1
|
Huang TY, Ju HJ, Huang MY, Kuo QM, Su WT. Optimal nitrite degradation by isolated Bacillus subtilis sp. N4 and applied for intensive aquaculture water quality management with immobilized strains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123896. [PMID: 39798321 DOI: 10.1016/j.jenvman.2024.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4. The optimal conditions for nitrite degradation by B. subtilis sp. N4 were identified using response surface methodology as 167 rpm, pH 6.4, 1 g/8 mL feed, 0.6 OD600, and 30 °C, with a predicted 99 % nitrite removal efficiency. The B. subtilis sp. N4 demonstrated a maximum nitrite concentration tolerance of 60 mg/L, with μmax and Ks values calculated using a Monod model analysis of 1.67 mg/L/h and 0.29 mg/L, respectively. Immobilized B. subtilis sp. N4 could be reused for ten cycles while maintaining a nitrite degradation efficiency of >99 %, and retained a high nitrite-degrading ability after being refrigerated at 4 °C for three months. Immobilized B. subtilis sp. N4 effectively reduced ammonia nitrogen, nitrite, and nitrate concentrations in Nile tilapia aquaculture, maintaining them at consistently low levels. Therefore, free or immobilized B. subtilis sp. N4, with both nitrification and denitrification capabilities, has considerable potential for application in the aquaculture industry in the future.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Huei-Jen Ju
- Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Mei-Ying Huang
- Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Qiao-Miao Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang Y, Xu C, Fan Q, Li H, Yang Y, Zheng Y, Zhang Q. Acid-modified corn straw biochar immobilized Pseudomonas hibiscus CN-1 facilitated the bioremediation of carbendazim-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123608. [PMID: 39642812 DOI: 10.1016/j.jenvman.2024.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Carbendazim application in agroecosystems has posed potential threats to ecosystems and human health. The utilization of biochar-based materials for immobilizing microorganisms offers a sustainable strategy for effective bioremediation. In this study, a novel highly efficient carbendazim-degrading bacterium Pseudomonas hibiscus CN-1 was isolated and immobilized using corn straw-based biochar as a carrier. The effects of degrading strain CN-1, biochar materials, and biochar-CN-1 composite on carbendazim degradation, soil enzyme activities, and community structure diversity were investigated. Under the optimal conditions (pH 6.6, 31 °C, and 6.5% inoculum volume), strain CN-1 metabolized carbendazim into benzimidazole-2-carbamic acid and 2-hydroxybenzimidazole, indicating that demethylation was a major metabolic pathway. Among the biochar materials, acid-modified biochar pyrolyzed at 700 °C proved to be the most effective carrier for strain CN-1 immobilization and efficient removal of carbendazim, achieving a removal rate of 78.7% in water. Compared to the control, the degradation half-lives of carbendazim in the soil with biochar, strain CN-1, and the biochar-strain CN-1 composite were reduced from 30.97 to 23.23, 19.46, and 10.99 days, respectively. Soil enzyme activities and bacterial community diversity results demonstrated that the biochar-strain CN-1 composite not only mitigated the adverse effects of carbendazim on soil enzyme activities but also had the most positive impact on soil microbial richness and diversity. This study highlights the importance of selecting appropriate biochar materials and offers insights into an environmentally friendly method for the efficient bioremediation of soils contaminated with carbendazim.
Collapse
Affiliation(s)
- Yanru Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Congling Xu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qingqing Fan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yongquan Zheng
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
3
|
Jaiswal A, Pandey AK, Tripathi A, Dubey SK. Omics-centric evidences of fipronil biodegradation by Rhodococcus sp. FIP_B3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125320. [PMID: 39549993 DOI: 10.1016/j.envpol.2024.125320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The widespread use of the pesticide fipronil in domestic and agriculture sectors has resulted in its accumulation across the environment. Its use to assure food security has inadvertently affected soil microbiome composition, fertility and, ultimately, human health. Degradation of residual fipronil present in the environment using specific microbial species is a promising strategy for its removal. The present study delves into the omics approach for fipronil biodegradation using the native bacterium Rhodococcus sp. FIP_B3. It has been observed that within 40 days, nearly 84% of the insecticide gets degraded. The biodegradation follows a pseudo-first-order kinetics (k = 0.0197/d with a half-life of ∼11 days). Whole genome analysis revealed Cytochrome P450 monooxygenase, peroxidase-related enzyme, haloalkane dehalogenase, 2-nitropropane dioxygenase, and aconitate hydratase are involved in the degradation process. Fipronil-sulfone, 5-amino-1-(2-chloro-4-(trifluoromethyl)phenyl)-4- ((trifluoromethyl)sulfonyl)-1H-pyrazole-3-carbonitrile, (E)-5-chloro-2-oxo-3- (trifluoromethyl)pent-4-enoic acid, 4,4,4-trifluoro-2-oxobutanoic acid, and 3,3,3- trifluoropropanoic acid were identified as the major metabolites that support the bacterial degradation of fipronil. In-silico molecular docking and molecular dynamic simulation-based analyses of degradation pathway intermediates with their respective enzymes have indicated stable interactions with significant binding energies (-5.9 to -9.7 kcal/mol). These results have provided the mechanistic cause of the elevated potential of Rhodococcus sp. FIP_B3 for fipronil degradation and will be advantageous in framing appropriate strategies for the bioremediation of fipronil-contaminated environment.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
4
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Unveiling six novel bacterial strains for fipronil and thiobencarb biodegradation: efficacy, metabolic pathways, and bioaugmentation potential in paddy soil. Front Microbiol 2024; 15:1462912. [PMID: 39502414 PMCID: PMC11536974 DOI: 10.3389/fmicb.2024.1462912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Soil bacteria offer a promising approach to bioremediate pesticide contamination in agricultural ecosystems. This study investigated the potential of bacteria isolated from rice paddy soil for bioremediating fipronil and thiobencarb, common agricultural pesticides. Methods Bacterial isolates capable of degrading fipronil and thiobencarb were enriched in a mineral salt medium. A response surface methodology with a Box-Behnken design was utilized to optimize pesticide degradation with the isolated bacteria. Bioaugmentation tests were performed in paddy soils with varying conditions. Results and discussion Six strains, including single isolates and their mixture, efficiently degraded these pesticides at high concentrations (up to 800 µg/mL). Enterobacter sp., Brucella sp. (alone and combined), and a mixture of Stenotrophomonas sp., Bordetella sp., and Citrobacter sp. effectively degraded fipronil and thiobencarb, respectively. Notably, a single Pseudomonas sp. strain degraded a mixture of both pesticides. Optimal degradation conditions were identified as a slightly acidic pH (6-7), moderate pesticide concentrations (20-50 µg/mL), and a specific inoculum size. Bioaugmentation assays in real-world paddy soils (sterile/non-sterile, varying moisture) demonstrated that these bacteria significantly increased degradation rates (up to 14.15-fold for fipronil and 5.13-fold for thiobencarb). The study identifies these novel bacterial strains as promising tools for bioremediation and bioaugmentation strategies to tackle fipronil and thiobencarb contamination in paddy ecosystems.