1
|
Souza DS, Nascimento CAD, Broêtto J, Resende MTCS, Carneiro LS, Castellani MA, Serrão JE, Guedes RNC. Hidden target, hidden effects: chlorantraniliprole on the coffee leaf miner (Leucoptera coffeella). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:412-424. [PMID: 39644453 DOI: 10.1007/s10646-024-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Agricultural insecticide usage presents a complex challenge, particularly when addressing hidden targets such as concealed pest species. Typically, insecticide spraying targets either the host plant or the soil substrate, reaching the target when the pests move or feed, yet their vulnerability when concealed remains low. This study delves into the often-obscure effects of insecticides on hidden herbivore species, focusing specifically on the diamide insecticide chlorantraniliprole and its impact on the concealed insect herbivore, the coffee leaf miner Leucoptera coffeella (Guérin-Mèneville & Perrottet) (Lepidoptera: Lyonetidae). We document the progressive effects of chlorantraniliprole from egg-laying through the insect's development and reproductive output. By examining egg-laying preferences, development, survival, respiration rate, leaf consumption, and polysaccharide and protein accumulation, alongside fecundity, in two field-collected leaf miner populations, we elucidate chlorantraniliprole's broader effects. While the insecticide did not alter the leaf miner's egg-laying preferences, one population exhibited higher larval survival, indicating chlorantraniliprole resistance. This chlorantraniliprole-resistant population displayed a lower respiration rate-indicative of reduced stress-and higher leaf consumption, accompanied by increased sugar and protein accumulation. Although this population showed lower adult longevity, it exhibited higher fecundity. These findings highlight the multifaceted impacts of insecticides, extending beyond survival to affect development, fecundity, and potential fitness. Variations in response among insect populations suggest that resistant insects may outperform susceptible ones even under sublethal exposure, with significant implications for management strategies and future outbreaks.
Collapse
Affiliation(s)
- D S Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - C A D Nascimento
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Multcrop Pesquisa e Desenvolvimento, Luiz Eduardo Magalhães, BA, Brazil
| | - J Broêtto
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - M T C S Resende
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L S Carneiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - M A Castellani
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA, Brazil
| | - J E Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - R N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Rocha FAD, Martinez LC, Lima BSA, Farder-Gomes CF, Cossolin JFS, Afzal MBS, Serrão JE. Potential of Lambda-Cyhalothrin for Controlling the Black Armyworm Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae): Toxicity and Midgut Histopathological Effects. NEOTROPICAL ENTOMOLOGY 2025; 54:26. [PMID: 39849251 DOI: 10.1007/s13744-024-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 01/25/2025]
Abstract
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans. Therefore, the objective of this study was to evaluate the potential of lambda-cyhalothrin for the control of S. cosmioides. Specifically, toxicity and histopathological changes in the midgut were evaluated. The effectiveness of the insecticide was determined by estimating the different lethal concentrations (LCs) in the laboratory upon S. cosmioides. Lambda-cyhalothrin was found toxic to S. cosmioides (LC50 = 23.03 mg L-1 and LC90 = 174.8 mg L-1), with the survival reduced from 83.33% in the control to 37.89%, 16.66%, 0%, and 0% after 72 h of exposure to the LC25, LC50, LC75, and LC90 of lambda-cyhalothrin, respectively. Histopathological studies revealed that lambda-cyhalothrin caused damage to midgut cells, including epithelial disorganization, increased cytoplasmic vacuolization, brush border degeneration, nuclear chromatin condensation, and cell fragmentation, indicating cell death by apoptosis. It was concluded that lambda-cyhalothrin, a neurotoxic insecticide, caused damage to the midgut of S. cosmioides, compromising its physiology and indicating that it has potential to be used to control this pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Eduardo Serrão
- Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Sun C, Wang G, Liu Y, Bei K, Yu G, Zheng W, Liu Y. The adsorption mechanism and optimal dosage of walnut shell biochar for chloramphenicol. Heliyon 2024; 10:e39123. [PMID: 39640795 PMCID: PMC11620052 DOI: 10.1016/j.heliyon.2024.e39123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Biochar derived from biomass pyrolysis has proven to be an excellent material for pesticide adsorption and can be used as soil amendment for pesticide non-point pollution. However, the adsorption and desorption mechanisms for certain biochar and pesticide are still unclear. In this study, we investigated the properties of biochar derived from walnut (Juglans regia L.) shell (WSB), and used batch equilibrium method to investigate the adsorption and desorption behavior for chlorantraniliprole (CAP). The physical-chemical analysis showed that there were mainly lignin charcoal of alkyl carbon, methoxyl carbon, aromatic carbon, and carboayl carbon as the primary carbon compounds of WSB. The π - π electron donor acceptor interaction, electrostatic interaction, and hydrogen bond were the primary adsorption mechanisms of the WSB adsorption. Batch equilibrium study under 298 K showed that WSB application in the soil significantly improved the adsorption ability for CAP, and the adsorption behavior was a mono-layer adsorption process as Langmuir model fitted the adsorption isotherm data better than the Freundlich model. While Freundlich model analysis showed that WSB addition to the soil changed the isothermal adsorption line from the S style to the L style. The spontaneous degree reaction of sorbents from strong to weak was in the following order: 5%-WSB >7%-WSB >10%-WSB >1%-WSB >3%-WSB > soil > WSB, and the maximum application effect was achieved at 5 % (m/m) WSB dosage mixed with the soil. Therefore, we considered that WSB addition in soil increased its CAP adsorption capacity, and 5 % (m/m) WSB application was the best choice for CAP pollution control. These data will contribute to the adsorption mechanism and the optimal use dosage of WSB for CAP pollution control.
Collapse
Affiliation(s)
- Caixia Sun
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gangjun Wang
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuhong Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Guoguang Yu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weiran Zheng
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuxue Liu
- Institute of Agro-product Safety & Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
4
|
Lima BSA, Martínez LC, Rocha FAD, Plata-Rueda A, Zanuncio JC, Motta JVO, Silva LLD, Schultz H, Nere PHA, Serrão JE. Effects of the insecticide flupyradifurone on Anticarsia gemmatalis caterpillar and its predator Podisus nigrispinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43927-43940. [PMID: 38913262 DOI: 10.1007/s11356-024-34010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.
Collapse
Affiliation(s)
| | | | | | | | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Laryssa Lemos da Silva
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Halina Schultz
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
5
|
Kavallieratos NG, Boukouvala MC, Eleftheriadou N, Filintas CS, Gidari DLS, Kyrpislidi VPC. Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. INSECTS 2024; 15:451. [PMID: 38921166 PMCID: PMC11203773 DOI: 10.3390/insects15060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Chlorantraniliprole, an anthranilic diamide insecticide, has emerged as a promising solution for controlling agricultural pests because of its low mammalian toxicity and selectivity towards non-target organisms. This study investigated the sublethal effects of chlorantraniliprole on the mobility behavior of two significant stored-product pests, Sitophilus oryzae (L.) and Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Contact toxicity assays revealed varying susceptibility levels between the two species, with S. zeamais showing higher sensitivity. Subsequent analysis of mobility behavior, both in the presence and absence of food, indicated significant differences between chlorantraniliprole-exposed and control groups. While S. oryzae exhibited altered locomotion patterns and a decreased number of food approaches at sublethal concentrations, S. zeamais displayed increased walking time and reduced immobility periods. These findings highlight the importance of considering sublethal effects in understanding the overall impact of chlorantraniliprole on stored-product pests. Further research into the long-term consequences of sublethal exposure is warranted to inform more effective pest management strategies in storage.
Collapse
Affiliation(s)
- Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (M.C.B.); (N.E.); (C.S.F.); (D.L.S.G.); (V.P.C.K.)
| | | | | | | | | | | |
Collapse
|
6
|
Bartling MT, Brandt A, Hollert H, Vilcinskas A. Current Insights into Sublethal Effects of Pesticides on Insects. Int J Mol Sci 2024; 25:6007. [PMID: 38892195 PMCID: PMC11173082 DOI: 10.3390/ijms25116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.
