1
|
Chen Y, Chen Y, Yao S, Wang X, Chen T, Chen K, Li J, Yin C, Ye Q, Wang H. Uptake, subcellular accumulation and metabolism of 14C-bisphenol S in flowering cabbage. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138646. [PMID: 40393287 DOI: 10.1016/j.jhazmat.2025.138646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Due to the growing environmental and health concerns surrounding bisphenol S (BPS) as a common bisphenol A (BPA) substitute, this study investigated the metabolic pathways and tissue-specific accumulation of BPS in flowering cabbage under hydroponic conditions, revealing key insights into plant detoxification processes and potential human health risks. Over a 32-day exposure of 5 mg L-1 14C-BPS, 60.2 ± 3.0 % of 14C in the nutrient solution was taken up, with the 14C-radioactivity accounting for 40.2 ± 2.6 %, 5.3 ± 0.3 %, and 14.5 ± 0.6 % in roots, stems, and leaves, respectively. Older leaves retained higher levels of BPS and/or its metabolites. Using HPLC-LSC, LC-MS/MS, and subcellular fractionation, we identified four metabolites, characterized by glycosylation, malonylation, sulfation, and amino acid conjugation pathways. BPS and its metabolites were primarily located in the cell wall, plastid, and soluble component. The segregation of BPS and metabolites into the cell wall and plastid resulted in the formation of large amounts of non-extractable residues in roots. Results highlight that BPS metabolites, particularly glycosylated forms like M526, may accumulate in edible plant parts. These findings advance understanding of BPS metabolism in plants, underlining the potential food safety risks posed by its uptake and metabolism in agricultural systems.
Collapse
Affiliation(s)
- Yandao Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sihan Yao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xilin Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Chen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518055, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changfeng Yin
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518055, China.
| | - Qingfu Ye
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Wang M, Li D, Tong T, Xia Y, Zhang H, Zhou X, Jiang W, Chen K, Wang F, Zhao P, Han L. Health risk assessment to xenoestrogen through atmospheric PM 2.5 particles: A case study in Suzhou. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117992. [PMID: 40043500 DOI: 10.1016/j.ecoenv.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Xenoestrogens, classified as endocrine disruptors, can be inhaled through atmospheric particles, leading to adverse health effects such as cancer and developmental abnormalities. This research focused on analysing the monthly distribution, seasonal variation, and health impacts of six target xenoestrogens (dibutyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DIBP)), bisphenol A (BPA), and alkylphenols (nonylphenol (NP) and 4-tert-octylphenol (4-t-OP)) in atmospheric PM2.5 at campus of Xi'an Jiaotong-Liverpool University from September 2021 to September 2023. The monthly average concentration of xenoestrogens was measured at 20 ng·m-3, while the mass concentration of PM2.5 varied between 1.75 and 217.36 μg·m-3. BPA was the predominant xenoestrogen in campus, with a peak of 126.52 ± 0.67 ng·m-3. The average concentrations of BPA, DBP and DEHP at campus were significantly higher in winter compared to summer in 2022. The non-carcinogenic risk (hazard index (HI) < 1) and carcinogenic risk (Incremental Lifetime Cancer Risk (ILCR)< 10-6) on non-dietary basis for all residents did not exceed the threshold limit at campus. However, the HI (2.82 ×10-5 - 3.53 ×10-3) and ILCR (1.48 ×10-12) values for infants and young children are significantly higher than other age groups, indicating a heightened risk of exposure to xenoestrogens. Given the rising global concern over air quality and its impact on public health, our work contributes valuable data that can inform policy and regulatory measures aimed at mitigating the health risks of exposure to xenoestrogen in the atmosphere.
Collapse
Affiliation(s)
- Minhao Wang
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Department of Chemistry, School of Physical Science, University of Liverpool, Liverpool, UK
| | - Dongling Li
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ting Tong
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuwei Xia
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Haifei Zhang
- Department of Chemistry, School of Physical Science, University of Liverpool, Liverpool, UK
| | - Xiao Zhou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wen Jiang
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kui Chen
- Eurofins Technology Service (Suzhou) Co., Ltd, Suzhou, China
| | - Fang Wang
- Eurofins Technology Service (Suzhou) Co., Ltd, Suzhou, China
| | - Peng Zhao
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Lei Han
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
4
|
Alexander MV, Ayyar A, Gannon AW, Linares KE, Vincent SJ, Lowe S, To A, Blesson CS. The biological effects of bisphenol AF in reproduction and development: What do we know so far? Reprod Toxicol 2025; 132:108857. [PMID: 39954826 DOI: 10.1016/j.reprotox.2025.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Due to the established endocrine-disrupting effects of Bisphenol A (BPA), alternative bisphenols entered the market. Bisphenol AF (BPAF) is now commonly used in the industrial manufacturing of polycarbonate plastics and epoxy resins. However, BPAF's effects on reproduction and development have not been thoroughly reviewed. We investigated the relationship between BPAF exposure and reproduction and early development. We performed a literature review of studies on BPAF and reproductive physiology. Using keywords, we searched PubMed, Medline, Cochrane Library Database, Embase, and ClinicalTrials.gov for English language literature available until December 2024; we additionally identified and included studies from bibliographies. We included 125 articles, spanning in vitro and in vivo model organism and human studies. BPAF is a selective estrogen receptor modulator and an androgen receptor antagonist and is more potent than BPA. It is detected in urine, blood products, saliva, amniotic fluid, and breast milk. In vitro and in vivo studies demonstrate a spectrum of BPAF-induced endocrine and reproductive changes in both sexes. There is strong evidence of alterations in the hypothalamic-pituitary-gonadal axis and of altered steroidogenesis pathways. Multiple studies using zebrafish, Xenopus, chickens, and rodents, show BPAF's effects on embryogenesis, morphology, and sexual differentiation. Decreased serum testosterone and impaired spermatogenesis and oocyte viability have been demonstrated. The current literature shows clear disruptive effects of BPAF on reproductive health and embryonic development. Though further investigation is warranted, there is ample converging evidence to support limiting the use of BPAF and other similar bisphenols.
