1
|
Baguley DA, Evans GS, Bard D, Monks PS, Cordell RL. Review of volatile organic compound (VOC) emissions from desktop 3D printers and associated health implications. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00778-y. [PMID: 40341722 DOI: 10.1038/s41370-025-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Three-dimensional (3D) printing is a technique by which materials are continually added in layers to form structures. The technique has grown in popularity over the past decade and affordable desktop 3D printers are now widely used in schools, universities, businesses, and hospitals. OBJECTIVE Understanding the types of chemical emissions from these 3D printers and their potential health effects is essential to safely use this technology. METHODS A scoping literature review on volatile organic compound (VOC) emissions from resin-bed and filament 3D printers has been conducted. Most of the published research has focused on emissions from filament 3D printers. RESULTS VOC emissions from resin 3D printers have been reported mostly as carbonyl compounds or methacrylate monomers. Filament VOC emissions are more varied in composition reflecting the constituents in the filaments used in this printer. The published research reported that the airborne concentrations of specific VOCs from 3D desktop printers fell below the HSE British workplace exposure limits (WELs). This may suggest that VOC emissions from these printers do not present a risk to occupational health. However, caution is required in reaching this conclusion because most of these studies quantified specific VOC emissions using methods different to those required by workplace regulatory standards. Other exposure circumstances, such as the effect of total VOC emissions, need to be considered, particularly for vulnerable groups, including individuals with respiratory disease, the elderly, or young children. Variables that could increase exposure and risks to health include long print times, multiple 3D printers, and poor ventilation. Research on the VOC emissions from resin 3D printers is required using experimental emission chambers. IMPACT The research discussed in this review focused on VOC emissions from desktop 3D printers and the potential health impacts associated with exposure to these compounds. The review identifies circumstances when people may be exposed to 3D printer emissions for which no regulatory exposure limits apply. This circumstance is especially relevant to people working in small businesses and organisations and to vulnerable people, such as the young, elderly and those with pre-existing lung disease. Raising awareness of these potential health concerns from 3D printer emissions can help to inform actions to mitigate exposure, through policy and behavioural changes, as well as engineering control measures. To our knowledge, this is the first review discussing studies of VOC emission from resin and popular filament 3D printers, including exposure risks and health outcomes.
Collapse
Affiliation(s)
- Danielle A Baguley
- University of Leicester, University Rd, Leicester, LE1 7RH, UK.
- University of Northumbria, College Street, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gareth S Evans
- Health and Safety Executive (HSE), Science Division, Harpur Hill, Buxton, SK17 9JN, UK
| | - Delphine Bard
- Health and Safety Executive (HSE), Science Division, Harpur Hill, Buxton, SK17 9JN, UK
| | - Paul S Monks
- University of Leicester, University Rd, Leicester, LE1 7RH, UK
| | | |
Collapse
|
2
|
Horvat T, Pehnec G, Jakovljević I. Volatile Organic Compounds in Indoor Air: Sampling, Determination, Sources, Health Risk, and Regulatory Insights. TOXICS 2025; 13:344. [PMID: 40423423 DOI: 10.3390/toxics13050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025]
Abstract
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen dioxide), and a variety of volatile organic compounds (VOCs) are examples of common indoor air pollutants. VOCs are one of the chief indoor contaminants, and their effects on human health have made indoor air quality a serious concern. Indoor VOC concentrations are frequently higher than outdoor levels, according to studies, which raises the danger of exposure, particularly for young people and those with respiratory disorders. VOCs originate from both biogenic and anthropogenic sources, and they can create secondary pollutants like ozone and aerosols, which can lead to cardiovascular and pulmonary problems. Prolonged exposure to VOCs has been associated with respiratory irritation, neurological effects, and an increased risk of chronic diseases. This review examines the primary sources, sampling and analysis approach, and health impact of VOCs in indoor air. Additionally, we compared worldwide regulatory guidelines for VOC exposure limits, emphasizing the need for strict exposure limits to protect human health.
