1
|
Mahesh N, Shyamalagowri S, Pavithra MKS, Alodhayb A, Alarifi N, Aravind J, Kamaraj M, Balakumar S. Viable remediation techniques to cleansing wastewaters comprising endocrine-disrupting compounds. ENVIRONMENTAL RESEARCH 2023; 231:116245. [PMID: 37245568 DOI: 10.1016/j.envres.2023.116245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have recently gained prominence as emerging pollutants due to their significant negative impacts on diverse living forms in ecosystems, including humans, by altering their endocrine systems. EDCs are a prominent category of emerging contaminants in various aquatic settings. Given the growing population and limited access to freshwater resources, their expulsion from aquatic systems is also a severe issue. EDC removal from wastewater depends on the physicochemical properties of the specific EDCs found in each wastewater type and various aquatic environments. Due to these components' chemical, physical, and physicochemical diversity, various approaches based on physical, biological, electrochemical, and chemical procedures have been developed to eliminate them. The objective of this review is to provide the comprehensive overview by selecting recent approaches that showed significant impact on the best available methods for removing EDCs from various aquatic matrices. It is suggested that adsorption by carbon-based materials or bioresources is effective at higher EDC concentrations. Electrochemical mechanization works, but it requires expensive electrodes, continual energy, and chemicals. Due to the lack of chemicals and hazardous byproducts, adsorption and biodegradation are considered environmentally friendly. When combined with synthetic biology and an AI system, biodegradation can efficiently remove EDCs and replace conventional water treatment technologies in the near future. Hybrid in-house methods may reduce EDCs best, depending on the EDC and resources.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - S Shyamalagowri
- P.G. and Research Department of Botany, Pachaiyappas College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nahed Alarifi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India.
| |
Collapse
|
2
|
Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120319. [PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Divya Bhushan
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Yang X, Zhang X, Chen X, Gao X, Liu Y, Weng J, Yang S, Gui T, Chen X, Zhao R, Liu J. Nitrogen-rich triazine-based porous polymers for efficient removal of bisphenol micropollutants. CHEMOSPHERE 2022; 307:135919. [PMID: 35952784 DOI: 10.1016/j.chemosphere.2022.135919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Achieving both rapid adsorption rate and high adsorption capacity for bisphenol micropollutants from aquatic systems is critical for efficient adsorbents in water remediation. Here, we elaborately prepared three nitrogen-rich triazine-based porous polymers (NTPs) with similar geometric configurations and nitrogen contents (41.70-44.18 wt%) while tunable BET surface areas and micropore volumes in the range of 454.7-536.3 m2 g-1 and 0.20-0.84 cm3 g-1, respectively. It was systematically revealed that the synergy of hydrogen bonding, π-π electron-donor-acceptor interaction, and micropore preservation promoted the rapid (within 5 min) and high capacity adsorption of bisphenols by NTPs. Particularly, microporous-dominated NTPs-3 with the highest micro-pore volume (0.84 cm3 g-1) displays remarkable adsorption capacity towards bisphenol A as evidenced by the adsorption capacity of 182.23 mg g-1. A simple column filter constructed by NTPs-3 also expressed good dynamic adsorption and regeneration capacity. This work provided new insight into the rational design and engineering of nitrogen-rich porous polymers for the remediation of micropollutant wastewater.
Collapse
Affiliation(s)
- Xuechun Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoyi Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinwei Chen
- The Attached Middle School to Jiangxi Normal University, Nanchang, 330006, China
| | - Xiaoying Gao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinlan Weng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Tian Gui
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiangshu Chen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Rusong Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
4
|
Sun M, Ye Z, Xing D, Xu Z, Zhang C, Fu D. Rethinking electrochemical oxidation of bisphenol A in chloride medium: Formation of toxic chlorinated oligomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154825. [PMID: 35341842 DOI: 10.1016/j.scitotenv.2022.154825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Using boron-doped diamond (BDD) anodes to degrade bisphenol A (BPA) had been an active area of research interest within the past 20 years. A major concern about the process lie in the formation of toxic chlorinated aromatic by-products when chloride electrolytes were present in the reaction system. In this contribution, we highlighted the formation of complex poly-chlorinated oligomer by-products in electrochemical oxidation processes, which had often been overlooked in previous studies. Moreover, the distribution and complexity of the chlorinated oligomers were found to be strongly linked to the adopted initial chloride concentration. Formation of simple chlorinated by-products was ascribed to the electrophilic substitution reactions mediated by active chlorine species, while the oligomer by-products (including chlorinated dimers, trimers and tetramers) were generated through the coupling reactions between various chlorinated phenoxy radicals. The possible mechanisms describing the formation of these by-products were also proposed. The obtained results shed light on the possible risk of BDD technology in the treatment of phenolic wastewater containing chloride electrolytes.
