CYP17A1, CYP19A1, StAR and SF-1 in F2. Important changes in miRNAs and imprinted genes were also observed, but not all alterations originated from paternal inheritance.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
18
|
Liu Y, Ouyang L, Mao C, Chen Y, Liu N, Chen L, Shi Y, Xiao D, Liu S, Tao Y. Inhibition of RNF182 mediated by Bap promotes non-small cell lung cancer progression. Front Oncol 2023; 12:1009508. [PMID: 36686776 PMCID: PMC9853554 DOI: 10.3389/fonc.2022.1009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Ubiquitylation that mediated by ubiquitin ligases plays multiple roles not only in proteasome-mediated protein degradation but also in various cellular process including DNA repair, signal transduction and endocytosis. RING finger (RNF) proteins form the majority of these ubiquitin ligases. Recent studies have demonstrated the important roles of RNF finger proteins in tumorigenesis and tumor progression. Benzo[a]pyrene (BaP) is one of the most common environmental carcinogens causing lung cancer. The molecular mechanism of Bap carcinogenesis remains elusive. Considering the critical roles of RNF proteins in tumorigenesis and tumor progression, we speculate on whether Bap regulates RNF proteins resulting in carcinogenesis. Methods We used GEO analysis to identify the potential RING finger protein family member that contributes to Bap-induced NSCLC. We next used RT-qPCR, Western blot and ChIP assay to investigate the potential mechanism of Bap inhibits RNF182. BGS analyses were used to analyze the methylation level of RNF182. Results Here we reported that the carcinogen Bap suppresses the expression of ring finger protein 182 (RNF182) in non-small cell lung cancer (NSCLC) cells, which is mediated by abnormal hypermethylation in an AhR independent way and transcriptional regulation in an AhR dependent way. Furthermore, RNF182 exhibits low expression and hypermethylation in tumor tissues. RNF182 also significantly suppresses cell proliferation and induces cell cycle arrest in NSCLC cell lines. Conclusion These results demonstrated that Bap inhibits RNF182 expression to promote lung cancer tumorigenesis through activating AhR and promoting abnormal methylation.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yuanbing Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research, Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| | - Yongguang Tao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| |
Collapse
|
19
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
20
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
22
|
Rashed WM, Marcotte EL, Spector LG. Germline De Novo Mutations as a Cause of Childhood Cancer. JCO Precis Oncol 2022; 6:e2100505. [PMID: 35820085 DOI: 10.1200/po.21.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germline de novo mutations (DNMs) represent one of the important topics that need extensive attention from epidemiologists, geneticists, and other relevant stakeholders. Advances in next-generation sequencing technologies allowed examination of parent-offspring trios to ascertain the frequency of germline DNMs. Many epidemiological risk factors for childhood cancer are indicative of DNMs as a mechanism. The aim of this review was to give an overview of germline DNMs, their causes in general, and to discuss their relation to childhood cancer risk. In addition, we highlighted existing gaps in knowledge in many topics of germline DNMs in childhood cancer that need exploration and collaborative efforts.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital-Egypt 57357 (CCHE-57357), Cairo, Egypt
| | - Erin L Marcotte
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Logan G Spector
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
23
|
Wan T, Au DWT, Mo J, Chen L, Cheung KM, Kong RYC, Seemann F. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac013. [PMID: 35769199 PMCID: PMC9233418 DOI: 10.1093/eep/dvac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Previous studies have revealed that DNA methylation changes could serve as potential genomic markers for environmental benzo[a]pyrene (BaP) exposure and intergenerational inheritance of various physiological impairments (e.g. obesity and reproductive pathologies). As a typical aromatic hydrocarbon pollutant, direct BaP exposure has been shown to induce neurotoxicity. To unravel the inheritance mechanisms of the BaP-induced bone phenotype in freshwater medaka, we conducted whole-genome bisulfite sequencing of F1 sperm and identified 776 differentially methylated genes (DMGs). Ingenuity pathway analysis revealed that DMGs were significantly enriched in pathways associated with neuronal development and function. Therefore, it was hypothesized that parental BaP exposure (1 μg/l, 21 days) causes offspring neurotoxicity. Furthermore, the possibility for sperm methylation as an indicator for a neurotoxic phenotype was investigated. The F0 adult brains and F1 larvae were analyzed for BaP-induced direct and inherited toxicity. Acetylcholinesterase activity was significantly reduced in the larvae, together with decreased swimming velocity. Molecular analysis revealed that the marker genes associated with neuron development and growth (alpha1-tubulin, mbp, syn2a, shh, and gap43) as well as brain development (dlx2, otx2, and krox-20) were universally downregulated in the F1 larvae (3 days post-hatching). While parental BaP exposure at an environmentally relevant concentration could induce neurotoxicity in the developing larvae, the brain function of the exposed F0 adults was unaffected. This indicates that developmental neurotoxicity in larvae may result from impaired neuronal development and differentiation, causing delayed brain growth. The present study demonstrates that the possible adverse health effects of BaP in the environment are more extensive than currently understood. Thus, the possibility of multigenerational BaP toxicity should be included in environmental risk assessments.