Collapse
Affiliation(s)
- Tajana Horvat
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Gordana Pehnec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Jakovljević
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Zhang H, Zhang C, Liu S, Yin S, Zhang S, Zhu H, Yan F, Yang H, Ru X, Liu X. Insights into the source characterization, risk assessment and ozone formation sensitivity of ambient VOCs at an urban site in the Fenwei Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136721. [PMID: 39637802 DOI: 10.1016/j.jhazmat.2024.136721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The ground-level O3 concentration has shown a deteriorating trend in the Fenwei Plain of China, which poses a greater challenge for formulating control strategies of O3 precursor (VOCs). To accurately control VOCs sources and effectively reduce O3 concentration from a seasonal perspective, online monitoring of 114 VOCs was conducted at Yuncheng Middle School Station from January 1, 2021 to December 31, 2021. The VOCs concentration showed a seasonal variation with the highest in winter and the lowest in summer. During the four seasons, alkanes (34.5-41.7 %) and OVOCs (36.6-46.9 %) were the most abundant species. The emission ratios of specific VOCs species indicated that vehicular exhaust, industrial source, and combustion were the major VOCs sources. The Positive Matrix Factorization (PMF) model identified that industrial source and secondary conversion were the main contributors in summer, while combustion and LPG/NG contributed more significantly in winter. The 2021-based VOCs emission inventory showed that the total VOCs emissions in the central urban area of Yuncheng was 8128.8 t, in which industrial process was the largest contributor. Alkanes, aromatics, and OVOCs accounted for 31.0 %, 25.8 %, and 25.7 % of the annual VOCs emission, respectively. In addition, the calculated relative incremental reactivity (RIR) values of O3 precursors demonstrated that alkenes and aromatics were the most sensitive groups to O3 formation during the four seasons. The ambient VOCs posed the non-carcinogenic risk across all seasons, which can be attributed to acrolein and three main sources (industrial source, secondary conversion, and combustion). However, ambient VOCs exposed to definite carcinogenic risks due to the appearance of 1,2-dichloroethane, 1,2-dichloropropane, and benzene, and the main risks arose from industrial source, vehicular exhaust, and solvent usage. These findings emphasize the necessity of undertaking scientific and systematic measures for priority species and control sources of VOCs emission.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shasha Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shijie Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Siqing Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongji Zhu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fengyu Yan
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Hua Yang
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Xiaoning Ru
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Ren J, Sun X, Zhang Z, Pei H, Zhang Y, Wen R, Qiao S, Wang Z, Zhang W, Zuo J, Ma Y. Exposure to volatile organic compounds and growth indicators in adolescents: Unveiling the association and potential intervention strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135422. [PMID: 39106727 DOI: 10.1016/j.jhazmat.2024.135422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Environmental pollutant is considered to be one of the important factors affecting adolescent growth. However, the effects of volatile organic compounds (VOCs) exposure on adolescent growth have not been assessed. Data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 was used to examine the associations between VOCs exposure and adolescent growth indicators through three statistical models. The mediating effect of bone mineral density (BMD) on these associations was examined. The potential pathways and key targets were identified by the network pharmacology analysis methods. This study included 746 adolescents. Three statistical methods consistently showed a negative correlation between VOCs exposure and adolescent growth indicators. Furthermore, BMD mediated the relationship between VOCs exposure and adolescent growth indicators, with mediated proportion ranging from 4.3 % to 53.4 %. Network pharmacology analysis found a significant enrichment in IL-17 signaling pathway. Moreover, the adverse effects of VOCs exposure on adolescent growth were observed to significantly attenuate in adolescents with high serum vitamin D levels. Our results suggested that VOCs exposure was an adverse factor affecting adolescent growth, with BMD playing a significant regulatory role, and IL-17 signaling pathway was the underlying mechanism. Vitamin D supplementation may be a viable strategy to prevent VOCs exposure from affecting adolescent growth.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Simeng Qiao
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Zidan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Weican Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
5
|
Zhang F, Wang M, Wang M, Fan C, Tao L, Ma W, Sui S, Liu T, Jia L, Guo X. Revealing the dual impact of VOCs on recycled rubber workers: Health risk and odor perception. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116824. [PMID: 39106573 DOI: 10.1016/j.ecoenv.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Volatile organic compounds (VOCs) pose potential hazards to human health and contribute significantly to odor pollution. This study examined VOC emissions from a representative recycled rubber industry, evaluating the occupational health risks for frontline workers in various workshops. Variables such as gender and workshop-specific concentration variations were considered using Monte Carlo simulation methods. Employees in the five production workshops and office areas face noncarcinogenic health risks with hazard indices (HIs) greater than 1, with the rubber compounding phase presenting the highest risk. Acetaldehyde is identified as the primary noncarcinogenic health risk substance, with hazard quotient (HQ) values exceeding 1 in all workshops. Carcinogenic health risks vary by area, with the highest risks found in compounding and refining workshops. Formaldehyde poses the greatest risk in rubber grinding workshops and offices, with cumulative weights exceeding unacceptable levels of M80.58 % and W77.56 % in grinding and M94.98 % and W92.24 % in the office. Male workers face 4-7 % greater noncarcinogenic VOC health risks than females and 5-14 % greater carcinogenic risks from individual VOCs, increasing their susceptibility to health risks caused by VOCs. Additionally, our analysis of odor identification and intensity classification revealed that 53 VOCs are capable of causing odor pollution, with several substances reaching odor levels of 2 or higher. The predominant perceived odors, as reflected in the odor wheel, include categories such as "solvent/aromatic" and "sweet/fruit," with aldehydes being the primary odor-causing substances. In summary, emissions of VOCs from rubber industrial processes not only pose substantial health risks to workers but also contribute significantly to odor pollution. Consequently, enterprises must prioritize optimizing workplace conditions to ensure the occupational health and well-being of their employees.
