1
|
Ahmad A, Priyadarshini M, Ghangrekar MM, Surampalli RY. Performance evaluation of hybrid electrochemical oxidation and ultraviolet light-based persulfate process for the abatement of sodium dodecyl sulfate from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7387-7398. [PMID: 39210224 DOI: 10.1007/s11356-024-34824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The application of hybrid advanced oxidation processes (AOPs) is an efficacious way to remediate emerging contaminants from wastewater. In the present research work, a hybrid electrochemical oxidation and ultraviolet light-based persulfate activation processes (EO-UV/PS) were used to efficiently degrade sodium dodecyl sulfate (SDS) surfactant from synthetic and municipal wastewater. By operating the EO-UV/PS at optimum operating conditions at pH of 7.0, NaCl of 0.02 M, current density of 6.4 mA/cm2, persulfate dose of 2.5 mM, and operating period of 180 min, about 94.5 ± 2.8% of SDS (20 mg/L) removal was achieved from synthetic wastewater. The abetment of SDS in both EO and UV/PS obeyed pseudo-first-order kinetics with a rate constant of 0.012 and 0.019 min-1, respectively. Moreover, the economic analysis revealed 0.23 $ m-3 order-1 as the operating cost for degrading SDS in EO-UV/PS. The degradation pathway experimentation suggested the generation of lauric acid by-product during SDS abatement. Besides, nearly 89.3 ± 2.9% of SDS and 58.7 ± 2.4% of total organic carbon reduction was also achieved from real municipal wastewater. Phytotoxicity test on Vigna radiata affirms the non-toxic nature of the EO-UV/PS effluent.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Rao Y Surampalli
- Environment and Sustainability, Global Institute for Energy, Lenexa, KS, USA
| |
Collapse
|
2
|
Samghouli N, Bencheikh I, Azoulay K, Jansson S, El Hajjaji S. Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:259. [PMID: 39928232 PMCID: PMC11811452 DOI: 10.1007/s10661-025-13685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons' surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.
Collapse
Affiliation(s)
- Nora Samghouli
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Imane Bencheikh
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Karima Azoulay
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| |
Collapse
|
3
|
Pimentel-Almeida W, Testolin RC, Gaspareto P, Gerlach OMS, Pereira-Filho J, Sanches-Simões E, Corrêa AXR, Almerindo GI, González SYG, Somensi CA, Radetski CM. Degradation of cytostatics methotrexate and cytarabine through physico-chemical and advanced oxidative processes: influence of pH and combined processes on the treatment efficiency. ENVIRONMENTAL TECHNOLOGY 2024; 45:4053-4061. [PMID: 37482803 DOI: 10.1080/09593330.2023.2240488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/30/2023] [Indexed: 07/25/2023]
Abstract
Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.
Collapse
Affiliation(s)
- Wendell Pimentel-Almeida
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Renan C Testolin
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Patrick Gaspareto
- Universidade Federal de Santa Catarina, Hospital Universitário, Florianópolis, Brazil
| | - Otto M S Gerlach
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Jurandir Pereira-Filho
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Eric Sanches-Simões
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Albertina X R Corrêa
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Gizelle I Almerindo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Sergio Y G González
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense - Campus Araquari, Araquari, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
4
|
Shi L, Leng C, Zhou Y, Yuan Y, Liu L, Li F, Wang H. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): electrooxidation degradation mechanisms and electrode materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42593-42613. [PMID: 38900403 DOI: 10.1007/s11356-024-34014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.
Collapse
Affiliation(s)
- Lifeng Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Chunpeng Leng
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fuping Li
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, People's Republic of China.
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, People's Republic of China.
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063000, People's Republic of China.
| |
Collapse
|
5
|
Fast and Complete Destruction of the Anti-Cancer Drug Cytarabine from Water by Electrocatalytic Oxidation Using Electro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added to the solution as catalyst and it was electrochemically regenerated in the process. Complete degradation of 0.1 mM (24.3 mg L−1) CYT was achieved quickly in 15 min at 300 mA constant current electrolysis by hydroxyl radicals (●OH) electrocatalytically generated in the system. Almost complete mineralization (91.14% TOC removal) of the solution was obtained after 4 h of treatment. The mineralization current efficiency (MCE) and energy consumption (EC) during the mineralization process were evaluated. The absolute (second order) rate constant for the hydroxylation reaction of CYT by hydroxyl radicals was assessed by applying the competition kinetics method and found to be 5.35 × 109 M−1 s−1. The formation and evolution of oxidation reaction intermediates, short-chain carboxylic acids and inorganic ions were identified by gas chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography analyses, respectively. Based on the identified intermediate and end-products, a plausible mineralization pathway for the oxidation of CYT by hydroxyl radicals is proposed.