Collapse
Affiliation(s)
- Megan V Alexander
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archana Ayyar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra W Gannon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alvin To
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Moorchilot VS, Louis H, Haridas A, Praveena P, Arya SB, Nair AS, Aravind UK, Aravindakumar CT. Bisphenols in indoor dust: A comprehensive review of global distribution, exposure risks, transformation, and biomonitoring. CHEMOSPHERE 2025; 370:143798. [PMID: 39647794 DOI: 10.1016/j.chemosphere.2024.143798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Bisphenols (BPs) are pervasive environmental contaminants extensively found in indoor environments worldwide. Despite their ubiquitous presence and potential health risks, there remains a notable gap in the comprehensive reviews focusing on BPs in indoor dust. Existing literature often addresses specific aspects such as exposure pathways, transformation products, or biomonitoring techniques, but lacks a consolidated, in-depth review encompassing all these facets. This review provides a comprehensive overview of the global distribution of BPs, emphasizing their prevalence in diverse indoor settings ranging from households and workplaces to public areas. Variations in BP concentrations across these environments are explored, influenced by factors such as industrial activities, consumer product usage patterns, and geographical location. Exposure assessments highlight ingestion, inhalation, and dermal contact as primary pathways for BP exposure, with ingestion being particularly significant for vulnerable groups such as infants and young children. Studies consistently reveal higher concentrations of BPs in urban indoor dust compared to rural settings, reflecting the impact of urbanization and intensive consumer practices. Moreover, BPs from mobile sources like vehicles contribute significantly to overall human exposure, further complicating exposure assessments. The review also delves into the transformation of BPs within indoor environments, emphasizing the diverse roles of physical, chemical, and biological processes in generating various transformation products (TPs). These TPs can exhibit heightened toxicity compared to their parent compounds, necessitating deeper investigations into their environmental fate and potential health implications. Critical examination of biomonitoring techniques for BPs and their metabolites underscores the importance of non-invasive sampling methods, offering ethical advantages and practicality in assessing human exposure levels. The emerging use of bioindicators, encompassing plants, animals, and innovative approaches like spider webs, presents promising avenues for effectively monitoring environmental contamination.
Collapse
Affiliation(s)
- Vishnu S Moorchilot
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Helency Louis
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Aiswarya Haridas
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - P Praveena
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - S B Arya
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Arya S Nair
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, 682508, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - C T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; International Centre for Polar Studies, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India.
| |
Collapse
|
6
|
Ji X, Li J, Wang W, Li P, Wu H, Shen L, Su L, Jiang P, Li Y, Wu X, Tian Y, Liu Y, Yue H. Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure. ENVIRONMENTAL RESEARCH 2025; 264:120371. [PMID: 39549911 DOI: 10.1016/j.envres.2024.120371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including Pgr, Gata3, Egfr and Areg were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure in utero and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| | - Jiande Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Weiwei Wang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Peilin Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Haoyang Wu
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Linzhuo Shen
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Lihong Su
- Department of Pathology, Shanxi Provincial People's Hospital, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yu Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
7
|
Jialin S, Qun G, Hong L, Yixing F, Runhui Y, Yuehan L, Jiale R, Chenhui S, Bingli Z, Yumin N, Bing S. Urinary profiles of bisphenol S derivatives and their exposure pathway analysis in maternal and infant populations of Beijing. ENVIRONMENT INTERNATIONAL 2024; 194:109169. [PMID: 39615254 DOI: 10.1016/j.envint.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/22/2024]
Abstract
Bisphenol S (BPS) derivatives have potential reproductive developmental toxicity and have been found in the environment and in breast milk. The level of infant exposure and the source are currently unknown. In this study, we investigated BPS and six derivatives (together referred to as BPs) in urine samples from mothers and infants, indoor dust, breast milk and infant formula in Beijing, China. BPS, diphenyl sulfone (DPS) and 4-allyloxy-4'-hydroxydiphenyl sulfone (BPS-MAE) were the main BPs. Notably, the concentration of DPS in infants' urine was higher than that of BPS, which warrants attention. Infants have higher daily intake levels than mothers. Exclusively breastfed infants have a higher risk of BPs exposure than exclusively formula-fed infants. For exclusive breastfed infants, the contribution of individual BPs through breast milk was 23.2% to 93.6%. While for exclusively formula-fed infants, the contribution of individual BPs through infant formula was 30.5% to 70.3%. The contribution of individual BPs through indoor dust was no more than 10%. The results suggesting that infants can be exposed to BPs through other pathways. This is the first comprehensive assessment of maternal and infants exposure to BPS derivatives, providing insights into the sources of infant exposure.