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Vaishnavi J, Osborne JW. Biodegradation of monocrotophos, cypermethrin & fipronil by Proteus myxofaciens VITVJ1: A plant - microbe based remediation. Heliyon 2024; 10:e37384. [PMID: 39309857 PMCID: PMC11416261 DOI: 10.1016/j.heliyon.2024.e37384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Current study was focused on the degradation of pesticides such as Monocrotophos, Cypermethrin & Fipronil (M, C & F) using phyto and rhizoremediation strategies. The isolate Proteus myxofaciens (VITVJ1) obtained from agricultural soil was capable of degrading M, C & F. The bacteria exhibited resistance to all the pesticides (M, C & F) up to 1500 ppm and was also capable of forming biofilms. The degraded products identified using Gas Chromatography-Mass Spectroscopy (GC-MS) and FTIR was further used for deriving the degradation pathway. The end product of M, C & F was acetic acid and 3-phenoxy benzoic acid which was confirmed by the presence of functional groups such as C=O and OH. Seed germination assay revealed the non-toxic nature of the degraded products with increased germination index in the treatments augmented with degraded products. The candidate genes such as opdA gene, Est gene and MnP1gene was amplified with the amplicon size of 700bp, 1200bp and 500bp respectively. P. myxofaciens not only degraded M, C & F, but was also found to be a plant growth promoting rhizobacteria. Since, it was capable of producing Indole Acetic acid (IAA), siderophore and was able to solubilize insoluble phosphate. Therefore, VITVJ1 upon augmentation to the rhizoremediation setup aided the degradation of pesticides with increase in plant growth as compared to that of the phytoremediation setup. To our knowledge this is the first study where P. myxofaciens has been effectively used for the degradation of three different classes of pesticides, which could also enhance the growth of plants and simultaneously degrade M, C & F.
Collapse
Affiliation(s)
- Jeevanandam Vaishnavi
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
6
|
Jaiswal A, Pandey AK, Mishra Y, Dubey SK. Insights into the biodegradation of fipronil through soil microcosm-omics analyses of Pseudomonas sp. FIP_ A4. CHEMOSPHERE 2024; 363:142944. [PMID: 39067829 DOI: 10.1016/j.chemosphere.2024.142944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fipronil, a phenylpyrazole insecticide, is used to kill insects resistant to conventional insecticides. Though its regular and widespread use has substantially reduced agricultural losses, it has also caused its accumulation in various environmental niches. The biodegradation is an effective natural process that helps in reducing the amount of residual insecticides. This study deals with an in-depth investigation of fipronil degradation kinetics and pathways in Pseudomonas sp. FIP_A4 using multi-omics approaches. Soil-microcosm results revealed ∼87% degradation within 40 days. The whole genome of strain FIP_A4 comprises 4.09 Mbp with 64.6% GC content. Cytochrome P450 monooxygenase and enoyl-CoA hydratase-related protein, having 30% identity with dehalogenase detected in the genome, can mediate the initial degradation process. Proteome analysis revealed differential enzyme expression of dioxygenases, decarboxylase, and hydratase responsible for subsequent degradation. Metabolome analysis displayed fipronil metabolites in the presence of the bacterium, supporting the proposed degradation pathway. Molecular docking and dynamic simulation of each identified enzyme in complex with the specific metabolite disclosed adequate binding and high stability in the enzyme-metabolite complex. This study provides in-depth insight into genes and their encoded enzymes involved in the fipronil degradation and formation of different metabolites during pollutant degradation. The outcome of this study can contribute immensely to developing efficient technologies for the bioremediation of fipronil-contaminated soils.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
7
|
Chen SF, Chen WJ, Song H, Liu M, Mishra S, Ghorab MA, Chen S, Chang C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules 2024; 29:3869. [PMID: 39202952 PMCID: PMC11357097 DOI: 10.3390/molecules29163869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used around the world in both agricultural and non-agricultural fields due to its high activity. However, the heavy use of 2,4-D has resulted in serious environmental contamination, posing a significant risk to non-target organisms, including human beings. This has raised substantial concerns regarding its impact. In addition to agricultural use, accidental spills of 2,4-D can pose serious threats to human health and the ecosystem, emphasizing the importance of prompt pollution remediation. A variety of technologies have been developed to remove 2,4-D residues from the environment, such as incineration, adsorption, ozonation, photodegradation, the photo-Fenton process, and microbial degradation. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate 2,4-D pollution because of their rich species, wide distribution, and diverse metabolic pathways. Numerous studies demonstrate that the degradation of 2,4-D in the environment is primarily driven by enzymatic processes carried out by soil microorganisms. To date, a number of bacterial and fungal strains associated with 2,4-D biodegradation have been isolated, such as Sphingomonas, Pseudomonas, Cupriavidus, Achromobacter, Ochrobactrum, Mortierella, and Umbelopsis. Moreover, several key enzymes and genes responsible for 2,4-D biodegradation are also being identified. However, further in-depth research based on multi-omics is needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of 2,4-D. Here, this review provides a comprehensive analysis of recent progress on elucidating the degradation mechanisms of the herbicide 2,4-D, including the microbial strains responsible for its degradation, the enzymes participating in its degradation, and the associated genetic components. Furthermore, it explores the complex biochemical pathways and molecular mechanisms involved in the biodegradation of 2,4-D. In addition, molecular docking techniques are employed to identify crucial amino acids within an alpha-ketoglutarate-dependent 2,4-D dioxygenase that interacts with 2,4-D, thereby offering valuable insights that can inform the development of effective strategies for the biological remediation of this herbicide.