Collapse
Affiliation(s)
- Merle-Theresa Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Annely Brandt
- Bee Institute Kirchhain, Landesbetrieb Landwirtschaft Hessen, Erlenstr. 9, 35274 Kirchhain, Germany;
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany;
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
7
|
Pent K, Naudi S, Raimets R, Jürison M, Liiskmann E, Karise R. Overlapping exposure effects of pathogen and dimethoate on honeybee ( Apis mellifera Linnaeus) metabolic rate and longevity. Front Physiol 2023; 14:1198070. [PMID: 37346484 PMCID: PMC10279948 DOI: 10.3389/fphys.2023.1198070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction: Declines in honeybee abundance have been observed worldwide during last decades. This is partly due to plant protection agents used in intensive farming, landscaping and infrastructure maintenance. Another type of factors negatively affecting honeybees is the spread of diseases caused by different pathogens and pests. Lately, more focus has been paid to the interactions between different overlapping stressors affecting honeybee health, the combination of these often being more detrimental compared to individual stressors. The most widely used stress-evaluating methods take into account lethal- or motorial changes of the individuals or colonies. Comparatively little honeybee research has examined changes in initial recovery potential and physiological symptoms of toxification. The aim of this study was to examine the combined effect of Nosema apis and N. ceranae (according to a newer classification Vairimorpha apis and V. ceranae), the common causes of nosemosis in the honeybee Apis mellifera L., with the insecticide dimethoate. Methods: In this study, honeybee mortality and metabolic rate were used to assess the combined effects interactions of Nosema ssp. and dimethoate. Results: Our results showed that exposure to the low concentration of either dimethoate, either one or both species of Nosema ssp as single factors or in the combination had no significant effect on honeybee metabolic rate. The mortality increased with the two Nosema spp., as well as with infection by N. ceranae alone. The effect of dimethoate was observed only in combination with N. apis infection, which alone had no effect on individual honeybee mortality. Conclusion: This study demonstrates that the overlapping exposure to a non-lethal concentration of a pesticide and a pathogen can be hidden by stronger stressor but become observable with milder stressors.
Collapse
|
8
|
Farder-Gomes CF, Santos AA, Fernandes KM, Bernardes RC, Martins GF, Serrão JE. Fipronil exposure compromises respiration and damages the Malpighian tubules of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88101-88108. [PMID: 35821320 DOI: 10.1007/s11356-022-21858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Fipronil has been widely used in agriculture and forestry in Brazil to control several pests. However, this insecticide may be hazardous to non-target organisms, including stingless bees, which are essential pollinators of crops and natural environments. Here, we investigated the effect of 24-h acute oral exposure to LC50 of fipronil on the Malpighian tubules of the stingless bee Partamona helleri (Friese). Insecticide exposure decreases the respiration rate of forager bees, and the Malpighian tubules are severely affected, as shown by the epithelial architecture disorganization, loss of cytoplasmic content, degradation of the brush border, and nuclear pyknosis. In addition, fipronil ingestion increases the number of Malpighian cells positive for peroxidase, LC3, cleaved caspase-3, and JNK. However, Notch and ERK1/2-positive cells decrease in the exposed bees. These changes in the signaling proteins indicate an increase in oxidative stress, autophagy and apoptosis, and impairment of cell recovery. Overall, our results demonstrate the toxicological effects of fipronil on a stingless bee, which compromises the physiology of this important pollinator.
Collapse
Affiliation(s)
| | - Abraão Almeida Santos
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
9
|
Mao T, Ye W, Dai M, Bian D, Zhu Q, Feng P, Ren Y, Li F, Li B. Mechanism of autophagy induced by low concentrations of chlorantraniliprole in silk gland, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105223. [PMID: 36464330 DOI: 10.1016/j.pestbp.2022.105223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/17/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-β were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.
