1
|
Peng Z, Zhang Q, Li X, Gao S, Jiang C, Peng Y. Achieving rapid endogenous partial denitrification by regulating competition and cooperation between glycogen accumulating organisms and phosphorus accumulating organisms from conventional activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130031. [PMID: 37993071 DOI: 10.1016/j.biortech.2023.130031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.
Collapse
Affiliation(s)
- Zhihao Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shouyou Gao
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100082, PR China
| | - Caifang Jiang
- Guangxi Nanning Water Co.,Ltd, Nanning 530028, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
3
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
4
|
Ni M, Pan Y, Li D, Huang Y, Chen Z, Li L, Bi Z, Wu R, Song Z. Metagenomics, metatranscriptomics, and proteomics reveal the metabolic mechanism of biofilm sequencing batch reactor with higher phosphate enrichment capacity under low phosphorus load. ENVIRONMENTAL RESEARCH 2023; 238:117237. [PMID: 37793587 DOI: 10.1016/j.envres.2023.117237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhiqiang Chen
- Harbin Institute of Technology, Harbin, 150006, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ruijing Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | | |
Collapse
|
5
|
Wu T, Ding J, Zhong L, Zhao YL, Sun HJ, Pang JW, Zhao L, Bai SW, Ren NQ, Yang SS. Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress. ENVIRONMENTAL RESEARCH 2023; 224:115513. [PMID: 36801232 DOI: 10.1016/j.envres.2023.115513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
One of the most prevalent heavy metals found in rural sewage is Zn(II), while its effect on simultaneous nitrification, denitrification and phosphorus removal (SNDPR) remains unclear. In this work, the responses of SNDPR performance to long-term Zn(II) stress were investigated in a cross-flow honeycomb bionic carrier biofilm system. The results indicated that Zn(II) stress at 1 and 5 mg L-1 could increase nitrogen removal. Maximum ammonia nitrogen, total nitrogen, and phosphorus removal efficiencies of up to 88.54%, 83.19%, and 83.65% were obtained at Zn(II) concentration of 5 mg L-1. The functional genes, such as archaeal amoA, bacterial amoA, NarG, NirS, NapA, and NirK, also reached the highest value at 5 mg L-1 Zn(II), with the absolute abundances of 7.73 × 105, 1.57 × 106, 6.68 × 108, 1.05 × 109, 1.79 × 108, and 2.09 × 108 copies·g-1 dry weight, respectively. The neutral community model demonstrated that deterministic selection was responsible for the system's microbial community assembly. Additionally, response regimes with extracellular polymeric substances and cooperation among microorganisms facilitated the stability of the reactor effluent. Overall, the findings of this paper contribute to improving the efficiency of wastewater treatment.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shun-Wen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Wu T, Yang SS, Zhong L, Pang JW, Zhang L, Xia XF, Yang F, Xie GJ, Liu BF, Ren NQ, Ding J. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158977. [PMID: 36155040 DOI: 10.1016/j.scitotenv.2022.158977] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen and phosphorus contamination in wastewater is a serious environmental concern and poses a global threat to sustainable development. In this paper, a comprehensive review of the studies on simultaneous nitrogen and phosphorus removal (SNPR) during 1986-2022 (538 publications) was conducted using bibliometrics, which showed that simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) is the most promising process. To better understand SNDPR, the dissolved oxygen, carbon to nitrogen ratio, carbon source type, sludge retention time, Cu2+ and Fe3+, pH, salinity, electron acceptor type of denitrifying phosphorus-accumulating organisms (DPAOs), temperature, and other influencing factors were analyzed. Currently, SNDPR has been successfully implemented in activated sludge systems, aerobic granular sludge systems, biofilm systems, and constructed wetlands; sequential batch mode of operation is a common means to achieve this process. SNDPR exhibits a significant potential for phosphorus recovery. Future research needs to focus on: (1) balancing the competitiveness between denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs, and countermeasures to deal with the effects of adverse conditions on SNDPR performance; (2) achieving SNDPR in continuous flow operation; and (3) maximizing the recovery of P during SNDPR to achieve resource sustainability. Overall, this study provides systematic and valuable information for deeper insights into SNDPR, which can help in further research.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Luyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xue-Fen Xia
- Institute of New Rural Development, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150008, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Wang C, Lin Q, Yao Y, Xu R, Wu X, Meng F. Achieving simultaneous nitrification, denitrification, and phosphorus removal in pilot-scale flow-through biofilm reactor with low dissolved oxygen concentrations: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2022; 358:127373. [PMID: 35623607 DOI: 10.1016/j.biortech.2022.127373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