Collapse
Affiliation(s)
- Teng Wan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Kwok-Ming Cheung
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- South Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Frauke Seemann
- *Correspondence address. Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA. Tel: +1-361-825-2683; Fax: +1 (361) 825-2742;
| |
Collapse
|
24
|
Hao L, Ru S, Qin J, Wang W, Zhang J, Wei S, Wang J, Zhang X. Transgenerational effects of parental bisphenol S exposure on zebrafish (Danio rerio) reproduction. Food Chem Toxicol 2022; 165:113142. [PMID: 35595038 DOI: 10.1016/j.fct.2022.113142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Bisphenol S (BPS) is extensively used for production of polycarbonates and other commodities, and is often detected in environment and biota. Parental BPS exposure has been reported to interfere with reproductive development of offspring, but limited information is available on its multigenerational reproductive toxicity. In our present study, zebrafish (Danio rerio) were exposed to BPS (1 and 100 μg/L) from 3 hpf to 120 dpf, and the effects on reproduction, sex steroid hormones, DNA methylation levels and gene transcription involved in steroidogenesis and DNA methylation were investigated in unexposed F1-2 offspring. The results showed that 100 μg/L BPS exposure increased DNA methylation in F1 testes, and 1 μg/L BPS led to DNA methylation in F2 ovaries. The increased DNA methylation levels led to decreased expression of steroidogenic enzymes, including cyp11a, cyp17 and 3βhsd, which might be a main reason for the elevated plasma 17β-estradiol and decreased testosterone levels. In addition, sex ratio indicated a female dominance trend, and reproductive capacity of male fish was severely impaired. Overall, these findings suggest that parental BPS exposure impairs reproductive development of unexposed offspring via DNA methylation and BPS-induced epigenetic modification inheritance has a long-term effect on the fitness and sustainability of fish populations.