Collapse
Affiliation(s)
- Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
10
|
Li H, Zhang BX, Liu FF, Liu Z, Zhang WT, Wang Q, Sun YX, Toufeeq S, Rao XJ. Toxicological and transcriptomic effects in Mythimna separata (Lepidoptera: Noctuidae) exposed to chlorantraniliprole and functional characterization of glutathione S-transferases. PEST MANAGEMENT SCIENCE 2022; 78:4517-4532. [PMID: 35810341 DOI: 10.1002/ps.7072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chlorantraniliprole (CAP) is an efficient anthranilic diamide insecticide against economically important pests such as the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Resistance to CAP may develop due to enhanced enzymatic detoxification. The glutathione S-transferase (GST) superfamily in M. separata has not been systematically characterized. The aim of this study was therefore to explore the effects of lethal and sublethal doses of CAP on M. separata larvae, screen differentially expressed genes (DEGs) responding to CAP exposure, identify and characterize the GST superfamily, and analyze the metabolism of CAP by recombinant GSTs. RESULTS The toxicity bioassay showed that CAP was active against M. separata third-instar larvae. LC50 was 17.615, 3.127, and 1.336 mg/L after 24, 48, and 72 h, respectively. Poisoned larvae showed contracted somites and disrupted midgut. Total GST activity in larvae was significantly elevated 24 h after CAP exposure. RNA-sequencing generated 43 055 unigenes with an average length of 1010 bp, and 567 up-regulated and 692 down-regulated DEGs responding to CAP treatment were screened. Thirty-five GST genes were identified from unigenes, including 31 cytosolic, three microsomal, and one unclassified. The expression profile of GST genes was analyzed using samples from different developmental stages, adult tissues, and CAP treatments. Metabolic assays indicated that CAP was depleted by recombinant MseGSTe2 and MseGSTs6. CONCLUSIONS This study provides insight into the toxicological and transcriptomic effects in M. separata larvae exposed to CAP. The identification and functional characterization of the GST superfamily will improve our understanding of CAP detoxification by GSTs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Department of Science and Technology, Chuzhou University, Chuzhou, China
| | - Fang-Fang Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ze Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Wen-Ting Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qian Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shahzad Toufeeq
- Department of Entomology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| |
Collapse
|
11
|
Batista CH, Plata-Rueda A, Zanuncio JC, Serrão JE, Martínez LC. Indoxacarb effects on non-target predator, Podisus distinctus (Hemiptera: Pentatomidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29967-29975. [PMID: 34997483 DOI: 10.1007/s11356-021-17988-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Forestry pest management includes biological and chemical methods of pest control. Using insecticides and natural enemies can be compatible in forest pest management programs. The compatibility of the predatory stink bug Podisus distinctus with the insecticide indoxacarb, used in forestry, needs to be evaluated in Brazil. This study investigated the mortality, survival, respiration, preference, prey consumption, and locomotor activity of P. distinctus adults exposed to indoxacarb. In concentration-mortality bioassays, the lethality of indoxacarb (LC50 = 2.62 g L-1 and LC90 = 6.11 g L-1) was confirmed in P. distinctus adults. The survival rate was 100% in predator insects not exposed to indoxacarb, declining to 40.7% in predator insects exposed to 2.62 g L-1 and 0.1% in predators treated with 6.11 g L-1. Indoxacarb reduced the respiration of P. distinctus from 18.45 to 14.41 µL CO2 h-1 at 2.62 g L-1 for up to 3 h after insecticide exposure, inhibiting food consumption and displaying hyperexcitation. The harmful effects of indoxacarb to the natural enemy suggest that it should be better assessed for use with P. distinctus for pest management in forestry.
Collapse
Affiliation(s)
- Carlos Henrique Batista
- Department of Crop Science, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Cola Zanuncio
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
12
|
Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Naturwissenschaften 2022; 109:17. [PMID: 35138481 DOI: 10.1007/s00114-022-01788-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.
Collapse
Affiliation(s)
- José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Angelica Plata-Rueda
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
13
|
Plata-Rueda A, Zanuncio JC, Serrão JE, Martínez LC. Origanum vulgare Essential Oil against Tenebrio molitor (Coleoptera: Tenebrionidae): Composition, Insecticidal Activity, and Behavioral Response. PLANTS (BASEL, SWITZERLAND) 2021; 10:2513. [PMID: 34834876 PMCID: PMC8622527 DOI: 10.3390/plants10112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 05/15/2023]
Abstract
Tenebrio molitor is one of the main stored product pests. This study characterized oregano essential oil (OEO) by gas chromatography (GC/FID and GC/MS) and assessed its insecticidal properties against T. molitor. Mortality, survival, respiration, and behavioral response in larva, pupa, and adult of this insect were determined. The major components of OEO were carvacrol (25.6%), p-cymene (12.3%), linalool (8.71%), thymol (7.22%), γ-terpinene (7.21%), caryophyllene oxide (4.67%), α-pinene (2.71%), and eucalyptol (2.69%). OEO caused high contact toxicity in larvae (LD50 = 3.03 µg insect-1), pupae (LD50 = 5.01 µg insect-1), and adults (LD50 = 5.12 µg insect-1) of T. molitor. Survival rates were 100% in larvae, pupae, and adults of T. molitor not treated with OEO, declining to 65-54%, 38-44%, 30-23%, and 6-2% in insects treated with LD25, LD50, LD75, and LD90, respectively. Low respiration rates of T. molitor at different developmental stages was observed after OEO exposure. Additionally, OEO exposure affects behavioral avoidance response and causes repellency in larvae and adults. These findings show that OEO exerts insecticidal and repellent effects against T. molitor, suggesting a potent alternative to synthetic insecticides for controlling the beetle.