Collapse
Affiliation(s)
- Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Mohamed A. Ghorab
- The Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency (EPA), Washington, DC 20460, USA
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Pakar NP, Rehman FU, Mehmood S, Ali S, Zainab N, Munis MFH, Chaudhary HJ. Microbial detoxification of chlorpyrifos, profenofos, monocrotophos, and dimethoate by a multifaceted rhizospheric Bacillus cereus strain PM38 and its potential for the growth promotion in cotton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39714-39734. [PMID: 38831144 DOI: 10.1007/s11356-024-33804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Bacillus genera, especially among rhizobacteria, are known for their ability to promote plant growth and their effectiveness in alleviating several stress conditions. This study aimed to utilize indigenous Bacillus cereus PM38 to degrade four organophosphate pesticides (OPs) such as chlorpyrifos (CP), profenofos (PF), monocrotophos (MCP), and dimethoate (DMT) to mitigate the adverse effects of these pesticides on cotton crop growth. Strain PM38 exhibited distinct characteristics that set it apart from other Bacillus species. These include the production of extracellular enzymes, hydrogen cyanide, exopolysaccharides, Indol-3-acetic acid (166.8 μg/mL), siderophores (47.3 μg/mL), 1-aminocyclopropane-1-carboxylate deaminase activity (32.4 μg/mL), and phosphorus solubilization (162.9 μg/mL), all observed at higher concentrations. This strain has also shown tolerance to salinity (1200 mM), drought (20% PEG-6000), and copper and cadmium (1200 mg/L). The amplification of multi-stress-responsive genes, such as acdS, ituC, czcD, nifH, sfp, and pqqE, further confirmed the plant growth regulation and abiotic stress tolerance capability in strain PM38. Following the high-performance liquid chromatography (HPLC) analysis, the results showed striking compatibility with the first kinetic model. Strain PM38 efficiently degraded CP (98.4%), PF (99.7%), MCP (100%), and DMT (95.5%) at a concentration of 300 ppm over 48 h at 35 °C under optimum pH conditions, showing high coefficients of determination (R2) of 0.974, 0.967, 0.992, and 0.972, respectively. The Fourier transform infrared spectroscopy (FTIR) analysis and the presence of opd, mpd, and opdA genes in the strain PM38 further supported the potential to degrade OPs. In addition, inoculating cotton seedlings with PM38 improved root length under stressful conditions. Inoculation of strain PM38 reduces stress by minimizing proline, thiobarbituric acid-reactive compounds, and electrolyte leakage. The strain PM38 has the potential to be a good multi-stress-tolerant option for a biological pest control agent capable of improving global food security and managing contaminated sites.
Collapse
Affiliation(s)
- Najeeba Parre Pakar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, Hobart, TAS, Australia
| | - Shehzad Mehmood
- Department of Biotechnology, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Sarfaraz Ali
- Department of Virology, National Institute of Health, Islamabad, Pakistan
| | - Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | | |
Collapse
|
9
|
Song S, Hwang CW. Microbial degradation of the benzimidazole fungicide carbendazim by Bacillus velezensis HY-3479. Int Microbiol 2024; 27:797-805. [PMID: 37710143 DOI: 10.1007/s10123-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Carbendazim (methyl benzimidazol-2-ylcarbamate: MBC) is a fungicide of the benzimidazole group that is widely used in the cultivation of pepper, ginseng, and many other crops. To remove the remnant carbendazim, many rhizobacteria are used as biodegradation agents. A bacterial strain of soil-isolated Bacillus velezensis HY-3479 was found to be capable of degrading MBC in M9 minimal medium supplemented with 250 mg/L carbendazim. The strain had a significantly higher degradation efficiency compared to the control strain Bacillus subtilis KACC 15590 in high-performance liquid chromatography (HPLC) analysis, and HY-3479 had the best degradation efficiency of 76.99% at 48 h. In gene expression analysis, upregulation of carbendazim-degrading genes (mheI, hdx) was observed in the strain. HY-3479 was able to use MBC as the sole source of carbon and nitrogen, but the addition of 12.5 mM NH4NO3 significantly increased the degradation efficiency. HPLC analysis showed that the degradation efficiency increased to 87.19% when NH4NO3 was added. Relative gene expression of mheI and hdx also increased for samples with NH4NO3 supplementation. The enzyme activity of the carbendazim-degrading enzyme and the 2-aminobenzimidazole-degrading enzyme was found to be highly present in the HY-3479 strain. It is the first reported B. velezensis strain to biodegrade carbendazim (MBC). The biodegradation activity of strain HY-3479 may be developed as a useful means for bioremediation and used as a potential microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Suyoung Song
- Department of Advanced Convergence, Handong Global University, Pohang, 37554, South Korea
| | - Cher-Won Hwang
- Department of Global Leadership School, Handong Global University, Pohang, 37554, South Korea.