Collapse
Affiliation(s)
- Sun Jialin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Chaoyang District Center for Disease Prevention and Control of Beijing, Beijing 100020, China
| | - Gao Qun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Li Hong
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Feng Yixing
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yang Runhui
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liu Yuehan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ren Jiale
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sang Chenhui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhao Bingli
- Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Niu Yumin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Shao Bing
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Zhu Y, Liu X, Shi Y, Liu X, Li H, Ru S, Tian H. Prenatal exposure to bisphenol AF causes toxicities in liver, spleen, and kidney tissues of SD rats. Food Chem Toxicol 2024; 192:114939. [PMID: 39151878 DOI: 10.1016/j.fct.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
9
|
Fu Z, Jin H, Mao W, Yin S, Xu L, Hu Z. Conjugated metabolites of bisphenol A and bisphenol S in indoor dust, outdoor dust, and human urine. CHEMOSPHERE 2024; 362:142617. [PMID: 38880259 DOI: 10.1016/j.chemosphere.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) have been widely spread in the global environment. However, for conjugated BPA and BPS metabolites, limited studies have investigated their occurrence in environmental matrices. We collected paired indoor and outdoor dust (n = 97), as well as human urine (n = 153) samples, from residential houses in Quzhou, China, and measured these samples for 8 conjugated BPA and BPS metabolites. Three BPA metabolites were found in collected indoor and outdoor dust, with BPA sulfate (mean 0.75 and 1.3 ng/g, respectively) and BPA glucuronide (0.13 and 0.26 ng/g) being more abundant. BPA conjugates accounted for a mean of 42 and 56% of total BPA (sum of conjugated BPA and BPA metabolites) in indoor and outdoor dust, respectively. BPS sulfate (mean 0.29 and 0.82 ng/g, respectively) had consistently higher concentrations than BPS glucuronide (0.13 and 0.27 ng/g) in indoor and outdoor samples. BPS conjugates contributed a mean 32% and 45% of total BPS (sum of BPS and BPS metabolites) in indoor and outdoor dust, respectively. Moreover, conjugated BPA and BPS metabolites in indoor or outdoor dust were not significantly correlated with those in urine from residents. Overall, this study first demonstrates the wide presence of conjugated BPA and BPS metabolites, besides BPA and BPS, in indoor and outdoor dust. These data are important for elucidating the sources of conjugated BPA and BPS metabolites in the human body.
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
10
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
11
|
Yue H, Tian Y, Zhu H, Wu X, Xu P, Ji X, Qin G, Sang N. Fetal Origin of Abnormal Glucose Tolerance in Adult Offspring Induced by Maternal Bisphenol A Analogs Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10910-10919. [PMID: 38862419 DOI: 10.1021/acs.est.3c09238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the widespread use of bisphenol A (BPA) analogs, their health risks have attracted attention. The effects of maternal BPA analogs exposure on glucose homeostasis in adult offspring and the underlying fetal origins require further exploration. Herein, we exposed pregnant mice to two types of BPA analogs─BPB and BPAF; we evaluated glucose homeostasis in adult offspring and maternal-fetal glucose transport by testing intraperitoneal glucose tolerance, determining glucose and glycogen contents, conducting positron emission tomography (PET)/computed tomography (CT), detecting expression of placental nutrient transport factors, and assessing placental barrier status. We observed that adult female offspring maternally exposed to BPB and BPAF exhibited low fasting blood glucose in adulthood, with even abnormal glucose tolerance in the BPAF group. This phenomenon can be traced back to the elevated fetal glucose induced by the increased efficiency of placenta glucose transport in late pregnancy. On the other hand, the expression of genes associated with vascular development and glucose transport was significantly altered in the placenta in the BPAF group, potentially contributing to enhanced fetal glucose. These findings provide preliminary insights into potential mechanisms underlying the disturbance of glucose metabolism in adult female offspring mice induced by maternal exposure to BPA analogs.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P. R. China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi 030001, P. R. China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
12
|
Qian Y, Zhu J, Guo R, Jin H. Bisphenol S and Its Chlorinated Derivatives in Indoor Dust and Human Exposure. TOXICS 2024; 12:448. [PMID: 39058100 PMCID: PMC11280507 DOI: 10.3390/toxics12070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol S (BPS), an environmental endocrine disruptor, has been identified in global environmental matrices. Nevertheless, limited studies have investigated the presence of chlorinated analogues of BPS (Clx-BPSs) with potential estrogenic activities in environmental matrices. In this study, the occurrence of BPS and five types of Clx-BPSs was characterized in indoor dust (n = 178) from Hangzhou City. BPS was measurable in 94% of indoor dust samples, with an average level of 0.63 μg/g (
Collapse
Affiliation(s)
- Yi Qian
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Jianqiang Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
13
|
Li P, Gan Z, Li Z, Wang B, Sun W, Su S, Ding S. Occurrence and exposure evaluation of bisphenol A and its analogues in indoor and outdoor dust from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170833. [PMID: 38367725 DOI: 10.1016/j.scitotenv.2024.170833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Bisphenol A (BPA) and its analogues have been proved to be harmful to human reproduction, endocrine and nervous system. But information on the occurrence and human exposure to bisphenol compounds (BPs) in dust (especially outdoor dust) is limited. In this study, 14 BPs were determined in 174 indoor dust samples and 202 outdoor dust samples from Chinese mainland, Hong Kong, Macau and Taiwan. BPA, BPS, BPAF, BPF, BPAP and BPE were widely detected with detection frequencies of 98.94 %, 98.67 %, 97.87 %, 95.21 %, 87.23 % and 71.54 %, respectively. The median total concentrations of the most detected six BPs in the dust were in the order of south urban indoors (556 ng/g) > south rural outdoors (438 ng/g) > south urban outdoors (432 ng/g) > south rural outdoors (418 ng/g) > north rural indoors (412 ng/g) > north urban outdoors (341 ng/g) > north urban indoors (311 ng/g) > north rural outdoors (246 ng/g). The amounts of garbage incineration, plastic output and recycled paper may have influence on the BPs levels. Some BPs (BPAF, BPAP, BPF and BPS) in the indoor and outdoor samples were significantly positively correlated. In addition, the BPs in the indoor dust from different indoor micro environments in Chengdu were investigated. BPA (median concentration: 571.2 ng/g) and BPF (median concentration: 114.3 ng/g) were the two primary BPs, accounting for 78.1 % of the median total concentrations of the investigated BPs. High concentration of BPA appeared in printing workshops and offices, while high concentration of BPAP, BPC, BPE and BPF appeared in electronic repair shops. Occupational exposure to BPs deserves attention in the future. ΣBPs exposure risk for children and adults in the urban areas of southern China was the highest. To our knowledge, this is the first report in China to study BPs in outdoor dust sample.