Collapse
Affiliation(s)
- Minjia Sun
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyuan Ye
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Xing
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Li Y, Wang L, Xu H, Lu J, Chovelon JM, Ji Y. Direct and nitrite-sensitized indirect photolysis of effluent-derived phenolic contaminants under UV 254 irradiation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:127-139. [PMID: 34981110 DOI: 10.1039/d1em00381j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UV254 photolysis has increasingly been utilized for disinfection of water-born pathogens in wastewater. During disinfection, wastewater-derived trace organic contaminants, such as pharmaceuticals and personal care products (PPCPs), may be subjected to direct photolysis and indirect photolysis sensitized by wastewater constituents such as nitrite (NO2-). Herein, we reported the direct photolysis and NO2--sensitized indirect photolysis of four phenolic contaminants commonly observed in wastewaters (i.e., bisphenol A (BPA), acetaminophen (ATP), salbutamol (SAL), and 2,4-dihydroxybenzophenone (BP1)). Spectroscopic characterization and quantum yield measurement were carried out to evaluate the photochemical reactivity of these phenolic compounds. In NO2--sensitized photolysis, the relative contribution of direct and indirect photolysis was quantified by light screening factor calculation and radical quenching studies. The experimental results highlight the important roles of HO˙ and NO2˙ in the NO2--sensitized photolysis of phenolic compounds. A series of intermediate products, including hydroxylated, nitrated, nitrosated, dimerized, and alkyl chain cleavage products, were identified by solid phase extraction (SPE) combined with high-resolution mass spectrometry (HRMS) analyses. On the basis of identified products, the underlying mechanisms and transformation pathways for NO2--sensitized photolysis of these phenolic compounds were elucidated. The second-order rate constants of BPA, SAL, BP1 with NO2˙ were calculated to be 2.25 × 104, 1.35 × 104 and 2.44 × 104 M-1 s-1, respectively, by kinetic modeling. Suwanee River natural organic matter (SRNOM) played complex roles in the direct and NO2--sensitized photolysis of phenolic compounds by serving as a photosensitizer, light screening and radical quenching agent. Wastewater constituents, such as NO3- and EfOM, could accelerate direct and NO2--sensitized photolysis of BPA, SAL, and BP1 in the wastewater matrix. Our results suggest that NO2- at the WWTP effluent-relevant level can sensitize the photolysis of effluent-derived phenolic contaminants during the UV254 disinfection process; however, the formation of potentially carcinogenic and mutagenic nitrated/nitrosated derivatives should be scrutinized.
Collapse
Affiliation(s)
- Yueyue Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lixiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haiyan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A. Facile synthesis of iron(II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ahmad A, Priyadarshini M, Das S, Ghangrekar MM. Proclaiming Electrochemical Oxidation as a Potent Technology for the Treatment of Wastewater Containing Xenobiotic Compounds: A Mini Review. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2021; 25. [DOI: 10.1061/(asce)hz.2153-5515.0000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Azhan Ahmad
- Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID:
| | - Monali Priyadarshini
- Research Scholar, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sovik Das
- Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID:
| | - M. M. Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (corresponding author). ORCID:
| |
Collapse
|
8
|
Can OT, Tutun MM, Keyikoglu R. Anodic oxidation of bisphenol A by different dimensionally stable electrodes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1907-1919. [PMID: 33905361 DOI: 10.2166/wst.2021.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disrupter and was detected in surface waters. We investigated the mineralization of BPA by electrochemical oxidation. Six different types of electrodes, including the boron-doped diamond (BDD), platinum (Pt), and mixed metal oxide (MMO) electrodes; RuO2-IrO2, RuO2-TiO2, IrO2-Ta2O5, and Pt-IrO2, were compared as the anode material. Total organic carbon (TOC) was analyzed to monitor the mineralization efficiency of BPA. BDD achieved 100% BPA mineralization efficiency in 180 min and at a current density of 125 mA/cm2, whereas the TOC removal efficiency of Pt was 60.9% and the efficiency of MMO electrodes ranged between 48 and 54%. BDD exhibited much lower specific energy consumption, which corresponds to a lower energy cost (USD63.4 /kg TOC). The effect of operational parameters showed that the BDD anode was much more affected by the current density, initial BPA concentration, and electrolyte concentration than the other parameters such as the stirring speed and interelectrode distance.