| |
Collapse
|
10
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Efficacy of novel bacterial consortia in degrading fipronil and thiobencarb in paddy soil: a survey for community structure and metabolic pathways. Front Microbiol 2024; 15:1366951. [PMID: 38812693 PMCID: PMC11133635 DOI: 10.3389/fmicb.2024.1366951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Fipronil (FIP) and thiobencarb (THIO) represent widely utilized pesticides in paddy fields, presenting environmental challenges that necessitate effective remediation approaches. Despite the recognized need, exploring bacterial consortia efficiently degrading FIP and THIO remains limited. Methods This study isolated three unique bacterial consortia-FD, TD, and MD-demonstrating the capability to degrade FIP, THIO, and an FIP + THIO mixture within a 10-day timeframe. Furthermore, the bioaugmentation abilities of the selected consortia were evaluated in paddy soils under various conditions. Results Sequencing results shed light on the consortia's composition, revealing a diverse bacterial population prominently featuring Azospirillum, Ochrobactrum, Sphingobium, and Sphingomonas genera. All consortia efficiently degraded pesticides at 800 µg/mL concentrations, primarily through oxidative and hydrolytic processes. This metabolic activity yields more hydrophilic metabolites, including 4-(Trifluoromethyl)-phenol and 1,4-Benzenediol, 2-methyl-, for FIP, and carbamothioic acid, diethyl-, S-ethyl ester, and Benzenecarbothioic acid, S-methyl ester for THIO. Soil bioaugmentation tests highlight the consortia's effectiveness, showcasing accelerated degradation of FIP and THIO-individually or in a mixture-by 1.3 to 13-fold. These assessments encompass diverse soil moisture levels (20 and 100% v/v), pesticide concentrations (15 and 150 µg/g), and sterile conditions (sterile and non-sterile soils). Discussion This study offers an understanding of bacterial communities adept at degrading FIP and THIO, introducing FD, TD, and MD consortia as promising contenders for bioremediation endeavors.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Bhanbhane V, Ekatpure S, Pardeshi A, Ghotgalkar P, Deore P, Shaikh N, Upadhyay A, Thekkumpurath AS. Non-targeted impact of cyantraniliprole residues on soil quality, mechanism of residue degradation, and isolation of potential bacteria for its bioremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:171. [PMID: 38592558 DOI: 10.1007/s10653-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Cyantraniliprole (CY), an anthranilic diamide insecticide widely used in grape farming for controlling various sucking pests, poses ecological concerns, particularly when applied as soil drenching due to the formation of more toxic and persistent metabolites. This study established the dissipation and degradation mechanisms of CY in grape rhizosphere soil using high-resolution Orbitrap-LC/MS analysis. The persistence of CY residues beyond 60 days was observed, with dissipation following biphasic first + first-order kinetics and a half-life of 15 to 21 days. The degradation mechanism of CY in the soil was elucidated, with identified metabolites such as IN-J9Z38, IN-JCZ38, IN-N7B69, and IN-QKV54. Notably, CY was found to predominantly convert to the highly persistent metabolite IN-J9Z38, raising environmental concerns. The impact of CY residues on soil enzyme activity was investigated, revealing a negative effect on dehydrogenase, alkaline phosphatase, and acid phosphatase activity, indicating significant implications for phosphorous mineralization and soil health. Furthermore, bacterial isolates were obtained from CY-enriched soil, with five isolates (CY3, CY4, CY9, CY11, and CY20) demonstrating substantial degradation potential, ranging from 66 to 92% of CY residues. These results indicate that the identified bacteria hold potential for commercial use in addressing pesticide residue contamination in soil through bioremediation techniques.
Collapse
Affiliation(s)
- Vrushali Bhanbhane
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Sachin Ekatpure
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Anita Pardeshi
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | | | - Pushpa Deore
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Nasiruddin Shaikh
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Anuradha Upadhyay
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | | |
Collapse
|
13
|
Liu C, Zhao C, Wang L, Du X, Zhu L, Wang J, Mo Kim Y, Wang J. Biodegradation mechanism of chlorpyrifos by Bacillus sp. H27: Degradation enzymes, products, pathways and whole genome sequencing analysis. ENVIRONMENTAL RESEARCH 2023; 239:117315. [PMID: 37805180 DOI: 10.1016/j.envres.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Chlorpyrifos (CP) is a pesticide widely used in agricultural production. However, excessive use of CP is risky for human health and the ecological environment. Microbial remediation has become a research hotspot of environmental pollution control. In this study, the effective CP-degrading strain H27 (Bacillus cereus) was screened from farmland soil, and the degradation ratio was more than 80%. Then, the degradation mechanism was discussed in terms of enzymes, pathways, products and genes, and the mechanism was improved in terms of cell motility, secretory transport system and biofilm formation. The key CP-degrading enzymes were mainly intracellular enzymes (IE), and the degradation ratio reached 49.6% within 30 min. The optimal pH for IE was 7.0, and the optimal temperature was 25 °C. Using DFT and HPLC‒MS analysis, it was found that degradation mainly involved oxidation, hydrolysis and other reactions, and 3 degradation pathways and 14 products were identified, among which TCP (3,5,6-trichloro-2-pyridinol) was the main primary degradation product in addition to small molecules such as CO2 and H2O. Finally, the whole genome of strain H27 was sequenced, and the related degrading genes and enzymes were investigated to improve the metabolic pathways. Strain H27 had perfect genes related to flagellar assembly and chemotaxis and tended to tolerate CP. Moreover, it can secrete esterase, phosphatase and other substances, which can form biofilms and degrade CP in the environment. In addition, CP enters the cell under the action of permeases or transporters, and it is metabolized by IE. The degradation mechanism of CP by strain H27 is speculated in this study, which provided a theoretical basis for enriching CP-degrading bacteria resources, improving degradation metabolic pathways and mechanisms, and applying strain H27 to environmental pollution remediation.