Collapse
Affiliation(s)
- Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
25
|
Zhao X, Hao Y, Wang Q, Shen Y, Cheng Y, Li B, Gao Y, Wang T, Qiu Y. Novel deoxyribonucleic acid methylation perturbations in workers exposed to vinyl chloride. Toxicol Ind Health 2022; 38:377-388. [PMID: 35548910 DOI: 10.1177/07482337221098600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the epigenetic mechanism of deoxyribonucleic acid (DNA) damage induced by vinyl chloride (VC), we studied the micronuclei of peripheral blood lymphocytes in 193 subjects (92 in a VC exposure group employed in a chlorine-alkali plant; 101 in a control group employed in a power plant) and selected three pairs from the subjects (exposed and control) for whole-genome bisulfite sequencing (WGBS). The results showed that the rate of micronucleus formation in the VC exposure group was higher than that of control group (6.05 ± 3.28‰ vs. 2.01 ± 1.79‰). A total of 9534 differentially methylated regions (DMRs) were identified by WGBS, of which 4816 were hypomethylated and 4718 were hypermethylated. The Kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) analyses showed the top three KEGG pathways were cancer , neuroactive ligand-receptor interaction, and axon guidance, and the top three GO-BP pathways enriched were multicellular organismal process, developmental process, and anatomical structure development. In the most enriched DMR pathway (pathways in cancer), we found that BCL2, TJP2, TAOK1, PFKFB3, LIPI, and LIPH were hypermethylated, and the methylation levels of BNIP1 and GRPEL2 were decreased. The methylation of differentially methylated genes (DMGs) mentioned above were verified by methylation-specific PCR (MSP) and agarose gel electrophoresis (AGE) in 50 pairs of subjects, where the coincidence rate was 60-100%. In conclusion, the epigenetic perturbations of specific DMGs (BCL2, TJP2, TAOK1, PFKFB3, LIPI, LIPH, BNIP1, and GRPEL2) may be associated with DNA damage from vinyl chloride exposure.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Yan Hao
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Yongmei Shen
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Ying Cheng
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Ben Li
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Tong Wang
- Department of Statistics, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, 74648Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Li M, Zhou S, Wu Y, Li Y, Yan W, Guo Q, Xi Y, Chen Y, Li Y, Wu M, Zhang J, Wei J, Wang S. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117254. [PMID: 33957517 DOI: 10.1016/j.envpol.2021.117254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period-from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16-64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
Collapse
Affiliation(s)
- Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yaling Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuanyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jia Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
27
|
Meng H, Li G, Wei W, Bai Y, Feng Y, Fu M, Guan X, Li M, Li H, Wang C, Jie J, Wu X, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125839. [PMID: 33887567 DOI: 10.1016/j.jhazmat.2021.125839] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Abstract
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days' exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.
Collapse
|
29
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
30
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
31
|
Yang J, Lu Z, Liu Z, Wang L, Qiang M. Methylation of Imprinted Genes in Sperm DNA Correlated to Urinary Polycyclic Aromatic Hydrocarbons (PAHs) Exposure Levels in Reproductive-Aged Men and the Birth Outcomes of the Offspring. Front Genet 2021; 11:611276. [PMID: 33505432 PMCID: PMC7834272 DOI: 10.3389/fgene.2020.611276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known environmental pollutants. Studies are very limited regarding the impacts of paternal PAHs exposure on birth outcomes as well as the underpinning mechanisms in human. In this study, 302 reproductive-aged males (22-46 years old) were enrolled and demographic informatics data were obtained by questionnaires. The levels of urinary hydroxylated PAHs (OH-PAHs) were assessed by ultra-high performance liquid chromatography-tandem mass spectrometry; and methylation levels of the imprinting genes H19, Meg3, and Peg3 of sperm DNA were evaluated via bisulfite pyrosequencing. The analysis of the correlation between OH-PAHs levels and methylation levels of imprinting genes showed that OH-PAHs are correlated with some CpG sites in H19, Peg3, and Meg3. To further investigate an association of urinary OH-PAHs with birth outcomes, follow-up study of wives of these subjects has been performed for 1-3 years. As the result, a total of 157 babies were born. The birth outcomes parameters including birth weight (BW), length (BL), and ponderal index (PI) were recorded. The further analysis of generalized estimating equation indicated a negative correlation between urinary total OH-PAHs levels and newborn BW (β = -0.081, p = 0.020); but this association has not been found for BL and PI. Furthermore, a logistic regression analysis was employed for examining associations of the methylation of imprinting genes with birth outcomes parameters, which indicated a negative correlation between BW and H19, namely, each unit percent (%) elevation in methylation of H19 (but not Peg3 and Meg3) was significantly associated with a 0.135 g reduction of BW (β = -0.135; 95% CI 0.781-0.978). Putting together, these results show that paternal non-occupational environmental exposure to PAHs is associated with newborn BW. And imprinting gene H19 methylation may be involved in the underlying mechanisms. This study in human population adds a support for previous animal study and implies that environmental impact on the offspring through paternal pathway.