Collapse
Affiliation(s)
- Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, Viçosa 36570-000, Brazil; (A.P.-R.); (J.C.Z.)
| | - José Cola Zanuncio
- Department of Entomology, Federal University of Viçosa, Viçosa 36570-000, Brazil; (A.P.-R.); (J.C.Z.)
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-000, Brazil;
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-000, Brazil;
| |
Collapse
|
14
|
Silva WM, Martínez LC, Plata-Rueda A, Serrão JE, Zanuncio JC. Exposure to insecticides causes effects on survival, prey consumption, and histological changes in the midgut of the predatory bug, Podisus nigrispinus (Hemiptera: Pentatomidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57449-57458. [PMID: 34091850 DOI: 10.1007/s11356-021-14589-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The control of defoliating caterpillars in forestry includes the use of insecticides and releases of the predatory bug Podisus nigrispinus, but some compounds may affect non-target natural enemies, which need evaluation of risk assessment. This research investigates the survival, preference, and prey consumption of P. nigrispinus adults fed with prey treated with the lethal concentration (LC50) of Bacillus thuringiensis (Bt), permethrin, tebufenozide, and thiamethoxam. Moreover, midgut histopathology of P. nigrispinus fed with preys treated with LC50 of each insecticide was investigated. The insecticides Bt, permethrin, and thiamethoxam reduce the survival and the prey consumption in P. nigrispinus fed with preys contaminate with these chemicals. However, the four tested insecticides, including tebufenozide, cause histological changes such as irregular epithelial architecture, cytoplasm vacuolization, and release of cell fragments in the midgut lumen of P. nigrispinus. The sublethal effects of Bt, permethrin, tebufenozide, and thiamethoxam to the natural enemy suggest that they should be better evaluated to be used together with P. nigrispinus for integrated pest management in forestry.
Collapse
Affiliation(s)
- Wiane Meloni Silva
- Departamento de Engenharia Florestal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Angelica Plata-Rueda
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
15
|
Jiang DL, Ding JH, Liu ZX, Shao ZM, Liang XH, Wang J, Wu FA, Sheng S. A role of peptidoglycan recognition protein in mediating insecticide detoxification in Glyphodes pyloalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21842. [PMID: 34499777 DOI: 10.1002/arch.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphodes pyloalis Walker has become one of the most significant mulberry pests, and it has caused serious economic losses in major mulberry growing regions in China. Peptidoglycan recognition proteins (PGRPs) are responsible for initiating and regulating immune signalling pathways in insects. However, their roles responding to chemical pesticides is still less known. This study aimed to investigate the possible detoxication function of GpPGRP-S2 and GpPGRP-S3 in G. pyloalis in response to chlorfenapyr and phoxim. The chlorfenapyr and phoxim treatment significantly induced the expression level of GpPGRP-S3 at 48 h. In addition, the expression levels of GpPGRP-S2 and GpPGRP-S3 in the chlorfenapyr/phoxim treatment group were significantly higher in midgut than those in the control group at 48 h. The results of the survival experiment showed that silencing either GpPGRP-S2 or GpPGRP-S3 would not influence the survival rate of G. pyloalis which treated with phoxim, however, silencing GpPGRP-S2 or GpPGRP-S3 would cause G. pyloalis to be more easily killed by chlorfenapyr. The expression of carboxylesterase GpCXE1 was significantly induced by chlorfenapyr/phoxim treatment, while it was suppressed once silenced GpPGRP-S2 followed with chlorfenapyr treatment or silenced GpPGRP-S3 followed with phoxim treatment. These results might suggest that under the chlorfenapyr/phoxim treatment condition, the connection between GpPGRPs and detoxification genes in insect was induced to maintain physiological homeostasis; and these results may further enrich the mechanisms of insects challenged by insecticides.