Collapse
Affiliation(s)
- Changrui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Changyu Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Xiaomin Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
14
|
Chen WJ, Zhang W, Lei Q, Chen SF, Huang Y, Bhatt K, Liao L, Zhou X. Pseudomonas aeruginosa based concurrent degradation of beta-cypermethrin and metabolite 3-phenoxybenzaldehyde, and its bioremediation efficacy in contaminated soils. ENVIRONMENTAL RESEARCH 2023; 236:116619. [PMID: 37482127 DOI: 10.1016/j.envres.2023.116619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Beta-cypermethrin is one of the widely used pyrethroid insecticides, and problems associated with the accumulation of its residues have aroused public attention. Thus, there is an urgent need to effectively remove the beta-cypermethrin that is present in the environment. Biodegradation is considered a cost-effective and environmentally friendly method for removing pesticide residues. However, the beta-cypermethrin-degrading microbes that are currently available are not optimal. In this study, Pseudomonas aeruginosa PAO1 was capable of efficiently degrading beta-cypermethrin and its major metabolite 3-phenoxybenzaldehyde in water/soil environments. Strain PAO1 could remove 91.4% of beta-cypermethrin (50 mg/L) in mineral salt medium within 120 h. At the same time, it also possesses a significant ability to metabolize 3-phenoxybenzaldehyde-a toxic intermediate of beta-cypermethrin. The Andrews equation showed that the maximum substrate utilization concentrations of beta-cypermethrin and 3-phenoxybenzaldehyde by PAO1 were 65.3558 and 49.6808 mg/L, respectively. Box-Behnken design-based response surface methodology revealed optimum conditions for the PAO1 strain-based degradation of beta-cypermethrin as temperature 30.6 °C, pH 7.7, and 0.2 g/L inoculum size. The results of soil remediation experiments showed that indigenous micro-organisms helped to promote the biodegradation of beta-cypermethrin in soil, and beta-cypermethrin half-life in non-sterilized soil was 6.84 days. The bacterium transformed beta-cypermethrin to produce five possible metabolites, including 3-phenoxybenzyl alcohol, methyl 2-(4-hydroxyphenoxy)benzoate, diisobutyl phthalate, 3,5-dimethoxyphenol, and 2,2-dimethyl-1-(4-phenoxyphenyl)propanone. Among them, methyl 2-(4-hydroxyphenoxy)benzoate and 3,5-dimethoxyphenol were first identified as the intermediate products during the beta-cypermethrin degradation. In addition, we propose a degradation pathway for beta-cypermethrin that is metabolized by strain PAO1. Beta-cypermethrin could be biotransformed firstly by hydrolysis of its carboxylester linkage, followed by cleavage of the diaryl bond and subsequent metabolism. Based on the above results, P. aeruginosa PAO1 could be a potent candidate for the beta-cypermethrin-contaminated environmental bioremediation.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiqi Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisheng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Jaiswal A, Tripathi A, Dubey SK. Biodegradation of fipronil: molecular characterization, degradation kinetics, and metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106316-106329. [PMID: 37726627 DOI: 10.1007/s11356-023-29837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Fipronil (C12H4Cl2F6N4OS) is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Aeromonas sp., and Pantoea sp. The bacterial degradation potential for fipronil was analyzed through high-performance liquid chromatography (HPLC). Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.9 and 83.6%, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas chromatography-mass spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India
| | - Animesh Tripathi
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
17
|
Pang S, Lin Z, Chen WJ, Chen SF, Huang Y, Lei Q, Bhatt P, Mishra S, Chen S, Wang H. High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131287. [PMID: 37003005 DOI: 10.1016/j.jhazmat.2023.131287] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqiu Lin
- The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, USA
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Huishan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Wu X, Chen WJ, Lin Z, Huang Y, El Sebai TNM, Alansary N, El-Hefny DE, Mishra S, Bhatt P, Lü H, Chen S. Rapid Biodegradation of the Organophosphorus Insecticide Acephate by a Novel Strain Burkholderia sp. A11 and Its Impact on the Structure of the Indigenous Microbial Community. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5261-5274. [PMID: 36962004 DOI: 10.1021/acs.jafc.2c07861] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Talaat N-M El Sebai
- Department of Agricultural Microbiology, Agricultural and Biology Research Institute, National Research Centre, El-Buhouth Street, 12622 Dokki, Cairo, Egypt
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Plant Protection Department, Division of Pesticides, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Dalia E El-Hefny
- Pesticide Residues and Environmental Pollution Department, Central of Agricultural Pesticide Laboratory, Agricultural Research Center, 12618 Dokki, Giza, Egypt
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Huixiong Lü
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Malla MA, Dubey A, Kumar A, Yadav S, Kumari S. Modeling and optimization of chlorpyrifos and glyphosate biodegradation using RSM and ANN: Elucidating their degradation pathways by GC-MS based metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114628. [PMID: 36774796 DOI: 10.1016/j.ecoenv.2023.114628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Ongoing and extensive use of pesticides negatively impact the environment and human health. Microbe-based remediation bears importance as it is an eco-friendly and cost-effective technique. The present study investigated chlorpyrifos (CHL) and glyphosate (GLY) degrading potential of Bacillus cereus AKAD 3-1, isolated from the soybean rhizosphere. Optimization and validation of different process variables were carried out by response surface methodology (RSM) and artificial neural network (ANN). Critical parameters which affect the degradation process are initial pesticide concentration, pH, and inoculum size. At optimum conditions, the bacterial strain demonstrated 94.52% and 83.58% removal of chlorpyrifos and glyphosate, respectively. Both Central-composite design (CCD-RSM) and ANN approaches proved to perform well in modeling and optimizing the growth conditions. The optimum ANN-GA model resulted in R2 ≥ 0.99 for chlorpyrifos and glyphosate, while in the case of RSM, the obtained R2 value was 0.96 and 0.95, respectively. Results indicated that the process variables significantly (p < 0.05) impact chlorpyrifos and glyphosate biodegradation. Moreover, the predicted RSM model had a "lack of fit p-value" of "0.8849" and "0.2502" for chlorpyrifos and glyphosate, respectively. GC-MS analysis revealed that the strain first converted chlorpyrifos into 3,5,6-trichloro pyridin-2-ol & O, O-diethyl O-hydrogen phosphorothiate. Later, these intermediate metabolites were broken and completely mineralized into non-toxic by-products. Similarly, glyphosate was first converted into 2-(methylamino) acetic acid and amino-oxyphosphonic acid, which were further mineralized without any toxic by-products. Taken together, the results of this study clarify the biodegradation pathways and highlights the promising potential of B. cereus AKAD 3-1 in the bioremediation of chlorpyrifos and glyphosate-polluted environments.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India; Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India; Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj 211002, Uttar Pradesh, India.