Collapse
Affiliation(s)
- Orhan T Can
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ;
| | - Muhammed M Tutun
- Department of Environmental Engineering, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ; ; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
9
|
Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141527. [PMID: 33113672 DOI: 10.1016/j.scitotenv.2020.141527] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of chemical compounds are used in human activities; however, part of these compounds reach surface water, groundwater and even water considered for potable uses. Due to the limited efficiency of water treatment by the Water and Wastewater Treatment Plants, the presence of these compounds in natural and human consumption waters can be very harmful due to their high persistence and adverse effects; these characteristics define the contaminants of emerging concern (CECs). Water treatment by Electrochemical Advanced Oxidation Processes (EAOPs) has been evaluated as a promising process for the removal of persistent and recalcitrant organic contaminants. With this background, the present review aims to gather studies and information published between 2015 and 2020 regarding the occurrence of CECs in surface, potable and groundwater, its treatment by EAOPs, the main operating conditions and by-product generation of EAOPs, contaminant toxicity assessments and international statutory guideline values concerning CEC standards and allowable concentrations in the environment and treated drinking water. Therefore, in this review it was found that the compounds bisphenol A (BPA), diethyltoluamide (DEET), 17α-ethinyl estradiol (EE2), perfluorobutanoic acid (PFBA), carbamazepine, caffeine and atrazine were the most frequently detected in water sources, with concentrations ranging from 35.54-4800, 1.21-98, 0.005-38.5, 5-742.904, 0.0071-586, 0.89-1040, and 100-323 (ng L-1), respectively. Among the operational conditions of EAOPs, current density, pH and oxidant concentration are the main operational parameters that have an influence on these treatment technologies, besides the by-products generated, which might be removed by the integration of EAOPs with biological digestion treatments. Regarding the values of water quality standards, many CECs do not have established standard allowable concentration values, which represents a concern toward the possible toxic effects of these compounds on non-target organisms.
Collapse
Affiliation(s)
- Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil.
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Renata M de Souza
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Heloise B Quesada
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Rosângela Bergamasco
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Aline T Baptista
- Academic Department of Food and Chemical Engineering, Federal Technology University of Parana - UTFPR, Via Rosalina Maria dos Santos, 1233.CEP 87301-899 - Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| |
Collapse
|
10
|
Electrochemical advanced oxidation process of Phenazopyridine drug waste using different Ti-based IrO2-Ta2O5 anodes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Fernandes A, Pereira C, Kozioł V, Pacheco MJ, Ciríaco L, Lopes A. Emerging contaminants removal from effluents with complex matrices by electrooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140153. [PMID: 32563882 DOI: 10.1016/j.scitotenv.2020.140153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The electrooxidation of methiocarb and bisphenol A was studied in complex matrices, namely, simulated and real sanitary landfill leachate samples, using a boron-doped diamond anode. With simulated sanitary landfill leachate samples, the influence of the type and ratio of carbon source (glucose/humic acid) and electrolyte (NaCl or Na2SO4) on the emerging contaminants removal was assessed. Using real sanitary landfill leachate, the influence of current density was evaluated. The experimental results showed that electrooxidation, using a boron-doped diamond anode, can be successfully utilized to degrade methiocarb and bisphenol A when present in complex matrices, such as sanitary landfill leachate, and that methiocarb is more easily oxidized than bisphenol A. Furthermore, it was found that the presence of chloride and high humic acid content increases emerging contaminants removal rate, showing that electrooxidation at boron-doped diamond is particularly adequate to solve the problems raised by sanitary landfill leachate, even when contaminated with emerging contaminants.
Collapse
Affiliation(s)
- Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
| | - Christopher Pereira
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Violeta Kozioł
- Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy, 12 35-959 Rzeszów, Poland
| | - Maria José Pacheco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Lurdes Ciríaco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|