Collapse
Affiliation(s)
- Fan Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chuanyi Fan
- Henan Jiaozuo Ecological Environmental Monitoring Center, Jiaozuo 454003, China
| | - Lu Tao
- Henan Jiaozuo Ecological Environmental Monitoring Center, Jiaozuo 454003, China
| | - Wanqi Ma
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shaobo Sui
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Tong Liu
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Luhao Jia
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoming Guo
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
6
|
Wang C, Wang W, Liu X, Tang Y, Wang F, Li H, Wen M, Li G, An T. Aqueous VOCs in complex water environment of oil exploitation sites: Spatial distribution, migration flux, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135121. [PMID: 38981233 DOI: 10.1016/j.jhazmat.2024.135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyuan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zahed MA, Salehi S, Khoei MA, Esmaeili P, Mohajeri L. Risk assessment of Benzene, Toluene, Ethyl benzene, and Xylene (BTEX) in the atmospheric air around the world: A review. Toxicol In Vitro 2024; 98:105825. [PMID: 38615724 DOI: 10.1016/j.tiv.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Volatile organic compounds, such as BTEX, have been the subject of numerous debates due to their detrimental effects on the environment and human health. Human beings have had a significant role in the emergence of this situation. Even though US EPA, WHO, and other health-related organizations have set standard limits as unhazardous levels, it has been observed that within or even below these limits, constant exposure to these toxic chemicals results in negative consequences as well. According to these facts, various studies have been carried out all over the world - 160 of which are collected within this review article, so that experts and governors may come up with effective solutions to manage and control these toxic chemicals. The outcome of this study will serve the society to evaluate and handle the risks of being exposed to BTEX. In this review article, the attempt was to collect the most accessible studies relevant to risk assessment of BTEX in the atmosphere, and for the article to contain least bias, it was reviewed and re-evaluated by all authors, who are from different institutions and backgrounds, so that the insights of the article remain unbiased. There may be some limitations to consistency or precision in some points due to the original sources, however the attempt was to minimize them as much as possible.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Mahtab Akbarzadeh Khoei
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Pedram Esmaeili
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Leila Mohajeri
- Department of HSE, Ostovan Kish Drilling Company (OKDC), No. 148, Dastgerdi Street (Zafar), Tehran, Iran
| |
Collapse
|
8
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
9
|
Zhou HL, Di DS, Cui ZB, Zhou TT, Yuan TT, Liu Q, Zhang JL, Luo X, Ling DY, Wang Q. Whole-body aging mediates the association between exposure to volatile organic compounds and osteoarthritis among U.S. middle-to-old-aged adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167728. [PMID: 37827324 DOI: 10.1016/j.scitotenv.2023.167728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Humans are constantly exposed to various volatile organic compounds (VOCs) because of their widespread sources and characteristic of easy evaporation. Existing evidence regarding the association between VOC exposure and osteoarthritis (OA) risk is limited. PURPOSE This study aimed to investigate the associations between individual urinary VOC metabolites (VOCMs) and the VOCM mixture, representing internal exposure levels of VOCs, with prevalent OA risk and to explore the mediating effect of aging and oxidative stress (OS) in these associations. METHODS Data from the National Health and Nutrition Examination Surveys 2005-2020 were analyzed. Weighted generalized linear regression was