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
20
|
Bhatt D, Srivastava A, Srivastava PC, Sharma A. Evaluation of three novel soil bacterial strains for efficient biodegradation of persistent boscalid fungicide: Kinetics and identification of microbial biodegradation intermediates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120484. [PMID: 36306882 DOI: 10.1016/j.envpol.2022.120484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Boscalid, a new fungicide of anilide group, is intended to prevent and treat grey mould (Botrytis cinerea), primarily in vines and other fruit plants. In many regions, its long half-life in soil and water poses a serious environmental threat. Boscalid is reported to be toxic to a variety of aquatic organisms. One of the best ways to lessen the amount of boscalid that gets into surface and ground waters is to reduce its concentration in soil. Soil microbes are crucial for the degradation of organic pollutants including pesticides. The present study reports the assessment of three novel soil bacterial strains isolated from pesticide-contaminated soil of Crop research centre, Pantnagar, Uttarakhand, India, which possess boscalid degradation ability. Two of these bacterial isolates could degrade boscalid up to 85-95% within 36 h of incubation period under shaking conditions in the minimal medium. The growth pattern of degrading bacterial isolates was monitored by recording the optical density (OD) of bacterial suspension using an ultra violet (UV)-visible spectrophotometer, whereas the concentration of primary boscalid was recorded by High-Performance Liquid Chromatography (HPLC-UV). A linear relationship was observed between the bacterial growth and the decrease in the residual concentration of boscalid. The concentration of boscalid during incubation with different bacterial strains could be best predicted by a second-order polynomial relationship with time and OD of the suspension as independent variables. Three degradation intermediates of boscalid namely, N-(1,1'-biphenyl-2-yl)pyridine-3-carboxamide (C18H14N2O, N-{[1,1'-biphenyl]-2-yl}-2-chloropyridine-3-carboxamide (C18H13N2OCl), and N-{[4'-chloro-1,1'-biphenyl]-2-yl}-2-chloropyridine ({C17H11NCl2}OH) were identified by the liquid chromatography-mass spectrometry (LC-MS) analysis of biodegraded samples. The biodegradation of boscalid through bacterial isolates seemed to be an economical and eco-friendly method for degrading a highly persistent boscalid fungicide.
Collapse
Affiliation(s)
- Devesh Bhatt
- Department of Chemistry, College of Basic Sciences and Humanities, India
| | - Anjana Srivastava
- Department of Chemistry, College of Basic Sciences and Humanities, India.
| | - P C Srivastava
- Department of Soil Science, College of Agriculture, India
| | - Anita Sharma
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, US Nagar, 263145, Uttarakhand, India
| |
Collapse
|
21
|
Lin S, Zhang L, Zhang P, Huang R, Khan MM, Fahad S, Cheng D, Zhang Z. Effects of glycosylation on the accumulation and transport of fipronil in earthworm (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3688-3696. [PMID: 35953750 DOI: 10.1007/s11356-022-22417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the differences in the accumulation of fipronil (F) and the glycosylated product glucose-fipronil (GTF) in Eisenia fetida within 48 h were investigated, and the reason for these differences was discussed. The accumulation of F and GTF in E. fetida and soil was determined by high-performance liquid chromatography (HPLC) after simple, rapid pretreatment; the mean recoveries of F and GTF were 84.79 ~ 95.83%, and the relative standard deviations were 3.39 ~ 9.21%, indicating that the methods could accurately detect the accumulation of F and GTF in E. fetida and soil. Results showed that the accumulation concentrations of F and GTF in E. fetida increased with exposure time; the concentrations of F in E. fetida were 3.1 ~ 6.2 times higher than those of GTF. In addition, the half-lives of GTF in soil (16.90 ~ 18.24 days) were significantly lower than those of F (24.75 ~ 26.65 days). After the addition of phlorizin, a hexose transport inhibitor, the accumulation of F in E. fetida did not change significantly, but the accumulation of GTF in E. fetida was significantly inhibited. The concentrations of GTF in E. fetida after adding phlorizin were 32.71 ~ 59.07% of those without phlorizin. Overall, our results indicated that the uptake and transport of F and GTF in E. fetida were significantly different; the uptake and transport of GTF was related to monosaccharide transporters, and glycosylation could reduce the bioaccumulation of fipronil to E. fetida and shorten the half-life of fipronil in soil, providing an important reference for the application of glucose-fipronil.
Collapse
Affiliation(s)
- Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Rilin Huang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Dongmei Cheng
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Song W, Li M, Xu S, Wang Z, Li J, Zhang X, Qiu W, Wang Z, Song Q, Bhatt K, Fu C. Performance and mechanisms for tetrabromobisphenol A efficient degradation in a novel homogeneous advanced treatment based on S 2O 42- activated by Fe 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120579. [PMID: 36336186 DOI: 10.1016/j.envpol.2022.120579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a representative brominated flame retardant (BFR), generally could be debrominated and degraded effectively in photolysis systems with the high energy consumption. In this study, the novel sulfate radical (SO4•-) generation resource of dithionite (S2O42-), activated by the common transition metal of Fe3+, has been applied for establishing an innovative homogeneous advance treatment system for BFR treatment in water. When coupling Fe3+ with S2O42-, TBBPA degradation efficiency could be remarkably improved from 38.7% to 93.8% with the debromination and mineralization efficiency of 83.9% and 18.5% in 60 min, respectively. The primary reactive species also have been identified as SO3•-, SO4•- and •OH responsible for TBBPA treatment and the contributions of SO4•- and •OH have been calculated as 43.8% and 28.4% for TBBPA degradation, respectively. In Fe3+/S2O42- system, TBBPA was effectively degraded in a wide initial pH range (3.0-9.0), whose activation energy was calculated as 32.01 kJ mol-1. Due to the only operation of reagents dosing, the energy consumption and cost could be decreasing significantly without any light energy input and reaction conditions (e.g., pH and dissolved oxygen) adjustment compared with the general photolysis process. Moreover, some possible degradation approaches of TBBPA also have been proposed via GC-MS including debromination, hydroxylation, methylation, and mineralization in Fe3+/S2O42- system. And these probable degradation pathways also have been confirmed with the decreased Gibbs free energy (ΔG) based on density functional theory (DFT). This study has revealed that it was promising of Fe3+/S2O42- system for BFRs degradation and detoxification efficiently through the simple operation and mild condtions.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Mu Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Sen Xu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qi Song
- Henan Medscience Pharmaceuticals Co., Ltd., Zhumadian, 463000, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
23
|
Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves. Appl Biochem Biotechnol 2022; 195:3295-3310. [PMID: 36585549 DOI: 10.1007/s12010-022-04294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
The pyrethroid bifenthrin and the phenylpyrazole fipronil are widely employed insecticides, and their extensive use became an environmental issue. Therefore, this study evaluated their biodegradation employing bacterial strains of Bacillus species isolated from leaves of orange trees, aiming at new biocatalysts with high efficiency for use singly and in consortium. Experiments were performed in liquid culture medium at controlled temperature and stirring (32 °C, 130 rpm). After 5 days, residual quantification by HPLC-UV/Vis showed that Bacillus amyloliquefaciens RFD1C presented 93% biodegradation of fipronil (10.0 mg.L-1 initial concentration) and UPLC-HRMS analyses identified the metabolite fipronil sulfone. Moreover, Bacillus pseudomycoides 3RF2C showed a biodegradation of 88% bifenthrin (30.0 mg.L-1 initial concentration). A consortium composed of the 8 isolated strains biodegraded 81% fipronil and 51% bifenthrin, showing that this approach did not promote better results than the most efficient strains employed singly, although high rates of biodegradation were observed. In conclusion, bacteria of the Bacillus genus isolated from leaves of citrus biodegraded these pesticides widely applied to crops, showing the importance of the plant microbiome for degradation of toxic xenobiotics.