Collapse
Affiliation(s)
- Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhaoxu Lu
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhichao Liu
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
32
|
Yin X, Liu Y, Zeb R, Chen F, Chen H, Wang KJ. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115437. [PMID: 32866872 DOI: 10.1016/j.envpol.2020.115437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a widely existed polycyclic aromatic hydrocarbon pollutant in aquatic environment, has toxic effects on marine animals and their generations, but the intergenerational immunotoxic mechanism underlying has not been clearly understood. In the study, the offspring of marine medaka (oryzias melastigma) which were exposed to 0.5 μg L-1 BaP suffered from circadian rhythm oscillation disorders and severe DNA damage. Many clock-associated genes like per1 were significantly modulated in offspring, both per1 and p53 were significantly inhibited that altered the progression of cell cycle and inhibited DNA repair, which possibly resulted in the increased mortality of offspring. The hypermethylation of the per1 promotor and abnormal levels of N6-methyladenosine (m6A) suggested that the underlying mechanism was probably related to the epigenetic modification. Moreover, the offspring from paternal BaP exposure had more severe DNA damage and a higher degree of hypermethylation than those from maternal exposure. F1 larvae from BaP-exposed parents were more sensitive to BaP exposure, showing that the expression of immune and metabolism-related genes were significantly up-regulated. Taken together, the parental toxicity induced by BaP could be passed to F1 generation and the mechanism underlying was probably associated with a characteristic circadian rhythm disorder.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
33
|
Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020; 89:103-112. [PMID: 32798691 PMCID: PMC7722131 DOI: 10.1016/j.alcohol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
34
|
Nohara K, Suzuki T, Okamura K. Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. Toxicol Appl Pharmacol 2020; 409:115319. [PMID: 33160984 DOI: 10.1016/j.taap.2020.115319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
A growing body of evidence has shown that gestational exposure to environmental factors such as imbalanced diet, environmental chemicals, and stress can lead to late-onset health effects in offspring and that some of these effects are heritable by the next generation and subsequent generations. Furthermore, altered epigenetic modifications in DNA methylation, histone modifications and small RNAs in a single sperm genome have been shown to transmit disease phenotypes acquired from the environment to later generations. Recently, our group found that gestational exposure of F0 pregnant dams to an inorganic arsenic, sodium arsenite, increases the incidence of hepatic tumors in male F2 mice, and the effects are paternally transmitted to the F2. Here, we first overview the epigenetic changes involved in paternal intergenerational and transgenerational inheritance caused by exposure to environmental factors. Then, we discuss our recent studies regarding paternal inheritance of the tumor-augmenting effects in F2 mice by gestational arsenite exposure, in which we investigated alterations of DNA methylation status in F2 tumors and causative F1 sperm. We also discuss the possible targets of the F2 effects. Finally, we discuss future perspectives on the studies that are needed to fully understand the health effects of arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
35
|
Stimpfel M, Vrtacnik-Bokal E. Minor DNA methylation changes are observed in spermatozoa prepared using different protocols. Andrology 2020; 8:1312-1323. [PMID: 32470185 DOI: 10.1111/andr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation patterns can show transgenerational inheritance and are influenced by lifestyle and environmental factors. It is suggested that these patterns can be changed by assisted reproductive technology. OBJECTIVES To evaluate the impact of two different sperm preparation methods, conventional density gradient centrifugation (DGC) vs. density gradient centrifugation followed by magnetic-activated cell sorting (MACS) of non-apoptotic spermatozoa, on sperm DNA methylation profile. MATERIALS AND METHODS We analyzed semen of patients included in our IVF treatment program. Half of the semen from each included patient was prepared for ICSI using the DGC method and the other half with DGC followed by MACS. The remaining samples were processed for DNA methylation analysis with reduced representation bisulfite sequencing (RRBS). In addition to the DNA methylation profile, we assessed the morphology and DNA fragmentation of spermatozoa. RESULTS RRBS analysis revealed that the average genome-wide methylation level was similar between both groups (DGC vs. MACS group) and ranged from 0.53 to 0.56. Furthermore, RRBS analysis identified 99 differentially methylated regions (DMRs) and 800 differentially methylated positions (DMPs). In the DGC group, 43 DMRs and 392 DMPs were hypermethylated whereas 56 DMRs and 408 DMPs were hypomethylated compared with those in the MACS group. When DMRs and DMPs were annotated to genes, 3 genes associated with imprinting were found: IGF2, PRDM16, and CLF4/BRUNOL4. The percentage of morphologically normal spermatozoa (MACS vs. DGC; 14.0 ± 10.8 vs. 13.2 ± 10.0; P = .335) and of spermatozoa with fragmented DNA of patients with RRBS analysis (22.9 ± 21.1% vs. 34.4 ± 21.2; P = .529) were also similar between groups. DISCUSSION AND CONCLUSION Although the average genome-wide level of sperm DNA methylation was similar in both sample groups, a distinctive number of methylation changes were observed in DMR and DMP levels. A larger number of samples should be analyzed and additional sperm preparation methods should be tested to confirm our findings.