employed to explore the associations between individual VOCMs and OA risk, as well as aging and OS biomarkers. A five-repeated ten-fold cross-validation elastic net model was used to identify critical VOCMs for the weight quantile sum (WQS) analysis, which was performed to explore the VOCM mixture and OA risk association. Parallel and serial mediation analyses were conducted to identify the potential mediators and mediation pathways. RESULTS This study included 6578 American adults aged ≥40 years, among whom 1052 (16.0 %) individuals reported prevalent OA. Urinary levels of N-acetyl-S-(benzyl)-L-cysteine, mandelic acid and phenylglyoxylic acid were positively associated with OA risk. Eleven VOCMs with nonzero coefficients were identified and included in the WQS analysis, and results revealed an average increase of 24.4 % in OA risk (OR = 1.244, 95 % CI: 1.041, 1.486) per one-quantile increment in the VOCM mixture. Two aging biomarkers, phenotypic age and biological age, parallelly mediated the association between the VOCM mixture and OA risk, with mediation effect proportions of 9.0 % and 16.4 %, respectively. CONCLUSIONS Exposure to VOCs is associated with an increased OA risk in middle-to-old aged American adults. The mediating effect of aging contributes to the association between co-exposure to VOCs and OA risk. Further prospective studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhang-Bo Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Li Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Luo
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan-Yang Ling
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Tan L, Liu Y, Liu J, Liu Z, Shi R. Associations of individual and mixture exposure to volatile organic compounds with metabolic syndrome and its components among US adults. CHEMOSPHERE 2024; 347:140683. [PMID: 37952817 DOI: 10.1016/j.chemosphere.2023.140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND People are exposed to various volatile organic compounds (VOCs) in their environment. Our study aims to examine the links between VOCs exposure and metabolic syndrome (MetS) and its components, as well as identify critical VOCs. METHOD In this study, we enrolled 8223 adults from the National Health and Nutrition Examination Survey (NHANES) and analyzed 15 kinds of urinary VOCs metabolites. The Spearman correlation model, generalized linear regression model, restricted cubic spline (RCS), weighted quantile sum (WQS) analysis, and Bayesian kernel machine regression (BKMR) were used to evaluate the association between individual VOC/VOCs mixture and MetS as well as its components. RESULTS In generalized linear regression model, compared to the lowest quartile of urinary VOCs metabolites, the highest quartiles of urinary VOC metabolites were positively associated with MetS including N-Acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC) (OR: 1.22, 95%CI: 1.00, 1.49), N-Acetyl-S-(2-carboxyethyl)-l-cysteine (CEMA) (OR: 1.71, 95%CI: 1.41, 2.07), N-Acetyl-S-(3-hydroxypropyl)-l-cysteine (3HPMA) (OR: 1.32, 95%CI: 1.11, 1.63), and N-Acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (HMPMA) (OR: 1.34, 95%CI: 1.09, 1.64). Consistent results were found in the dose-response relationship in RCS model. Results of WQS showed that VOCs mixture was positively associated with MetS (OR: 1.16, 95%CI: 1.06, 1.28), elevated WC (OR: 1.25, 95%CI: 1.13, 1.37), elevated FBG (OR: 1.24, 95%CI: 1.12, 1.37), elevated TG (OR: 1.34, 95%CI: 1.21, 1.49), and reduced HDL-C (OR: 1.20, 95%CI: 1.09, 1.33). However, the WQS index was negatively associated with elevated BP (OR: 0.81; 95%CI: 0.70, 0.94). BKMR analysis confirmed that the urinary VOCs mixture was positively associated with MetS, elevated WC, elevated TG, reduced HDL-C, elevated FBG, but negatively associated with elevated BP. CEMA was defined as the most heavily weighted chemical in the WQS and BKMR models. CONCLUSION Our findings suggested that exposure to specific VOC or VOCs mixture is associated with the higher risk of MetS and its components, except for elevated BP.