In this pilot-scale study, a flow-through biofilm reactor (FTBR) was investigated for municipal wastewater treatment. The removal efficiencies for ammonium, total nitrogen, total phosphorus, and chemical oxygen demand were 87.2 ± 17.9%, 61.1 ± 13.9%, 83.5 ± 11.9%, and 92.6 ± 1.7%, respectively, at low dissolved oxygen concentrations (averaged at 0.59 mg/L), indicating the feasibility and robustness of the FTBR for a simultaneous nitrification, denitrification, and phosphorous removal (SNDPR) process. The co-occurrence network of bacteria in the dynamic biofilm was complex, with equivalent bacterial cooperation and competition. Nevertheless, the bacterial interactions in the suspended sludge were mainly cooperative. The presence of dynamic biofilms increased bacterial diversity by creating niche differentiation, which enriched keystone species closely related to nutrient removal. Overall, this study provides a novel FTBR-based SNDPR process and reveals the ecological mechanisms responsible for nutrient removal.
Collapse
Affiliation(s)
- Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yuanyuan Yao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Sun X, Sun Y, Ma L, Liu Z, Wang Q, Wang D, Zhang C, Yu H, Xu M, Ding J, Siemann E. Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change. Commun Biol 2022; 5:761. [PMID: 35902771 PMCID: PMC9334390 DOI: 10.1038/s42003-022-03731-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Temperature has a large influence on insect abundances, thus under climate change, identifying major drivers affecting pest insect populations is critical to world food security and agricultural ecosystem health. Here, we conducted a meta-analysis with data obtained from 120 studies across China and Europe from 1970 to 2017 to reveal how climate and agricultural practices affect populations of wheat aphids. Here we showed that aphid loads on wheat had distinct patterns between these two regions, with a significant increase in China but a decrease in Europe over this time period. Although temperature increased over this period in both regions, we found no evidence showing climate warming affected aphid loads. Rather, differences in pesticide use, fertilization, land use, and natural enemies between China and Europe may be key factors accounting for differences in aphid pest populations. These long-term data suggest that agricultural practices impact wheat aphid loads more than climate warming.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yumei Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ling Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhen Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dingli Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- The College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
9
|
Hou B, Peng S, Deng R, Ren B, Song Y. Biological nutrients removal performance under starvation stress: Efficacy deterioration and recovery. BIORESOURCE TECHNOLOGY 2022; 351:126977. [PMID: 35276376 DOI: 10.1016/j.biortech.2022.126977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Biological nutrients removal performance affected by starvation stress was investigated via the addition of pre-anoxic stage to SBR. COD removal efficiency maintained at around 90% regardless of the starvation stress. Starvation stress presented significant impact on nitrogen and phosphorus removal, with noticeable reduction of TN removal and remarkable deterioration of TP removal as prolonging the pre-anoxic time, which was mainly attributed to the integrative effect of carbon source competition, depression of denitrification and invalid P release as well as the variation of microbial community. It was notable that starvation stress exerted distinct evolution on microbial community. The improvement in relative abundance of the certain genera relating to denitrification was the main reason for the partial recovery of nitrogen removal after eliminating stress starvation. The promotion of P uptake capacity accompanied with the relief of invalid P release and the enriched DPAOs accounted for the complete recovery of phosphorus removal.
Collapse
Affiliation(s)
- Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Sining Peng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yujia Song
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
10
|
Qiu J, Li X, Peng Y, Jiang H. Advanced nitrogen removal from landfill leachate via a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151186. [PMID: 34699827 DOI: 10.1016/j.scitotenv.2021.151186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA) was established achieving advanced nitrogen removal from landfill leachate. The PNA sludge used to treat reject water adapted to the leachate in 37 days, resulting in fast start-up of the PNA process with a nitrogen removal rate (NRR) of 0.22 kgN/(m3·d). Partial denitrification (PD) was induced using sodium acetate and proceeded in a stepwise manner using sludge fermentation liquid (SFL), achieving a NO3--N to NO2--N transformation ratio (NTR) of 52.1 ± 1.1% within 16 days. PDA was established via the addition of mature Anammox biofilms. The nitrogen removal efficiency (NRE) of this system was 97.6 ± 1.5%, of which PNA and PDA contributed 74.8 ± 4.0% and 18.7 ± 4.1%, respectively. Nitrosomonas (2.6% in PNA), Thauera (16.0% in PDA) and Candidatus Brocadia (23.0% in PNA, 1.4% in PDA) were dominant in the two-stage system. This study provides valuable and novel insights, supporting the practical application of PNA-PDA processes in landfill sites.