Collapse
Affiliation(s)
- Martin Stimpfel
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Murphy PJ, Guo J, Jenkins TG, James ER, Hoidal JR, Huecksteadt T, Broberg DS, Hotaling JM, Alonso DF, Carrell DT, Cairns BR, Aston KI. NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genet 2020; 16:e1008756. [PMID: 32520939 PMCID: PMC7307791 DOI: 10.1371/journal.pgen.1008756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Paternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. Here we use mouse models to investigate mechanisms and impacts of paternal CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking is associated with changes in prefrontal cortex DNAme and gene expression patterns in offspring. Remarkably, the epigenetic and transcriptional effects of CS exposure that we observed in wild type mice are partially recapitulated in Nrf2-/- mice and their offspring, independent of smoking status. Nrf2 is a central regulator of antioxidant gene transcription, and mice lacking Nrf2 consequently display elevated oxidative stress, suggesting that oxidative stress may underlie CS-induced heritable epigenetic changes. Importantly, paternal sperm DNAme changes do not overlap with DNAme changes measured in offspring prefrontal cortex, indicating that the observed DNAme changes in sperm are not directly inherited. Additionally, the changes in sperm DNAme associated with CS exposure were not observed in sperm of unexposed offspring, suggesting the effects are likely not maintained across multiple generations.
Collapse
Affiliation(s)
- Patrick J. Murphy
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Timothy G. Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Emma R. James
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John R. Hoidal
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Thomas Huecksteadt
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Dallin S. Broberg
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - James M. Hotaling
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - David F. Alonso
- Department of Psychology, University of Utah, Salt Lake City, Utah, United States of America
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
37
|
Yuan C, Zhang C, Qi Y, Li D, Hu Y, Huang D. 2,4-Dichlorophenol induced feminization of zebrafish by down-regulating male-related genes through DNA methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110042. [PMID: 31816500 DOI: 10.1016/j.ecoenv.2019.110042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is ubiquitous in aquatic environment and has potential estrogenic effect on fish. However, the effect of 2,4-DCP on sex differentiation of zebrafish (Danio rerio) and the underlying mechanism are largely unknown. To address these questions, zebrafish larvae at 20 or 30 days post fertilization (dpf) were exposed to 2,4-DCP (0, 80 and 160 μg L-1) with/without 5-aza-2'-deoxycytidine (5AZA, 50 μg L-1) for 10 days. The sex ratios and the expressions of male-related genes including amh, gata4, nr5a1a, nr5a2 and sox9a were analyzed. In addition, the DNA methylation levels of amh, nr5a2 and sox9a were examined. The results showed that 2,4-DCP exposure resulted in significant increase of female ratios both in 20-30 and 30-40 dpf groups. Correspondingly, the expressions of gata4, nr5a1a, nr5a2 and sox9a were decreased by 2,4-DCP exposure in two treatment periods. However, the transcript of amh was decreased by 2,4-DCP exposure only from 30 to 40 dpf. The DNA methylation levels of amh, nr5a2 and sox9a were increased following 2,4-DCP exposure. Moreover, the addition of 5AZA could counteract the effects including feminization, disturbance of gene expression and DNA hypermethylation caused by 2,4-DCP. These results indicated that the feminizing effect of 2,4-DCP was accomplished by regulating the expression of male-related genes through DNA methylation.