Collapse
Affiliation(s)
- Liao Tan
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of the Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Lu B, Meng X, Dong S, Zhang Z, Liu C, Jiang J, Herrmann H, Li X. High-resolution mapping of regional VOCs using the enhanced space-time extreme gradient boosting machine (XGBoost) in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167054. [PMID: 37714357 DOI: 10.1016/j.scitotenv.2023.167054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
The accurate estimation of highly spatiotemporal volatile organic compounds (VOCs) is of great significance to establish advanced early warning systems and regulate air pollution control. However, the estimation of high spatiotemporal VOCs remains incomplete. Here, the space-time extreme gradient boost model (STXGB) was enhanced by integrating spatiotemporal information to obtain the spatial resolution and overall accuracy of VOCs. To this end, meteorological, topographical and pollutant emissions, was input to the STXGB model, and regional hourly 300 m VOCs maps for 2020 in Shanghai were produced. Our results show that the STXGB model achieve good hourly VOCs estimations performance (R2 = 0.73). A further analysis of SHapley Additive exPlanation (SHAP) regression indicate that local interpretations of the STXGB models demonstrate the strong contribution of emissions on mapping VOCs estimations, while acknowledging the important contribution of space and time term. The proposed approach outperforms many traditional machine learning models with a lower computational burden in terms of speed and memory.
Collapse
Affiliation(s)
- Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Xue Meng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Shanshan Dong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Zekun Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Chao Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Jiakui Jiang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (IfT), Permoserstr. 15, 04318 Leipzig, Germany
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China; Institute of Eco-Chongming (IEC), Shanghai 200241, China.
| |
Collapse
|
12
|
Tzanakopoulou MV, Pollitt DM, Castro-Rodriguez DD, Costa DA, Gerogiorgis DD. Dynamic modelling, simulation and theoretical performance analysis of Volatile Organic Compound (VOC) abatement systems in the pharma industry. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
13
|
Kim SJ, Lee SJ, Lee HY, Son JM, Lim HB, Kim HW, Shin HJ, Lee JY, Choi SD. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156344. [PMID: 35654203 DOI: 10.1016/j.scitotenv.2022.156344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric volatile organic compounds (VOCs) in Seoul, the capital of South Korea, have attracted increased attention owing to their emission, secondary formation, and human health risk. In this study, we collected 24 hourly samples once a month at an urban site in Seoul for a year (a total of 288 samples) using a sequential tube sampler. Analysis results revealed that toluene (9.08 ± 8.99 μg/m3) exhibited the highest annual mean concentration, followed by ethyl acetate (5.55 ± 9.09 μg/m3), m,p-xylenes (2.79 ± 4.57 μg/m3), benzene (2.37 ± 1.55 μg/m3), ethylbenzene (1.81 ± 2.27 μg/m3), and o-xylene (0.91 ± 1.47 μg/m3), indicating that these compounds accounted for 77.8-85.6% of the seasonal mean concentrations of the total (Σ59) VOCs. The concentrations of the Σ59 VOCs were statistically higher in spring and winter than in summer and fall because of meteorological conditions, and the concentrations of individual VOCs were higher during the daytime than nighttime owing to higher human activities during the daytime. The conditional bivariate probability function and concentration weighted trajectory analysis results suggested that domestic effects (e.g., vehicular exhaust and solvents) exhibited a dominant effect on the presence of VOCs in Seoul, as well as long-range atmospheric transport of VOCs. Further, the most important secondary organic aerosol formation potential (SOAFP) compounds included benzene, toluene, ethylbenzene, and m,p,o-xylenes, and the total SOAFP of nine VOCs accounted for 5-29% of the seasonal mean PM2.5 concentrations. The cancer and non-cancer risks of the selected VOCs were below the tolerable (1 × 10-4) and acceptable (Hazard quotient: HQ < 1) levels, respectively. Overall, this study highlighted the feasibility of the sequential sampling of VOCs and hybrid receptor modeling to further understand the source-receptor relationship of VOCs.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Min Son
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyung-Bae Lim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hyeon-Woong Kim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
14
|