Collapse
Affiliation(s)
- Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China..
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
11
|
Song X, Yu D, Qiu Y, Qiu C, Xu L, Zhao J, Wang X. Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor. BIORESOURCE TECHNOLOGY 2022; 345:126540. [PMID: 34902483 DOI: 10.1016/j.biortech.2021.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Competition between polyphosphate- and glycogen-accumulating organisms (PAOs and GAOs) is problematic in the enhanced biological phosphorus removal (EBPR) process. Aiming at a high phosphorus removal efficiency (PRE), the phosphorus release amount (PRA) is considered an essential evaluating indicator. However, the correlations between PRE and PRA and the abundance of PAOs are not clear. In this study, the EBPR was established and optimized via adjusting influent carbon to phosphorus ratio (C/P). After 110-day operation, 17.67 mg/L of PRA and 75.86% of PRE simultaneously achieved with influent C/P of 40 mgCOD/mgP. As for PAOs, Candidatus_Accumulibacter and Tetrasphaera were absent, while Hypomicrobium (3.69%), Pseudofulvimonas (1.02%), and unclassified_f_Rhodobacteraceae (2.41%) were found at a low level. On the contrary, Candidatus_Competibacter and Defluviicoccus were unexpectedly enriched with high abundance (24.94% and 16.04%, respectively). These results also suggested that it was difficult to distinguish whether PAOs were enriched merely based on the variations of PRA and PRE.
Collapse
Affiliation(s)
- Xia Song
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chenguang Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Lingna Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Chen Y, Yuan Z, Ma Y, An F, Liu A, Liu H, Zhao Z, Ma J. Simultaneous carbon and nitrogen removal by anaerobic ammonium oxidation and denitrification under different operating strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65462-65473. [PMID: 34322804 DOI: 10.1007/s11356-021-15531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Real domestic wastewater was treated initially in a sequencing batch reactor (SBR), with partial nitrification achieved before the effluent was used as the influent for an anaerobic ammonium oxidation (anammox) reactor (ASBR) system. The effects of three factors, hydraulic retention time (HRT), substrate (NO2-/NH4+) ratio, and the ratio of COD to NH4+ (C/N), on the removal of carbon and nitrogen by an anammox and denitrification process were investigated in the ASBR reactor at 24°C. The response surface methodology was used to explore the interactions of the three factors. The results indicated that the nitrogen and carbon removal efficiency was optimum when HRT, substrate ratio, and C/N ratio were 33 h, 1.4-1.6, and 3-5, respectively. The optimal removal rates of NH4+, NO2-, and COD were 96.30%, 97.79%, and 72.91%, respectively. The ΔNO2-/ΔNH4+ and ΔNO3-/ΔNH4+ ratios of the first two conditions were less than the theoretical anammox values of 1.32 and 0.26 due to heterotrophic denitrification. The optimum nitrogen and carbon removal efficiencies of the third condition could be realized by the synergistic effect of denitrification and the anammox process. Analysis of variance (ANOVA) results showed that when the HRT was 33.48 h, the substrate ratio was 1.46, and the C/N ratio was 4.28, the total nitrogen removal rate (TNR) was optimum (90.12 ± 0.1%), verified by parallel experiments.