Collapse
Affiliation(s)
- Peixuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - ShiJun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Zhang X, Fu M, Li K, Cheng X, Zhang X, Shen X, Lei B, Yu Y. Bisphenol chemicals in colostrum from Shanghai, China during 2006-2019: Concentration, temporal variation, and potential influence on birth parameters. Food Chem Toxicol 2024; 185:114485. [PMID: 38301991 DOI: 10.1016/j.fct.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Bisphenol A (BPA) and its alternatives bisphenol S (BPS) and bisphenol F (BPF) are identified as endocrine disruptors that have negative impacts on infant growth. Their temporal variations in human milk and potential effects on fetal growth are not well known. In this study, colostrum collecting at four time points between 2006 and 2019 and paired urine in 2019 from Shanghai, China, were analyzed for eight bisphenols. The total concentrations in colostrum in 2019 were up to 3.43 ng/mL, with BPA being dominant, followed by BPS and BPF. BPA levels in colostrum noticeably decreased from 2010 to 2013. Additionally, obvious percentage changes in bisphenols were observed in 2019. The BPA concentrations in paired colostrum and urine were not significantly correlated. High levels of BPA in colostrum were linked to a significant reduction in birth head circumference in 2019 (p = 0.031). BPA and BPS in colostrum might have similar negative effect on fetal growth in 2019, but these effects were generally non-significant. Further studies are needed to testify the potential impact. The hazard indexes for infants in the first week of life were below 1, suggesting no obvious health risks. However, the high contribution from BPA still warrants further attention.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Minghui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kexin Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaomeng Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
15
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
16
|
Pan Y, Xie R, Wei X, Li AJ, Zeng L. Bisphenol and analogues in indoor dust from E-waste recycling sites, neighboring residential homes, and urban residential homes: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168012. [PMID: 37871824 DOI: 10.1016/j.scitotenv.2023.168012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The compound 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) has recently emerged as a novel alternative to bisphenol A (BPA) and has been found in various paper products. However, there is limited information available regarding the identification of BPSIP as a novel contaminant in the e-waste dismantling area. In our research, we conducted a comprehensive analysis of 16 bisphenol analogues (BPs), including BPSIP, within indoor dust samples obtained from a representative e-waste recycling facility, neighboring rural communities, and control urban communities. Out of the 16 target BPs, ten were found in both e-waste and local household dust, while only six BPs were identified in the control urban household dust. Bisphenol A (BPA) remained the predominant compound, followed by bisphenol F (BPF), bisphenol S (BPS), BPSIP and bisphenol AF (BPAF). The total concentrations of BPs in e-waste dust were notably higher compared to both local and urban household dust (p < 0.01), with BPA and BPF, in particular, exhibiting significantly elevated levels. Importantly, BPSIP was first identified in e-waste dust, and its concentration significantly exceeded that of the commonly used BPA alternative, BPAF, which justifiably merits increasing concern. Correlation analysis indicated that BPs were commonly used in the production of electronic products, and e-waste dismantling activities contributed significantly to their widespread emission. The daily intakes of BP through dust ingestion for these three population groups exceeded the recently established tolerable daily intake for BPA, especially among e-waste dismantling workers. This represents the first report indicating that e-waste recycling is causing substantial emissions of multiple bisphenol analogues, including a novel contaminant.
Collapse
Affiliation(s)
- Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Agricultural Science and Engineering, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Ruiman Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
17
|
Xu S, Guo L, Ding W, Chen Y, Chen Y, Yu Z, Xu L, Jing Q, Chen K, Li J, Wang H. Fate and transformation of uniformly 14C-ring-labeled bisphenol S in different aerobic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167166. [PMID: 37730034 DOI: 10.1016/j.scitotenv.2023.167166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, 14C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days. Significant differences were found in the dissipation rates of BPS in three soils with different pH values. The dissipation of BPS followed pseudo first-order kinetics with half-lives (T1/2) of 15.2 ± 0.1 d, 27.0 ± 0.2 d, 180.4 ± 5.3 d, and 280.5 ± 3.3 d in the alkaline soil (fluvo-aquic soil, FS), the neutral soil (cinnamon soil, CS), the acidic soil (red soil, RS), and sterilized cinnamon soil (CS-S), respectively. The mineralization and BRs formation contributed the most to the dissipation of BPS in soil. BPS was persistent in acidic soil, and may pose a significant threat to plants grown in acidic soils. Additionally, soil microorganisms played a key role in BPS degradation, and the organic matter content might be a major factor that promotes the adsorption and degradation of BPS in soils. Two transformed products, P-hydroxybenzenesulfonic acid and methylated BPS were identified in soils. This study provides new insights into the fate of BPS in various soils, which will be useful for risk assessments of BPS in soil.
