1
|
Rojas García E, Pérez-Soreque G, López Medina R, Rubio-Marcos F, Maubert-Franco AM. CNTs/Fe-BTC Composite Materials for the CO 2-Photocatalytic Reduction to Clean Fuels: Batch and Continuous System. Molecules 2023; 28:4738. [PMID: 37375292 DOI: 10.3390/molecules28124738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
CNTs/Fe-BTC composite materials were synthesized with the one-step solvothermal method. MWCNTs and SWCNTs were incorporated in situ during synthesis. The composite materials were characterized by different analytical techniques and used in the CO2-photocatalytic reduction to value-added products and clean fuels. In the incorporation of CNTs into Fe-BTC, better physical-chemical and optical properties were observed compared to Fe-BTC pristine. SEM images showed that CNTs were incorporated into the porous structure of Fe-BTC, indicating the synergy between them. Fe-BTC pristine showed to be selective to ethanol and methanol; although, it was more selective to ethanol. However, the incorporation of small amounts of CNTs into Fe-BTC not only showed higher production rates but changes in the selectivity compared with the Fe-BTC pristine were also observed. It is important to mention that the incorporation of CNTs into MOF Fe-BTC allowed for increasing the mobility of electrons, decreasing the recombination of charge carriers (electron/hole), and increasing the photocatalytic activity. In both reaction systems (batch and continuous), composite materials showed to be selective towards methanol and ethanol; however, in the continuous system, lower production rates were observed due to the decrease in the residence time compared to the batch system. Therefore, these composite materials are very promising systems to convert CO2 to clean fuels that could replace fossil fuels soon.
Collapse
Affiliation(s)
- Elizabeth Rojas García
- Área de Ingeniería Química, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional Zacatenco, Mexico City 07738, Mexico
| | - Gloria Pérez-Soreque
- Área de Química de Materiales, Departamento de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City 02200, Mexico
| | - Ricardo López Medina
- Área de Procesos de la Industria Química, Departamento de Energía, Universidad Autónoma Metropolitana-Unidad Azcapotzalco, Mexico City 02200, Mexico
| | - Fernando Rubio-Marcos
- Departamento de Electrocerámica, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049 Madrid, Spain
- Escuela Politécnica Superior, Universidad Antonio de Nebrija, C/Pirineos 55, 28040 Madrid, Spain
| | - Ana M Maubert-Franco
- Área de Química de Materiales, Departamento de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City 02200, Mexico
| |
Collapse
|
2
|
Saravanan A, Kumar PS, Rangasamy G. Removal of Toxic Pollutants from Industrial Effluent: Sustainable Approach and Recent Advances in Metal Organic Framework. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Anbalagan Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai−602105, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab−140413, India
| |
Collapse
|
3
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
4
|
Zhang S, Saeeda, Khan A, Ali N, Malik S, Khan H, Ali N, Iqbal HMN, Bilal M. Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. ENVIRONMENTAL RESEARCH 2022; 213:113722. [PMID: 35728638 DOI: 10.1016/j.envres.2022.113722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Saeeda
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Centre of Biotechnology and Microbiology, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, KP, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
5
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
6
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
7
|
Aslam S, Ali A, Asgher M, Farah N, Iqbal HMN, Bilal M. Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catal Letters 2022; 152:1729-1741. [DOI: 10.1007/s10562-021-03765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023]
|
8
|
Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, Iqbal HMN. Microbial bioremediation strategies with wastewater treatment potentialities - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151754. [PMID: 34800451 DOI: 10.1016/j.scitotenv.2021.151754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The demand for innovative waste treatment techniques has arisen because of the establishment and operation of rigorous waste discharge guidelines into the environment. Due to the rapid increase in the human population, wastewater treatment is a procedure of increasing significance. As a result, wastewater treatment systems are intended to sustain high activities and densities of such microorganisms which meet the different purification requirements. The waste produced by the pharmaceutical industry, if not adequately treated, has harmful repercussions for the environment as well as public health. Bioremediation is an innovative and optimistic technology that can be used to remove and reduce heavy metals from polluted water and contaminated soil. Because of cost-effectiveness and environmental compatibility, bioremediation using microorganisms has an excellent potential for future development. A diverse range of microorganisms, including algae, fungi, yeasts, and bacteria, can function as biologically active methylators, capable of modifying toxic species. Microorganisms play a crucial role in heavy metal bioremediation. Nanotechnology may minimize industry expenses by producing environmentally friendly nanomaterials to alleviate these contaminants. The use of microorganisms in nanoparticle synthesis gives green biotechnology a positive impetus to cost reduction and sustainable production as a developing nanotechnology sector.