Collapse
Affiliation(s)
- Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China.
| | - Zhongling Yuan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Yanhong Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Fangjiao An
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Andi Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Zhichao Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| | - Jiao Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Technical Center of Sewage Treatment Industry in Gansu, Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
13
|
Xu J, Wang X, Zhang Z, Yan Z, Zhang Y. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146954. [PMID: 33866171 DOI: 10.1016/j.scitotenv.2021.146954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) have become an important source of microplastics (MPs) contamination and most MPs remain in the sludge inducing potential impacts on sludge disposal. However, little is known about the influence of MPs on the characteristics of sludge, which is essential for sludge disposal. In this study, the dewaterability of activated sludge in response to chronic exposure (60 days) to MPs of different sizes (213.7 nm ~ 4.2 mm) and polymers (polystyrene, polyethylene, and polyvinyl chloride) were investigated. Overall, different particle sizes caused more evident effects on sludge dewatering than different polymer types did. Millimeter MPs (~4 mm) dramatically reduced the dewaterability of sludge by 29.6% ~ 47.7%. These effects were mainly caused by the physical crushing of MPs on sludge flocs, except polyvinyl chloride (PVC)-MPs, possibly containing additives, induced toxicity on sludge. Moreover, 100 mg/L nano-size MPs (213 nm) also reduced the dewatering performance of sludge. The potential mechanism is that nano-size MPs inhibited sludge activity and decreased the abundance of key microorganisms, which subsequently altered the composition and spatial distribution of extracellular polymeric substances (EPS), and finally impeded sludge dewatering. Our results highlight the impacts of different sizes of MPs on the characteristics of sludge, affecting the final disposal of sludge.
Collapse
Affiliation(s)
- Jiankang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhanao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zehua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
14
|
Shi L, Li X, Zhang Q, Peng Y. Effectively stimulating partial denitrification to utilize dissolved slowly-biodegradable organic matter by introducing in-situ biosorption and hydrolytic acidification. BIORESOURCE TECHNOLOGY 2021; 333:125175. [PMID: 33895667 DOI: 10.1016/j.biortech.2021.125175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, partial denitrification (PD, nitrate → nitrite) using dissolved slowly-biodegradable organic matter (DSBOM) was effectively established by introducing biosorption and hydrolytic acidification (HA) as a pretreatment for carbon capture and conversion. After 119 days of optimized operation, an efficient nitrate to nitrite transformation of 80% was achieved, with an influent nitrate level of 40 mg/L and DSBOM level of 183.8 mg/L. There was a significant shift from exogenous PD to endogenous PD, with energy supplied by HA products of captured DSBOM, i.e., acetate, saccharide and intracellular poly-hydroxyalkanoates (PHAs), jointly facilitating nitrite production. This was well explained by that genera Dechloromonas (26.7%), possibly responsible for carbon HA and nitrite production, were enriched; while abundant enzymes for glycolysis, acetate fermentation and PHAs storage, and 2.6 times more nitrate reductases than nitrite reductases were identified. These results highlight a novel carbon capture reuse and PD-based anammox strategy to cost-effectively treat nitrogen.
Collapse
Affiliation(s)
- Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Jiang H, Yang P, Wang Z, Ren S, Qiu J, Liang H, Peng Y, Li X, Zhang Q. Efficient and advanced nitrogen removal from mature landfill leachate via combining nitritation and denitritation with Anammox in a single sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2021; 333:125138. [PMID: 33895670 DOI: 10.1016/j.biortech.2021.125138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
A novel combined partial nitrification-Anammox and partial denitrification-Anammox (PnA/PdA) single sequencing batch biofilm reactor (SBBR) was established to realize efficient and advanced nitrogen removal from mature landfill leachate with low biodegradability. Nitrogen removal rate and nitrogen removal efficiency were increased to 2.83 ± 0.06 kgN/(m3∙d) and 98.6 ± 0.2% by stepwise increase of dissolved oxygen (DO, from 0.5 to 3.5 mg/L) and continuous carbon source feeding. Comparable activities of ammonia oxidation bacteria and Anammox bacteria were realized during aerobic period. More organic carbon was redirected from complete denitrification to partial denitrification during anoxic period. The main pathway PnA jointly synergized with PdA, which contributed to 76.04% and 19.44% nitrogen removal, respectively. Nitrosomonas, Thauera, and Kuenenia dominated in floc sludge (0.78%, 5.38%, and 1.14%, respectively) and biofilm (0.34%, 5.18%, and 0.98%, respectively). Overall, this study provides new insight into the high-efficiency treatment of landfill leachate at full-scale landfill sites.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Pei Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Engineering Technology Research Center of Beijing MSW Comprehensive Treatment and Utilization, Environmental Engineering Technology Co, Ltd., Beijing, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|