Collapse
Affiliation(s)
- Shengwei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longxiu Guo
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenya Ding
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yandao Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Jing
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518057, China
| | - Kai Chen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen 518057, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Xia Z, Lv C, Zhang Y, Shi R, Lu Q, Tian Y, Lei X, Gao Y. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study. CHEMOSPHERE 2023; 341:139973. [PMID: 37640215 DOI: 10.1016/j.chemosphere.2023.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to adverse childhood neurodevelopment, but little is known about whether BPA substitutes exposures are also related to childhood neurodevelopment. OBJECTIVES To investigate the associations of exposure to BPA and its substitutes with infant neurodevelopment at 12 months. METHODS A total of 420 infants at 12 months were included from the Laizhou Wan (Bay) Birth Cohort in Shandong, China. Urinary concentrations of BPA and its substitutes including bisphenol S (BPS), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol P (BPP) and bisphenol Z (BPZ) were measured. Developmental quotient (DQ) scores based on the Gesell Development Schedules (GDS) were used to evaluate infant neurodevelopment. The multivariable linear regression and weighted quantile sum (WQS) regression were applied to estimate the associations of exposure to individual bisphenols and their mixtures with DQ scores, respectively. Sex-stratified analyses were also performed. RESULTS BPA was detected in most infants (89.05%) and had the highest median concentration (0.709 ng/mL) among all bisphenols. BPA substitutes except BPZ were ubiquitous in infants' urine samples (>70%), and BPS showed the highest median concentration (0.064 ng/mL) followed by BPAP (0.036 ng/mL), BPAF (0.028 ng/mL), BPP (0.015 ng/mL) and BPB (0.013 ng/mL). In multivariable linear regression, only BPAF exposure was inversely associated with social DQ scores among all infants (β = -0.334; 95% CI: -0.650, -0.019). After sex stratification, this inverse association was significant in girls (β = -0.605; 95% CI: -1.030, -0.180). Besides, BPA exposure was negatively related to gross motor DQ scores in boys (β = -1.061; 95% CI: -2.078, -0.045). WQS analyses confirmed these results. CONCLUSIONS Our study suggests that bisphenol exposure during infancy may be associated with poor infant neurodevelopment, and BPAF as a commonly used BPA substitute contributing the most to this adverse association deserves more attention.
Collapse
Affiliation(s)
- Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Wang J, Wu C, Zhang X, Song Y, Wang B, Zhang K, Sun M. Developmental neurotoxic effects of bisphenol A and its derivatives in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115098. [PMID: 37269611 DOI: 10.1016/j.ecoenv.2023.115098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
As a result of the ban on bisphenol A (BPA), a hormone disruptor with developmental neurotoxicity, several BPA derivatives (BPs) have been widely used in industrial production. However, there are no effective methods for assessing the neurodevelopmental toxic effects of BPs. To address this, a Drosophila exposure model was established, and W1118 was reared in food containing these BPs. Results showed that each BPs displayed different semi-lethal doses ranging from 1.76 to 19.43 mM. Exposure to BPs delayed larval development and affected axonal growth, resulting in the abnormal crossing of the midline of axons in the β lobules of mushroom bodies, but the damage caused by BPE and BPF was relatively minor. BPC, BPAF, and BPAP have the most significant effects on locomotor behavior, whereas BPC exhibited the most affected social interactions. Furthermore, exposure to high-dose BPA, BPC, BPS, BPAF, and BPAP also significantly increased the expression of Drosophila estrogen-related receptors. These demonstrated that different kinds of BPs had different levels of neurodevelopmental toxicity, and the severity was BPZ > BPC and BPAF > BPB > BPS > BPAP ≈ BPAl ≈ BPF > BPE. Therefore, BPZ, BPC, BPS, BPAF, and BPAP should be evaluated as potential alternatives to BPA.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
20
|
Yang R, Wang X, Niu Y, Chen X, Shao B. Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study. ENVIRONMENT INTERNATIONAL 2023; 176:107993. [PMID: 37263127 DOI: 10.1016/j.envint.2023.107993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Fluorinated liquid-crystal monomers (FLCMs), one class of emerging persistent, bioaccumulative and toxic (PBT) compounds, are widely used in liquid-crystal displays (LCDs). As a result, they have been found in the environment and serum from occupational workers. However, little is known about their occurrence in non-occupational exposing populations. Herein, we provided an evaluation of the health risks of FLCMs for infants based on breastfeeding exposure and dust ingestion. The detection frequencies (DF) of FLCMs in indoor dust and breast milk was 100 %, with median concentrations of 12.00 ng/g dry weight (dw) and 133.40 ng/g lipid weight (lw), respectively. 1-butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (BDPrB) was the predominant pollutant in indoor dust and human breast milk. Significant positive correlations were observed between the dust concentrations of seven FLCMs including BDPrB, and their breast milk concentrations (r = 0.275-0.660, P < 0.05). Further, associations were also found in some demographic and behavioral factors and concentrations of some FLCMs (P < 0.05). The highest EDI of ∑FLCMs was observed for infants who were < 1 month of age, with a median breast milk intake of 700.35 ng/kg bw/day, in which 1-ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (EDPrB), BDPrB, and 4'-[(trans, trans)-4'-butyl[1,1'-bicyclohexyl]-4-yl]-3,4-difluoro-1,1'-biphenyl (BBDB) collectively contributed 94.4 % of the total EDIs. Notably, the lactational intake of FLCMs was higher than that of some environmental pollutants (EPs). Overall, our results suggest higher exposure risks for infants and breastfeeding is the predominant exposure route for daily intake of FLCMs for infants.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
21
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
22
|
Peinado FM, Iribarne-Durán LM, Artacho-Cordón F. Human Exposure to Bisphenols, Parabens, and Benzophenones, and Its Relationship with the Inflammatory Response: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087325. [PMID: 37108488 PMCID: PMC10139086 DOI: 10.3390/ijms24087325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenols, parabens (PBs), and benzophenones (BPs) are widely used environmental chemicals that have been linked to several adverse health effects due to their endocrine disrupting properties. However, the cellular pathways through which these chemicals lead to adverse outcomes in humans are still unclear, suggesting some evidence that inflammation might play a key role. Thus, the aim of this study was to summarize the current evidence on the relationship between human exposure to these chemicals and levels of inflammatory biomarkers. A systematic review of peer-reviewed original research studies published up to February 2023 was conducted using the MEDLINE, Web of Science, and Scopus databases. A total of 20 articles met the inclusion/exclusion criteria. Most of the reviewed studies reported significant associations between any of the selected chemicals (mainly bisphenol A) and some pro-inflammatory biomarkers (including C-reactive protein and interleukin 6, among others). Taken together, this systematic review has identified consistent positive associations between human exposure to some chemicals and levels of pro-inflammatory biomarkers, with very few studies exploring the associations between PBs and/or BPs and inflammation. Therefore, a larger number of studies are required to get a better understanding on the mechanisms of action underlying bisphenols, PBs, and BPs and the critical role that inflammation could play.