Collapse
|
24
|
Guima SES, Piubeli F, Bonfá MRL, Pereira RM. New Insights into the Effect of Fipronil on the Soil Bacterial Community. Microorganisms 2022; 11:microorganisms11010052. [PMID: 36677344 PMCID: PMC9862053 DOI: 10.3390/microorganisms11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Fipronil is a broad-spectrum insecticide with remarkable efficacy that is widely used to control insect pests around the world. However, its extensive use has led to increasing soil and water contamination. This fact is of concern and makes it necessary to evaluate the risk of undesirable effects on non-target microorganisms, such as the microbial community in water and/or soil. Studies using the metagenomic approach to assess the effects of fipronil on soil microbial communities are scarce. In this context, the present study was conducted to identify microorganisms that can biodegrade fipronil and that could be of great environmental interest. For this purpose, the targeted metabarcoding approach was performed in soil microcosms under two environmental conditions: fipronil exposure and control (without fipronil). After a 35-day soil microcosm period, the 16S ribosomal RNA (rRNA) gene of all samples was sequenced using the ion torrent personal genome machine (PGM) platform. Our study showed the presence of Proteobacteria, Actinobacteria, and Firmicutes in all of the samples; however, the presence of fipronil in the soil samples resulted in a significant increase in the concentration of bacteria from these phyla. The statistical results indicate that some bacterial genera benefited from soil exposure to fipronil, as in the case of bacteria from the genus Thalassobacillus, while others were affected, as in the case of bacteria from the genus Streptomyces. Overall, the results of this study provide a potential contribution of fipronil-degrading bacteria.
Collapse
Affiliation(s)
- Suzana Eiko Sato Guima
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Sao Paulo 05508000, Brazil
| | - Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Maricy Raquel Lindenbah Bonfá
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
| | - Rodrigo Matheus Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
- Correspondence:
| |
Collapse
|
25
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
26
|
Wang Y, Li G, Wang Q, Chen X, Sun C. The kinetic reaction of anaerobic microbial chloerobenzenes degradation in contaminated soil. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
27
|
Abdelhafez HEDH, Abdallah AA, El-Dahshan AA, Abd El-Baset YA, Morsy OM, Ahmed MBM. Ameliorative effects of the phytochemicals in dates (Phoenix dactylifera) against the toxicological changes induced by fipronil in male albino rats. Toxicology 2022; 480:153313. [PMID: 36113622 DOI: 10.1016/j.tox.2022.153313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Scientific evidence has shown that fipronil induces oxidative stress and genotoxicity. Our study aimed to evaluate the potential oxidation in redox parameters and DNA, as well as determine the protective effect of date extract of increasing resistance to cellular damage. 30 Male albino rats were divided into six groups ( n = 5): 1) control group; 2) treatment group with date extract (1 g/kg B.W.); 3) treatment group with 1/20 LD50 of fipronil; 4) treatment group with 1/40 LD50 of fipronil; 5) treatment group with 1/20 LD50 of fipronil + 1 g/kg date extract; and 6) treatment group with 1/40 LD50 of fipronil + 1 g/kg dates extract. Date extract showed a high content of phenolic compounds and antioxidant properties. Fipronil increased 8-hydroxy-2-deoxyguanosine levels and lipid peroxidation by malondialdehyde but decreased the total antioxidant capacity in plasma. Moreover, glutathione, catalase, and superoxide dismutase levels in the liver and kidney decreased, along with histopathological abnormalities. Additionally, tail moment parameters of liver DNA and micronucleus frequencies in the bone marrow increased. This study showed that fipronil-induced various health hazards in vivo, whereas date extract alleviated the said toxicological effects. However, date extract failed to reduce genotoxicity.
Collapse
Affiliation(s)
- Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt.
| | - Amr A Abdallah
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Asmaa A El-Dahshan
- Department of Zoology Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Yasser A Abd El-Baset
- Department Cotton Chemistry and Textile Fibers, Cotton Research Institute, Agricultural Research Center Giza, Egypt
| | - Osama M Morsy
- Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), P.O. Box 2033, Cairo, Egypt
| | - Mohamed Bedair M Ahmed
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box 12622, Dokki, Cairo, Egypt.
| |
Collapse
|
28
|
Silambarasan S, Cornejo P, Vangnai AS. Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119453. [PMID: 35569624 DOI: 10.1016/j.envpol.2022.119453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t1/2) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d-1 and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t1/2 values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL-1 of N and solubilized 103 μg mL-1 of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand.