Collapse
|
6
|
Priyadarshini M, Das I, Ghangrekar MM, Blaney L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115295. [PMID: 35597211 DOI: 10.1016/j.jenvman.2022.115295] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) are promising technologies for partial or complete mineralization of contaminants of emerging concern by highly reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals. Detailed investigations and reviews have been reported for conventional AOP systems that have been installed in full-scale wastewater treatment plants. However, recent efforts have focused on the peroxymonosulphate, persulphate, catalytic ozonation, ultrasonication and hydrodynamic cavitation, gamma radiation, electrochemical oxidation, modified Fenton, and plasma-assisted AOPs. This critical review presents the detailed mechanisms of emerging AOP technologies, their performance for treatment of contaminants of emerging concern, the relative advantages and disadvantages of each technology, and the remaining challenges to scale-up and implementation. Among the evaluated technologies, the modified electrochemical oxidation, gamma radiation, and plasma-assisted systems demonstrated the greatest potential for successful and sustainable implementation in wastewater treatment due to their environmental safety, compatibility, and efficient transformation of contaminants of emerging concern by a variety of reactive species. The other emerging AOP systems were also promising, but additional scale-up trials and a deeper understanding of their reaction kinetics in complex wastewater matrices are necessary to determine the technical and economic feasibility of full-scale processes.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
7
|
Chaparinia F, Cheshmeh Soltani RD, Safari M, Godini H, Khataee A. Treatment of aquatic medium containing common and emerging contaminants using an aero-electrochemical process based on graphite cathode and three metal oxides alloy as anode: Central composite design and photo/sono-enhancement. CHEMOSPHERE 2022; 297:134129. [PMID: 35231477 DOI: 10.1016/j.chemosphere.2022.134129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An aero-electrochemical advanced oxidation process (aero-EAOP) equipped with graphite cathode and dimensionally stable anodes was utilized for the treatment of aquatic media containing common and emerging contaminants. Among various anode materials, the application of Ti/RuO2/IrO2/SnO2 anode resulted in the highest effectiveness. Central composite experimental design (CCED) was used to attain the optimum operational parameters in terms of chlorine generation. Simultaneous decolorization and ammonium removal by the aero-EAOP process were investigated. Accordingly, the decolorization efficiency of 94%, along with the ammonium removal of 65.2%, was obtained within 30 min. Implementation of ultrasound and UV irradiation resulted in the complete decolorization within 25 and 20 min, respectively. In comparison, the influence of ultrasound and UV irradiation on the ammonium removal by the aero-EAOP reactor was not remarkable. Mineralization efficiency of 75.1% was obtained during the short reaction time of 30 min. With increasing hydraulic retention time (HRT) from 2 to 20 min, decolorization efficiency increased from 12.0 to 55.7% and ammonium removal efficiency increased from 16.6 to 37.8%, respectively. The complete degradation of amoxicillin (AMX) and tetracycline (TC) antibiotics were achieved within 25 and 30 min, respectively. The degradation efficiencies of ibuprofen (IBP), acetaminophen (APAP) and endocrine disrupting compound of bisphenol A (BPA) were obtained to be 58, 66 and 78% within 30 min, respectively. Photo-assisted aero-EAOP was more efficient than the aero-EAOP in degrading target emerging pollutants.
Collapse
Affiliation(s)
- Fatemeh Chaparinia
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | | | - Mahdi Safari
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hatam Godini
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, North Cyprous, Mersin 10, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
8
|
Sajedi F, Moghaddas J. Synthetic wastewater treatment of anticancer agents using synthesized hydrophilic silica aerogels. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ferdows Sajedi
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Jafarsadegh Moghaddas
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
9
|
Ahmad A, Priyadarshini M, Das S, Ghangrekar MM. Proclaiming Electrochemical Oxidation as a Potent Technology for the Treatment of Wastewater Containing Xenobiotic Compounds: A Mini Review. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2021; 25. [DOI: 10.1061/(asce)hz.2153-5515.0000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Azhan Ahmad
- Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID:
| | - Monali Priyadarshini
- Research Scholar, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sovik Das
- Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID:
| | - M. M. Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (corresponding author). ORCID:
| |
Collapse
|
10
|
Foroughi MM, Jahani S, Aramesh-Broujeni Z, Rostaminasab Dolatabad M. A label-free electrochemical biosensor based on 3D cubic Eu 3+/Cu 2O nanostructures with clover-like faces for the determination of anticancer drug cytarabine. RSC Adv 2021; 11:17514-17525. [PMID: 35479699 PMCID: PMC9033006 DOI: 10.1039/d1ra01372f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present research utilized a simplified procedure for developing a novel electro-chemical DNA biosensor based on a carbon paste electrode (CPE) modified with three-dimensional (3D) cubic Eu3+/Cu2O nanostructures with clover-like faces (Eu3+/Cu2O CLFNs). The modified electrode was applied to monitor electro-chemical interactions between dsDNA and cytarabine for the first time. Then, the decreased oxidation signal of guanine following the interactions between cytarabine and dsDNA was utilized as an indicator for selectively determining cytarabine using differential pulse voltammetry (DPV). According to the findings, the oxidation peak current of guanine was linearly proportionate with the cytarabine concentration in the range between 0.01 and 90 μM. Additionally, the limit of quantification (LOQ) and the limit of detection (LOD) respectively equaled 9.4 nM and 2.8 nM. In addition, the repeatability, applicability and reproducibility of this analysis to drug dosage forms and human serum samples were investigated. Furthermore, UV-vis spectroscopy, DPV, docking and viscosity measurements were applied to elucidate the interaction mechanism of dsDNA with cytarabine. It was found that this DNA biosensor may be utilized to sensitively, accurately and rapidly determine cytarabine.
Collapse
Affiliation(s)
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
| | - Zahra Aramesh-Broujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences Isfahan Iran
| | | |
Collapse
|
11
|
Chen S, He P, Zhou P, Wang X, Xiao F, He Q, Li J, Jia L, Zhang H, Jia B, Tang B. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO 2 anode for electrocatalytic degradation of acetaminophen. CHEMOSPHERE 2021; 271:129830. [PMID: 33556630 DOI: 10.1016/j.chemosphere.2021.129830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
12
|
Saha J, Chakraborty I, Ghangrekar M. A novel tin-chloride-zirconium oxide-kaolin composite coated carbon felt anode for electro-oxidation of surfactant from municipal wastewater. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104489. [DOI: 10.1016/j.jece.2020.104489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Reduced graphene oxide coated graphite electrodes for treating Reactive Turquoise Blue 21 rinse water using an indirect electro-oxidation process. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|