Collapse
Affiliation(s)
| | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
23
|
Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk. Microorganisms 2023; 11:microorganisms11020526. [PMID: 36838491 PMCID: PMC9965023 DOI: 10.3390/microorganisms11020526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components. Fungal communities were instead impacted only by biotope type. Our findings revealed that the structure of fungal communities was mostly impacted by PAHs whereas bacterial communities were sensitive to metals. Bacteria of the genus Sphingomonas in road and leaf dust as indicators of the ecological state of the urban ecosystems were proposed.
Collapse
|
24
|
Yue H, Yang X, Wu X, Tian Y, Xu P, Sang N. Identification of risk for ovarian disease enhanced by BPB or BPAF exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120980. [PMID: 36587784 DOI: 10.1016/j.envpol.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The ban on bisphenol A (BPA) has led to a rapid increase in the use of BPA analogs, and they are increasingly being detected in the natural environment and biological organisms. Studies have pointed out that BPA analogs can lead to adverse health outcomes. However, their interference with ovarian tissue has not been fully elucidated. In this study, seven- to eight-week-old CD-1 mice were exposed to corn oil containing 300 μg/kg/day bisphenol B (BPB) or bisphenol AF (BPAF) through oral gavage, and ovarian tissues were collected at 14 and 28 days of exposure. Ovarian toxicity was evaluated by the ovarian index, ovarian area, and follicle number. mRNA-seq was used to identify differentially expressed genes (DEGs) and infer the association of DEGs with ovarian diseases. BPB or BPAF exposure induced morphological changes in ovarian tissue in CD-1 mice. In addition, Gene Ontology (GO) analysis revealed disturbances in biological processes (BP) associated with steroid biosynthetic process (GO:0006694) and cellular calcium ion homeostasis (GO:0006874). Subsequently, regulatory networks of BPA analogs (BPB or BPAF)-DEGs-ovarian diseases were constructed. Importantly, the expression levels of DEGs and transcription factors (TFs) associated with ovarian disease were altered. BPB or BPAF exposure causes damage to ovarian morphology through the synergistic effects of multiple biological processes and may be associated with altered mRNA expression profiles as a risk factor for ovarian diseases.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
25
|
Yu H, Liu Y. Impact of Extended and Combined Exposure of Bisphenol Compounds on Their Chromosome-Damaging Effect─Increased Potency and Shifted Mode of Action. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:498-508. [PMID: 36571243 DOI: 10.1021/acs.est.2c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol (BP) compounds are important environmental pollutants and endocrine disruptors. BPs are capable of inducing DNA/chromosome breaks (clastogenesis, involved in carcinogenesis), which requires activation by human CYP1A1. We hypothesized that combined BPs and extended (from the standard two-cell cycle) exposure may enhance their genotoxicity via modulating CYP enzymes. In this study, individual and combined BPA/BPF/BPS/BPAF and a human hepatoma (HepG2) cell line were used for testing several genotoxicity end points. Exposing for a two-cell cycle period (48 h), each BP alone (0.625-10 μM) was negative in the micronucleus test, while micronucleus was formed under three- (72 h) and four-cell cycle (96 h) exposure; BP combinations further elevated the potency (with nanomolar thresholds). Immunofluorescence analysis of the centromere with formed micronucleus indicated that 48 h exposure produced centromere-negative micronucleus and phosphorylated histone H2AX (γ-H2AX) (evidencing clastogenesis), while extended (72 and 96 h) exposure formed centromere-positive micronucleus and phosphorylated histone H3 (p-H3) (indicating chromosome loss, i.e., aneugenesis); moreover, 1-aminotriabenzotriazole (CYP inhibitor) selectively blocked the formation of centromere-negative micronucleus and γ-H2AX, without affecting that of centromere-positive micronucleus and p-H3. This study suggests that the genotoxicity of BPs is potentiated by combined and extended exposure, the latter being specific for aneuploidy formation, a CYP activity-independent effect.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| |
Collapse
|
26
|