| |
Collapse
|
29
|
Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. CHEMOSPHERE 2022; 294:133609. [PMID: 35051518 DOI: 10.1016/j.chemosphere.2022.133609] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Biofilm-mediated bioremediation is an attractive approach for the elimination of environmental pollutants, because of its wide adaptability, biomass, and excellent capacity to absorb, immobilize, or degrade contaminants. Biofilms are assemblages of individual or mixed microbial cells adhering to a living or non-living surface in an aqueous environment. Biofilm-forming microorganisms have excellent survival under exposure to harsh environmental stressors, can compete for nutrients, exhibit greater tolerance to pollutants compared to free-floating planktonic cells, and provide a protective environment for cells. Biofilm communities are thus capable of sorption and metabolization of organic pollutants and heavy metals through a well-controlled expression pattern of genes governed by quorum sensing. The involvement of quorum sensing and chemotaxis in biofilms can enhance the bioremediation kinetics with the help of signaling molecules, the transfer of genetic material, and metabolites. This review provides in-depth knowledge of the process of biofilm formation in microorganisms, their regulatory mechanisms of interaction, and their importance and application as powerful bioremediation agents in the biodegradation of environmental pollutants, including hydrocarbons, pesticides, and heavy metals.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128033. [PMID: 34999406 DOI: 10.1016/j.jhazmat.2021.128033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture Graphic Era Hill University Bhimtal, 263136, India
| | - Parul Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, G.B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, 110021, India; Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
31
|
Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S, Chen S. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127841. [PMID: 34844804 DOI: 10.1016/j.jhazmat.2021.127841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
32
|
Lindane removal in contaminated soil by defined microbial consortia and evaluation of its effectiveness by bioassays and cytotoxicity studies. Int Microbiol 2022; 25:365-378. [PMID: 35032229 DOI: 10.1007/s10123-022-00232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
Lindane contamination in different environmental matrices has been a global concern for long. Bacterial consortia consisting of Paracoccus sp. NITDBR1, Rhodococcus rhodochrous NITDBS9, Ochrobactrum sp. NITDBR3, NITDBR4 and NITDBR5 were used for the bioremediation of soil artificially contaminated with lindane. The bacteria, Paracoccus sp. NITDBR1 and Rhodococcus rhodochrous NITDBS9, have been selected based on their lindane degrading capacity in liquid culture conditions (~80-90 %). The remaining three bacteria were chosen for their auxiliary properties for plant growth promotion, such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production and ammonia production under in vitro conditions. In this study, market wastes, mainly vegetable wastes, were added to the soil as a biostimulant to form a biomixture for assisting the degradation of lindane by bioaugmentation. Residual lindane was measured at regular intervals of 7 days to monitor the biodegradation process. It was observed that the consortium could degrade ~80% of 50 mg kg-1 lindane in soil which was further increased in the biomixture after six weeks of incubation. Bioassays performed on plant seeds and cytotoxicity studies performed on human skin fibroblast and HCT116 cell lines revealed that the groups contaminated with lindane and treated with the bacterial consortium showed lower toxicity than their respective controls without any bacteria. Hence, the use of both pesticide degrading and plant growth-promoting bacteria in a consortium can be a promising strategy for improved bioremediation against chemical pesticides, particularly in soil and agricultural fields, simultaneously enhancing crop productivity in those contaminated soil.
Collapse
|
33
|
Zhou Z, Wu X, Lin Z, Pang S, Mishra S, Chen S. Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Appl Microbiol Biotechnol 2021; 105:7695-7708. [PMID: 34586458 DOI: 10.1007/s00253-021-11605-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. KEY POINTS: • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.
Collapse
Affiliation(s)
- Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
34
|
Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of carbamates. CHEMOSPHERE 2021; 279:130500. [PMID: 33892453 DOI: 10.1016/j.chemosphere.2021.130500] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Guo Y, Huang Y, Pang S, Zhou T, Lin Z, Yu H, Zhang G, Bhatt P, Chen S. Novel Mechanism and Kinetics of Tetramethrin Degradation Using an Indigenous Gordonia cholesterolivorans A16. Int J Mol Sci 2021; 22:ijms22179242. [PMID: 34502147 PMCID: PMC8431606 DOI: 10.3390/ijms22179242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Tetramethrin is a pyrethroid insecticide that is commonly used worldwide. The toxicity of this insecticide into the living system is an important concern. In this study, a novel tetramethrin-degrading bacterial strain named A16 was isolated from the activated sludge and identified as Gordonia cholesterolivorans. Strain A16 exhibited superior tetramethrin degradation activity, and utilized tetramethrin as the sole carbon source for growth in a mineral salt medium (MSM). High-performance liquid chromatography (HPLC) analysis revealed that the A16 strain was able to completely degrade 25 mg·L−1 of tetramethrin after 9 days of incubation. Strain A16 effectively degraded tetramethrin at temperature 20–40 °C, pH 5–9, and initial tetramethrin 25–800 mg·L−1. The maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were determined to be 0.4561 day−1, 7.3 mg·L−1, and 75.2 mg·L−1, respectively. The Box–Behnken design was used to optimize degradation conditions, and maximum degradation was observed at pH 8.5 and a temperature of 38 °C. Five intermediate metabolites were identified after analyzing the degradation products through gas chromatography–mass spectrometry (GC-MS), which suggested that tetramethrin could be degraded first by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and its subsequent metabolism. This is the first report of a metabolic pathway of tetramethrin in a microorganism. Furthermore, bioaugmentation of tetramethrin-contaminated soils (50 mg·kg−1) with strain A16 (1.0 × 107 cells g−1 of soil) significantly accelerated the degradation rate of tetramethrin, and 74.1% and 82.9% of tetramethrin was removed from sterile and non-sterile soils within 11 days, respectively. The strain A16 was also capable of efficiently degrading a broad spectrum of synthetic pyrethroids including D-cyphenothrin, chlorempenthrin, prallethrin, and allethrin, with a degradation efficiency of 68.3%, 60.7%, 91.6%, and 94.7%, respectively, after being cultured under the same conditions for 11 days. The results of the present study confirmed the bioremediation potential of strain A16 from a contaminated environment.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tianhao Zhou
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongxiao Yu
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
| | - Guorui Zhang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
| | - Pankaj Bhatt
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (P.B.); (S.C.); Tel.: +86-20-8528-8229 (P.B. & S.C.); Fax: +86-20-8528-0292 (P.B. & S.C.)
| | - Shaohua Chen
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (P.B.); (S.C.); Tel.: +86-20-8528-8229 (P.B. & S.C.); Fax: +86-20-8528-0292 (P.B. & S.C.)
| |
Collapse
|