Xiong Y, Huang Y, Du K. Health Risk-Oriented Source Apportionment of Hazardous Volatile Organic Compounds in Eight Canadian Cities and Implications for Prioritizing Mitigation Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12077-12085. [PMID: 35939835 DOI: 10.1021/acs.est.2c02558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditionally, environmental authorities make regulatory policies for controlling volatile organic compound (VOC) pollution based on the mitigation of dominant VOC sources. However, the emission from each VOC source has a unique combination of VOC species of different toxicities. Without quantitatively assessing the health risk associated with each source, the effectiveness of the mitigation policy could be undermined. To address this shortcoming, we developed a new health risk-oriented source apportionment method that can provide quantitative health risk assessment and source-specific mitigation strategies for hazardous VOCs. We estimated that the integrated inhalation cancer risk (ICR) of hazardous VOCs was 7.7 × 10-5 in Western Canada, indicating a 100% likelihood of exceeding Health Canada's acceptable risk level (1.0 × 10-5). Anthropogenic sources were responsible for 56.3-73.8% of cancer risks across eight Canadian cities except for the regional background island, where natural sources contributed over 77% to the integrated ICR. Thus, substantial environmental and health cobenefits could be achieved via reducing the ambient levels of benzene and 1,3-butadiene by 39.3-75.7 and 14-69.3%, respectively, and mitigating emissions from fuel combustion (by 31.3-54.1%), traffic source (3.0-36.8%), and other anthropogenic sources (5.3-20.1%) in Western Canada. Our study has significant implications for prioritizing air pollution mitigation policies, especially for quantitative reduction of hazardous air pollutants.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Feng Y, Ding D, Xiao A, Li B, Jia R, Guo Y. Characteristics, influence factors, and health risk assessment of volatile organic compounds through one year of high-resolution measurement at a refinery. CHEMOSPHERE 2022; 296:134004. [PMID: 35181418 DOI: 10.1016/j.chemosphere.2022.134004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
From January 2020 to December 2020, high-resolution data of volatile organic compound (VOC) concentrations were monitored by online instruments at a petroleum refinery. The measurement results showed that the external contaminants, meteorological conditions and photochemical reactions had a great influence on the VOC data measured in the petroleum refineries. Some significant differences were observed in the emission composition of different refineries, while propene (34.2%), propane (10.2%), n-butane (5.6%), i-pentane (5.0%) were the dominant species emitted from the refinery in this study. The correlations between compounds with similar atmospheric lifetimes were strong (R2 > 0.9), which indicated that the diagnostic ratios of these compounds could be used as indicators to identify the refinery emission source. Chronic health effects of non-carcinogenic risk results showed that acrolein had the highest non-carcinogenic risk and other compound-specific health risks may be of less concern in the refining area. Halogenates and aromatics accounted for 97.4% of the total carcinogenic risk values, while 1,2-dibromoethane, chloromethane, benzene, trichloromethane, 1,2-dichloroethane contributed approximately 80% of the total carcinogenic risk assessment values. This research has recorded valuable data about the VOC emission characteristics from the perspective of the high-resolution monitoring of the petroleum refinery. The results of this work will provide a reference to accurately quantify and identify the emission of petroleum refineries and further throw some light on effective VOC abatement strategies.
Collapse
Affiliation(s)
- Yunxia Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China.
| | - Dewu Ding
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Anshan Xiao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Bo Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Runzhong Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Yirong Guo
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| |
Collapse
|
16
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
17
|
Ma J, Chen Z, Wang J, Wang Y, Li L. Diffusion simulation, health risks, ozone and secondary organic aerosol formation potential of gaseous pollutants from rural comprehensive waste treatment plant. CHEMOSPHERE 2022; 286:131857. [PMID: 34392199 DOI: 10.1016/j.chemosphere.2021.131857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive waste treatment plants (CWTPs) are significant sources of gaseous pollutants such as odors, volatile organic compounds (VOCs) and nitrogen oxides (NOx), polluting the environment and endangering human health. This study conducted on-site investigations on gaseous pollutants emissions from different areas of a CWTP. A total of 10 pollutants were identified of which ammonia (11.32 mg/m³ in average) was the main odorous substance, and benzene (19.51 mg/m³ in average) and toluene (42.07 mg/m³ in average) were the main VOCs. The feeding workshop (FW) was considered the main source of gaseous pollutants. The Gaussian plume model demonstrated that the pollution became more serious after spreading in the southeast downwind direction. Occupational exposure risks of on-site workers were mainly attributed to hydrogen sulfide, ammonia, benzene, and toluene, as their hazard index (HI) and lifetime cancer risk (CR) exceeded the recommended occupational safety limits. The gaseous pollutants diffused from CWTP may still pose a potential health risk to residents within a range of up to 7.5 km. The emulation and quantification of ozone formation potential by methods of Propyl-Equiv and MIR demonstrated that the contribution rate of toluene presented in each stage of CWTP exceed 80 %. Toluene was also the largest contributor to secondary organic aerosol with the contribution rate reached 56.34-85.14 %, followed by benzene (14.72-38.52 %). This research provides a basis for the reduction and control of gaseous pollutants in the treatment and disposal of rural domestic waste.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|