Qiu L, Wei S, Yang Y, Zhang R, Ru S, Zhang X. Mechanism of bisphenol S exposure on color sensitivity of zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120670. [PMID: 36395908 DOI: 10.1016/j.envpol.2022.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Color vision, initiated from cone cells, is vitally essential for identifying environmental information in vertebrate. Although the retinotoxicity of bisphenol S (BPS) has been reported, data on the influence of BPS treatment on cone cells are scarce. In the present study, transgenic zebrafish (Danio rerio) labeling red and ultraviolet (UV) cones were exposed to BPS (0, 1, 10, and 100 μg/L) during the early stages of retinal development, to elucidate the mechanism underlying its retinal cone toxicity of BPS. The results showed that 10 and 100 μg/L BPS induced oxidative DNA damage, structural damage (decreased number of ribbon synapses), mosaic patterning disorder, and altered expression of genes involved in the phototransduction pathway in red and UV cones. Furthermore, BPS exposure also caused abnormal development of key neurons (retinal ganglion cells, optic nerve, and hypothalamus), responsible for transmitting the light-electrical signal to brain, and thereby resulted in inhibition of light-electrical signal transduction, finally diminishing the spectral sensitivity of zebrafish larvae to long- and short-type light signal at 5 day post fertilization. This study highlights the cone-toxicity of environmental relevant concentrations of BPS, and clarifies the mechanism of color vision impairment induced by BPS at the cellular level, updating the understanding of visual behavior driven by environmental factors.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yixin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Hua L, Liu W, Liu Y, Yang M, Wang B, Zhu H, Zhu L, Yao Y, Zhang Y, Zhao H. Occurrence and profile characteristics of environmental phenols in human urine from a rural area in Northwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120405. [PMID: 36228842 DOI: 10.1016/j.envpol.2022.120405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Many environmental phenols, such as bisphenols, benzophenones and parabens, are known as endocrine disruptors and can adversely affect human health. However, the knowledge of human exposure to common environmental phenols in Chinese rural areas is insufficient. In this context, 181 urine samples were collected from participants in a rural area in Northwest China and were analyzed for nine bisphenols, three benzophenones and four parabens. Bisphenol A (BPA), bisphenol S, benzophenone-1 (BP-1), benzophenone-3 (BP-3), 4-hydroxybenzophenone, methylparaben (MeP), ethylparaben and propylparaben (PrP) were detected in more than 50% of the urine samples, with median concentrations of 0.938 ng/mL, 0.0111 ng/mL, 0.191 ng/mL, 1.30 ng/mL, 0.0320 ng/mL, 25.9 ng/mL, 4.31 ng/mL and 1.94 ng/mL, respectively. A significant positive correlation was observed between BP-1 and BP-3, as well as between MeP and PrP, indicating metabolic transformation and combined use, respectively. The concentrations of MeP and PrP in females were significantly higher than those in males, suggesting that females were exposed to more MeP and PrP than males. Urinary concentrations of BPA, BP-3, MeP and PrP could be influenced by age. Other demographic information, such as annual household income, education and occupation was not associated with the exposure level of the targeted phenols in adults. The estimated daily intakes of the analytes except BPA were all below their respective tolerable/acceptable daily intake levels. This study profiles the demographic differences in the exposure to environmental phenols in general populations from rural areas and provides information on risk assessments.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wu Liu
- Jingyuan County Center for Disease Control and Prevention, Baiyin, Gansu, 730699, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ming Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuqin Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Ji X, Jiang P, Li Y, Yan W, Yue H. New insights into the effect of bisphenol AF exposure on maternal mammary glands at various stages of gestation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157793. [PMID: 35934037 DOI: 10.1016/j.scitotenv.2022.157793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is the most estrogenic compound among BPA analogs. Mammary glands (MDs) are special organs that undergo repeated cycles of structural development, metabolism, and functional differentiation. Gestation is a sensitive window for MDs. In the present study, plug-positive CD-1 mice were exposed to vehicle (Veh) or 300 μg/kg BPAF through oral gavage every second day during gestation, and maternal MDs were collected from different developmental windows at 9.5, 13.5, and 18.5 d of gestation (gestation day [GD]9.5, GD13.5 and GD18.5). The results showed that gestational BPAF exposure induced a significantly elevated MD density at GD18.5. Non-target metabolomics analysis was used to screen for tyrosine, valine, ornithine, proline, threonine, phenylalanine and asymmetrical dimethylarginine (ADMA) amino acids, which changed significantly at all time points. Furthermore, the mRNA expression levels of genes related to these amino acids also changed significantly. Additionally, amino acid levels in BPAF-treated MGs at GD18.5 were related to the serum ammonia concentration of the corresponding offspring. These results provide a comprehensive view of the adverse effects of BPAF exposure during gestation on the maternal MG structure and function, which may affect milk components during lactation. Moreover, higher amino acids content may lead to amino acid imbalance or hyperammonemia in newborns.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wei Yan
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China..