Collapse
Affiliation(s)
- Muhammad Usama Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saman Noor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
9
|
Javaid A, Latif S, Imran M, Hussain N, Rajoka MSR, Iqbal HMN, Bilal M. Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects - A review. CHEMOSPHERE 2022; 291:133056. [PMID: 34838839 DOI: 10.1016/j.chemosphere.2021.133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Advancement in medication by health care sector has undoubtedly improved our life but at the same time increased the chemical burden on our natural ecosystem. The residuals of pharmaceutical products become part of wastewater streams by different sources such as excretion after their usage, inappropriate way of their disposal during production etc. Hence, they are serious health hazards for human, animal, and aquatic lives. Due to rapid urbanization, the increased demand for clean drinking water is a burning global issue. In this regard it is need of the present era to explore efficient materials which could act as photocatalyst for mitigation of pharmaceuticals in wastewater. Nanohybrid as photocatalyst is one of the widely explored class of materials in photocatalytic degradation of such harmful pollutants. Among these nanohybrids; metal based nanohybrids (metals/metal oxides) and carbon based nanohybrids (carbon nanotubes, graphene, fullerenes etc.) have been explored to remove pharmaceutical drugs. Keeping in view the increasing harmful impacts of pharmaceuticals; the sources of pharmaceuticals in wastewater, their health risk factors and their mitigation using efficient nanohybrids as photocatalysts have been discussed in this review.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
10
|
Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Li W, Qamar SA, Qamar M, Basharat A, Bilal M, Iqbal HMN. Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int J Biol Macromol 2021; 190:700-712. [PMID: 34520777 DOI: 10.1016/j.ijbiomac.2021.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/05/2023]
Abstract
Fast industrialization and population growth are associated with the increased release of hazardous contaminants in the environment. These hazardous substances, including pharmaceutical, biomedical, personal-care products, heavy metals, endocrine-disrupters, and colorants, pollute the ecosystem by disturbing nature's balance. Nanotechnology has paved new horizons in biochemical engineering by designing novel approaches of integrating nanoscale science with biotechnology to construct improved quality materials for target uptake of pollutants. Recently, nanostructured materials have emerged as research and development frontiers owing to their excellent properties. The tailored designing of nanohybrids constructs with physicochemical alteration enables the nano-bioadsorbent with high target specificity and efficiency. The development of eco-friendly, biodegradable, cost-efficient, and biopolymer-based nanohybrid constructs is gaining attention to remove hazardous environmental pollutants. κ-carrageenan biopolymer is frequently used with different nanomaterials to design nanohybrid bio-adsorbents to remove various contaminants. Herein, the potentialities of carrageenan-based nanohybrid constructs in environmental remediation have been summarized. Different nanostructures, e.g., silica, non-magnetic/magnetic, carbon nanotubes/nanorods, nanoclay/nanomembrane, metal organic frameworks, graphene oxide, and other nanomaterials have been described in combination with carrageenan biopolymers focusing on environmental remediation.