Collapse
Affiliation(s)
- Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
38
|
Liu S, Chen S, Cai W, Yin H, Liu A, Li Y, Liu GE, Wang Y, Yu Y, Zhang S. Divergence Analyses of Sperm DNA Methylomes between Monozygotic Twin AI Bulls. EPIGENOMES 2019; 3:21. [PMID: 34968253 PMCID: PMC8594723 DOI: 10.3390/epigenomes3040021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Semen quality is critical for fertility. However, it is easily influenced by environmental factors and can induce subfertility in the next generations. Here, we aimed to assess the impacts of differentially methylated regions and genes on semen quality and offspring fertility. A specific pair of monozygotic (MZ) twin artificial insemination (AI) Holstein bulls with moderately different sperm qualities (Bull1 > Bull2) was used in the study, and each twin bull had produced ~6000 recorded daughters nationwide in China. Using whole genome bisulfite sequencing, we profiled the landscape of the twin bulls' sperm methylomes, and we observed markedly higher sperm methylation levels in Bull1 than in Bull2. Furthermore, we found 528 differentially methylated regions (DMR) between the MZ twin bulls, which spanned or overlapped with 309 differentially methylated genes (DMG). These DMG were particularly associated with embryo development, organ development, reproduction, and the nervous system. Several DMG were also shown to be differentially expressed in the sperm cells. Moreover, the significant differences in DNA methylation on gene INSL3 between the MZ twin bulls were confirmed at three different age points. Our results provided new insights into the impacts of AI bull sperm methylomes on offspring fertility.
Collapse
Affiliation(s)
- Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Yanhua Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
- Beijing Dairy Cattle Center, Qinghe South Town, Beijing 100085, China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, BARC-East, Beltsville, MD 20705, USA;
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2rd, Yuanmingyuan West Road, Beijing 100193, China; (S.L.); (S.C.); (W.C.); (H.Y.); (A.L.); (Y.L.); (Y.W.)
| |
Collapse
|
39
|
Correlation of Internal Exposure Levels of Polycyclic Aromatic Hydrocarbons to Methylation of Imprinting Genes of Sperm DNA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142606. [PMID: 31336636 PMCID: PMC6678435 DOI: 10.3390/ijerph16142606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAHs) results in adverse health implications. However, the specific impact of paternal preconception PAHs exposure has not been fully studied. In this study, a total of 219 men aged 24-53 were recruited and an investigation was conducted using a questionnaire requesting information about age, occupation, education, family history, lifestyle, and dietary preferences. Urine and semen samples were examined for the levels of the hydroxyl metabolites of PAHs (OH-PAHs) using ultra-high-performance liquid chromatography-tandem mass spectrometry and sperm DNA methylation by pyrosequencing. The results from the correlation analysis using seven OH-PAHs and the average methylation levels of the imprinting genes H19, PEG3, and MEG3 indicated that 1-OHPH is positively correlated with H19/PEG3 methylation levels. We further examined the correlation between each OH-PAH and the methylation levels at the individual CpGs. The results showed 1-OHPH is specifically correlated with CpG4 and CpG6 of the imprinted gene H19, CpG1 and CpG2 of PEG3, and CpG2 of MEG3; whereas 1-OHP is positively correlated with PEG3 at CpG1. Multivariate regression model analysis confirmed that 1-OHPH and 1-OHP are independent risk factors for the methylation of H19. These data show that sperm DNA imprinting genes are sensitive to adverse environmental perturbations.
Collapse
|