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
29
|
Zhu J, Zhang X, Liao K, Wu P, Jin H. Microplastics in dust from different indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155256. [PMID: 35427608 DOI: 10.1016/j.scitotenv.2022.155256] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are present in global indoor dust, which is an important source of MPs for humans. However, few researchers have investigated differences in the abundance and characteristics of MPs in dust in different indoor environments. In this study, we found that residential apartments (mean: 1174 MPs/g; n = 47) had the highest abundance of MPs in indoor dust samples, followed by offices (896 MPs/g; n = 50), business hotels (843 MPs/g; n = 53), university dormitories (775 MPs/g; n = 48), and university classrooms (209 MPs/g; n = 44). The predominant shape of MPs was fiber in most indoor dust samples. The main size fraction of the MPs in the indoor dust samples from university classrooms and business hotels was 201-500 μm, and it was 501-1000 μm in those from offices, university dormitories, and residential apartments. The main MP polymer in indoor dust samples from business hotels, university dormitories, and residential apartments was polyester, whereas those from offices and university classrooms were mainly polyethylene and polypropylene. We calculated the estimated daily intake (EDI) of MPs through the inhalation of indoor dust, and found that infants (7.4 MPs/kg bw/day) had a higher mean EDI of MPs than toddlers (1.4 MPs/kg bw/day), children (0.49 MPs/kg bw/day), adults (0.23 MPs/kg bw/day), and university students (0.22 MPs/kg bw/day). To the best of our knowledge, we are the first to report differences in MP occurrence in dust samples from different indoor environments, and our findings provide a more accurate understanding of exposure risks of MPs to humans.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Xingqing Zhang
- Hangzhou Bosheng Environmental Protection Technology Co., Ltd., Hangzhou, Zhejiang 310014, PR China
| | - Kaizhen Liao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
30
|
Yang Y, Shi Y, Chen D, Chen H, Liu X. Bisphenol A and its analogues in paired urine and house dust from South China and implications for children's exposure. CHEMOSPHERE 2022; 294:133701. [PMID: 35065180 DOI: 10.1016/j.chemosphere.2022.133701] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Following the restriction of bisphenol A (BPA) in certain products, a number of bisphenol analogues (BPs) have been used as BPA replacements in different applications, raising environmental and health concerns. The present study determined a total of 13 bisphenol analogues in house dust and children urine from South China families (n = 46). Among all BPs, BPA, bisphenol S (BPS) and bisphenol F (BPF) were frequently detected in house dust, with concentrations ranging from 0.54 to 26.2 μg/g (median: 2.60 μg/g), 0.07-11.5 μg/g (median: 0.32 μg/g) and 0.02-2.4 μg/g (median: 0.29 μg/g), respectively. BPA (median: 2.43 ng/mL) was also the dominant BP in children urine samples, accounting for 75.2 ± 27.4% of the total concentrations of urinary BPs, followed by BPS (0.23 ng/mL), whereas BPF was only detected in less than 30% of urine samples. Children's daily intake of bisphenols through dust ingestion and total daily intakes were estimated based on the dust and urine concentrations, respectively. The estimated intake of BPA, BPS and BPF via house dust ingestion accounted for 9%, 12% and 38% of the total intakes predicted based on urinary concentrations, respectively, and exhibited very low exposure risks.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China
| | - Yumeng Shi
- School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Xiaotu Liu
- School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
31
|
Kaya SI, Corman ME, Uzun L, Ozkan SA. A porous molecularly imprinted electrochemical sensor for specific determination of bisphenol S from human serum and bottled water samples in femtomolar level. Anal Bioanal Chem 2022; 414:2775-2785. [PMID: 35112148 DOI: 10.1007/s00216-022-03928-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
In this study, a porous molecularly imprinted electrochemical sensor was successfully fabricated for the selective assay of bisphenol S (BPS) by introducing N-methacryloyl-L tyrosine functional monomer. The molecularly imprinted polymer (MIP)-based sensor (MA-Tyr@MIP/GCE) was prepared via photopolymerization on the glassy carbon electrode and subsequently characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). The analytical performance of the sensor was evaluated via CV and differential pulse voltammetry (DPV) measurements. Under the optimized conditions, the rebinding experiment demonstrated that the peak current of the porous MIP-based sensor obviously decreased with the increase of BPS concentration in the concentration range of 1-10 fM. Therefore, the detection limit was determined as 0.171 fM. It should be underlined that MA-Tyr@MIP/GCE exhibited high sensitivity and excellent selectivity because MA-TyrMA-Tyr@MIP/GCE sensor has a higher imprinting factor (IF) toward BPS in respect to competitive analogs, i.e., bisphenol A, bisphenol B, and bisphenol F. The practical application of the sensor also showed good reproducibility and stability for the detection of BPS in human serum and water samples. These results showed MA-Tyr@MIP/GCE successfully applied for the selective recognition of BPS in biological and water samples with high sensitivity and excellent selectivity.
Collapse
Affiliation(s)
- S Irem Kaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.,Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - M Emin Corman
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.,Gulhane Faculty of Pharmacy, Department of Biochemistry, University of Health Sciences, Ankara, Turkey
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.
| |
Collapse
|
32
|
Wang Q, Zhang Y, Feng Q, Hu G, Gao Z, Meng Q, Zhu X. Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1430-1445. [PMID: 34351581 DOI: 10.1007/s11356-021-15711-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogs (BPs) are widely used in industrial and commercial products and have been detected in surface water, sediment, sewage, and sludge. The presence of BPs in the natural environment poses threats to the aquatic ecosystem and human health. The concentration, distribution, seasonal variation, and risk assessment of BPA and BPA structural analogs including BPB, BPF, BPS, BPZ, BPAF, and BPAP in surface water and sediment during dry season and flood season in Luoma Lake and its inflow rivers in Jiangsu Province, China, were investigated in this study. The detection frequency of BPA and BPF was 100%. Although the use of BPA is restricted, BPA is still the dominant BPs in surface water and sediment. The concentration of BPs in surface water during flood season was higher than that in dry season. The concentrations of BPs in Fangting River, Zhongyun River, and Bulao River were higher than those in Luoma Lake. The average concentrations of BPs in surface water were in the order of BPA > BPF> BPS> BPB > BPZ > BPAF> BPAP. Compared with other studies, the concentration of BPs in Luoma Lake was moderate. There is no significant spatial distribution and difference in seasonal variation of BPs concentration in sediment (p > 0.05). Compared with other studies, the contamination of BPs in sediment of Luoma Lake was relatively low. Risk quotient (RQ) was used to evaluate the ecological risk of BPs in water environment, and the 17β estradiol equivalent (EEQ) method was used to estimate the estrogenic activity of BPs. The risk assessment showed no high ecological risk (RQ < 1.0) and estrogenic risk (EEQ < 1.0 ng/L) in dry season and flood season. The estimated RQ and EEQt indicated that the ecological and human health impacts were negligible in the short term.
Collapse
Affiliation(s)
- Qiuxu Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Guanjiu Hu
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Zhanqi Gao
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Qingjun Meng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|