Collapse
Affiliation(s)
- Wenqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
12
|
Zhang S, Bilal M, Adeel M, Barceló D, Iqbal HMN. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. CHEMOSPHERE 2021; 283:131293. [PMID: 34182621 DOI: 10.1016/j.chemosphere.2021.131293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
MXenes are a rapidly expanding and large family of two-dimensional (2D) materials that have recently garnered incredible research interests for diverse applications domains in various industrial sectors. Owing to unique inherent structural and physicochemical characteristics, such as high surface area, biological compatibility, robust electrochemistry, and high hydrophilicity, MXenes are appraised as a prospective avenue for environmental-clean-up technologies to detect and mitigate an array of recalcitrant hazardous contaminants from environmental matrices. MXene-based nanoarchitectures are thought to mitigate inorganic pollutants via interfacial chemical transformation and sorption, while three different mechanisms, including i) surface complexation and sorption (ii) catalytic activation and removal and (iii) radical's generation-based photocatalytic degradation, are involved in the removal of organic contaminants. Considering the application performance of MXenes on the incessant rise to expansion, in this review, we discuss the wide-spectrum applicability of diverse MXenes-based hybrid nanocomposites in environmental remediation. A brief description related to environmental pollutants, structural properties, chemical abilities, and synthesis route of MXenes is delineated at the start. Afterwards, the adsorption and degradative robustness of MXene-based designer nanomaterials for various contaminants including organic dyes, toxic heavy metals, pesticide residues, phenolics, antibiotics, radionuclides, and many others are thoroughly vetted to prove their potentiality in the arena of wastewater purification and remediation. Lastly, challenges and trends in assessing the wide-range applicability and scalability of MXenes are outlined. Seeing encouraging outcomes in plenty of reports, it can be concluded that MXenes-based nanostructures could be considered the next-generation candidates for water sustainability.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
13
|
Rasheed T, Ahmad N, Ali J, Hassan AA, Sher F, Rizwan K, Iqbal HMN, Bilal M. Nano and micro architectured cues as smart materials to mitigate recalcitrant pharmaceutical pollutants from wastewater. CHEMOSPHERE 2021; 274:129785. [PMID: 33548642 DOI: 10.1016/j.chemosphere.2021.129785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023]
Abstract
Pharmaceuticals have been recognized for saving billions of lives, but they also appear as a novel group of environmental pollutants. The presence of pharmaceutically active residues in seawater, surface water, wastewater treatment plants, sludges, and soils has been widely reported. Their persistence in the environment for extended durations exerts various adverse consequences, such as gene toxicity, hormonal interference, antibiotic resistance, sex organs imposition, and many others. Various methodologies have been envisioned for their removal from the aqueous media. Different processes have been restricted due to high cost, inefficient removal, generation of toxic materials, and high capital requirement. The employment of nanostructured materials to mitigate pharmaceutical contaminants has been increasing during the last decades. The adsorptive nanomaterials have a high surface area, low cost, eco-friendliness, and high affinity for inorganic and organic molecules. In this review, we have documented the rising concerns of environmental pharmaceutical contamination and their remediation by applications of nanomaterials. Nanomaterials could be a robust candidate for the removal of an array of environmental contaminants in water.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China.
| | - Naeem Ahmad
- Department of Chemistry, School of Natural Sciences National University of Science and Technology, H-12, Islamabad, Pakistan
| | - Jazib Ali
- School of Physics and Astronomy Shanghai Jiaotong University, Shanghai, 200240, China
| | - Adeel Ahmad Hassan
- School of Chemistry & Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry, CV1 5FB, United Kingdom
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
14
|
Khan M, Khan A, Khan H, Ali N, Sartaj S, Malik S, Ali N, Khan H, Shah S, Bilal M. Development and characterization of regenerable chitosan-coated nickel selenide nano-photocatalytic system for decontamination of toxic azo dyes. Int J Biol Macromol 2021; 182:866-878. [PMID: 33838191 DOI: 10.1016/j.ijbiomac.2021.03.192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
In this investigation, chitosan-coated nickel selenide nano-photocatalyst (CS-NiSe) was successfully prepared through the chemical reduction method. FTIR spectroscopy confirmed the synthesis of CS-NiSe nano-photocatalyst. Further, XRD analysis exhibited a monoclinic crystalline phase of photocatalyst with a crystallite size of 32 nm based on Scherer's equation. The SEM micrographs showed that the photocatalyst has an average particle size of 60 nm. The bandgap of CS-NiSe was (2.85 eV) in the visible region of the spectrum. Due to this reason, the CS-NiSe was applied under solar light illumination for the photocatalytic activity of Erythrosine and Allura red dyes. The CS-NiSe presented the highest degradation efficiency of 99.53% for Erythrosine dye in optimized experimental conditions of 100 min at 30 °C, 30 ppm concentration, pH 5.0, and 0.14 g catalyst dose. For Allura red dye, a high degradation of 96.12% was attained in 120 min at pH 4.0, 100 ppm initial dye concentration, 35 °C temperature, and 0.1 g catalyst dose. The CS-NiSe showed excellent degradation efficiency and reduced to (95% for Erythrosine and 91% for Allura red dye) after five consecutive batches. Moreover, the statistical and neural network modelling analysis showed the significant influence of all studied variables on dyes degradation performance. The results demonstrated that CS-NiSe exhibited excellent photocatalytic performances for Erythrosine and Allura red dyes and could be a better photocatalyst for removing these dyes from industrial effluents.
Collapse
Affiliation(s)
- Menhad Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Hammad Khan
- Department of Chemical Engineering, Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan, Institute of Engineering Sciences and Technology, Topi, Swabi, KP, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Seema Sartaj
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|