Collapse
Affiliation(s)
- De-Lei Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhi-Xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zuo-Ming Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Liang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
16
|
Vinha GL, Plata-Rueda A, Soares MA, Zanuncio JC, Serrão JE, Martínez LC. Deltamethrin-Mediated Effects on Locomotion, Respiration, Feeding, and Histological Changes in the Midgut of Spodoptera frugiperda Caterpillars. INSECTS 2021; 12:insects12060483. [PMID: 34067273 PMCID: PMC8224794 DOI: 10.3390/insects12060483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Spodoptera frugiperda is controlled mainly with chemical insecticides. Toxicity, survival, respiration, mobility, anti-feeding effect, and histology of the midgut of S. frugiperda caterpillars exposed to deltamethrin were evaluated. Deltamethrin was toxic to third-instar caterpillars, decreasing survival. The insecticide reduces the respiratory rate and food consumption, and causes repellency. Exposure to deltamethrin causes histological alterations in the midgut, damaging the digestive cells and peritrophic matrix. Deltamethrin is toxic to S. frugiperda caterpillars, causing mortality, alteration of locomotor behavior, reduced respiration and feeding, and irreversible damage to the midgut epithelium. Abstract Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is the main pest of maize crops, and effective methods for pest management are needed. The insecticidal efficacy of deltamethrin was evaluated against S. frugiperda for toxicity, survival, locomotion, anti-feeding, and histological changes in the midgut. Concentration–mortality bioassays confirmed that deltamethrin (LC50 = 3.58 mg mL−1) is toxic to S. frugiperda caterpillars. The survival rate was 99.7% in caterpillars not exposed to deltamethrin, decreasing to 50.3% in caterpillars exposed to LC50, and 0.1% in caterpillars treated with LC90. Spodoptera frugiperda demonstrated reduced mobility on deltamethrin-treated surfaces. Deltamethrin promoted a low respiration rate of S. frugiperda for up to 3 h after insecticide exposure, displaying immobilization and inhibiting food consumption. Deltamethrin induces histological alterations (e.g., disorganization of the striated border, cytoplasm vacuolization, and cell fragmentation) in the midgut, damaging the digestive cells and peritrophic matrix, affecting digestion and nutrient absorption.
Collapse
Affiliation(s)
- Germano Lopes Vinha
- Department of Crop Science, Federal University of Viçosa, Viçosa 36570000, Brazil;
| | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, Viçosa 36570000, Brazil; (A.P.-R.); (J.C.Z.)
| | - Marcus Alvarenga Soares
- Department of Crop Production, Federal University of Vales Jequitinhonha and Mucuri, Diamantina 39100000, Brazil;
| | - José Cola Zanuncio
- Department of Entomology, Federal University of Viçosa, Viçosa 36570000, Brazil; (A.P.-R.); (J.C.Z.)
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa 36570000, Brazil;
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa 36570000, Brazil;
- Correspondence: ; Tel.: +55-31-3899-4012
| |
Collapse
|
17
|
Farder-Gomes CF, Saravanan M, Martínez LC, Plata-Rueda A, Zanuncio JC, Serrão JE. Azadirachtin-based biopesticide affects the respiration and digestion in Anticarsia gemmatalis caterpillars. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1892764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Meenakshi Saravanan
- Karunya Institute of Technology and Sciences, Coimbatore, India
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| | | | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| |
Collapse
|
18
|
Interaction between predatory and phytophagous stink bugs (Heteroptera: Pentatomidae) promoted by secretion of scent glands. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00341-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Plata-Rueda A, Fiaz M, Brügger BP, Cañas V, Coelho RP, Zanuncio JC, Martínez LC, Serrão JE. Lemongrass essential oil and its components cause effects on survival, locomotion, ingestion, and histological changes of the midgut in Anticarsia gemmatalis caterpillars. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1861468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Muhammad Fiaz
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Veronica Cañas
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Cola Zanuncio
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Departmento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|